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Trichomes are hair-like appendages extending from the plant epi-
dermis (Levin, 1973). They serve many important biotic roles for 
plants, including interference with herbivore movement, preventing 
herbivory, and reducing the area available for the attachment of in-
sect eggs (Handley et al., 2005). In addition, trichomes play many 
other important roles, such as the protection of the plant from solar 
radiation, salt balance in the form of excretion, seed dispersal, and 
reduced evaporation (Ghorashy et al., 1971; Baldocchi et al., 1983; 
Serna and Martin, 2006; Price et al., 2011). There are many types 
of trichomes, including non-glandular, glandular, curly, straight, 
unicellular, multicellular, hooked, and simple appendages, and they 
vary in their size and origin (Werker, 2000).

Glandular trichomes are different from non-glandular struc-
tures because of the various substances they secrete, including 
sticky compounds and toxins. The sticky exudate from glandular 
trichomes can potentially entrap or completely immobilize insects 
that cross its path. Glandular trichomes may also release toxic sub-
stances that have multiple effects on insects, including reducing 
growth rates and preventing oviposition. This increases the mortal-
ity of the insect in comparison with individuals living on glabrous 
leaf varieties with no trichomes (Stipanovic, 1983). Non-glandular 
trichomes lack the ability to produce sticky substances or toxins. 
Even without the presence of secondary substances, non-glandu-
lar trichomes still act as an effective physical barrier against certain 
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PREMISE: Trichomes are hair-like appendages extending from the plant epidermis. They serve 
many important biotic roles, including interference with herbivore movement. Characterizing 
the number, density, and distribution of trichomes can provide valuable insights on plant 
response to insect infestation and define the extent of plant defense capability. Automated 
trichome counting would speed up this research but poses several challenges, primarily 
because of the variability in coloration and the high occlusion of the trichomes.

METHODS AND RESULTS: We developed a simplified method for image processing for 
automated and semi-automated trichome counting. We illustrate this process using 30 leaves 
from 10 genotypes of soybean (Glycine max) differing in trichome abundance. We explored 
various heuristic image-processing methods including thresholding and graph-based 
algorithms to facilitate trichome counting. Of the two automated and two semi-automated 
methods for trichome counting tested and with the help of regression analysis, the semi-
automated manually annotated trichome intersection curve method performed best, with an 
accuracy of close to 90% compared with the manually counted data.

CONCLUSIONS: We address trichome counting challenges including occlusion by combining 
image processing with human intervention to propose a semi-automated method for trichome 
quantification. This provides new opportunities for the rapid and automated identification and 
quantification of trichomes, which has applications in a wide variety of disciplines.
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insects because of variations in trichome branching, length, and 
density (Levin, 1973; Stipanovic, 1983).

Soybean (Glycine max (L.) Merr.) produces long, dense tri-
chomes to slow phloem-feeding insects by preventing easy access 
to the plant surface itself (Price et al., 2011). Glabrous soybean pods 
were more damaged by the feeding of the adult bean leaf beetle 
(Cerotoma trifurcata) than pods with varying amounts of trichomes 
(Lam and Pedigo, 2001). The potato leaf hopper (Empoasca fabae) 
and springtails (Deuterosminthurus  yumanensis) formed signifi-
cantly larger populations on glabrous soybean varieties (Turnipseed, 
1977). Significantly higher larval mortality and decreased pupal 
weight of Mexican bean beetle (Epilachna varivestis) were reported 
in soybean varieties with more trichomes (Gannon and Bach, 
1996), and lower soybean looper (Pseudoplusia includens), jassid 
(Amrasca biguttula), and whitefly (Bemisia tabaci) infestation was 
reported in the presence of trichomes (Ihsan-ul-Haq et al., 2003). 
Dai et al. (2010) reported that soybean aphid (Aphis glycines) pop-
ulations were similar across varieties with varying trichome densi-
ties; however, their study did not artificially infest plants with aphids 
nor limit exposure to the natural enemies of the aphid, thereby lim-
iting the inference about the direct effect of trichomes on soybean 
aphids.

Trichomes, if effective in preventing insect infestation in soy-
bean, could be a cost-effective target for preventing crop losses; 
however, a major deterrent in advancing trichome studies is the 
tedious and time-intensive phenotyping required to quantify the 
numbers of trichomes on the leaf surface. Few studies have used 
imaging-based phenotyping to study soybean trichomes, with most 
approaches being predominantly manual (Kim et al., 2011; Cheng 
et al., 2014). Manual counting is both time consuming and mistake 
prone (Pomeranz et al., 2013); therefore, accurately identifying and 
counting soybean leaf trichomes is a serious bottleneck. Automating 
(or semi-automating) the counting of trichomes could significantly 
advance research on trichomes; however, it is challenging because 
of the variability in trichome coloration and their high levels of oc-
clusion. Due to its potential in automation and the reduced error 
associated with digital-based phenotyping, image processing pres-
ents an exciting possibility to overcome the challenges associated 
with trichome phenotyping, expediting the counting process and 
potentially reducing the error associated with manual counting. 

The main objective of this study was therefore to explore and assess 
methods for determining trichome density in soybean leaves using 
image-processing techniques.

METHODS AND RESULTS

Genetic materials

We used 10 isogenic soybean lines varying in trichome den-
sity (Table 1, Appendix S1). Two seeds of each of the 10 soybean 
genotypes were individually planted in soil substrate potting 
mix (Professional Growing Mix, Sun Gro Horticulture, Agawam, 
Massachusetts, USA) in 18-cm pots. Around 0.5 g of Osmocote Plus 
15-9-12 (Charleston, South Carolina, USA) was then added to each 
pot and lightly watered in. The plants were placed into a Percival 
E41L2C9 growth chamber (Percival Scientific, Perry, Iowa, USA). 
The growth chamber settings consisted of a 14 h : 10 h light : dark 
cycle with a constant temperature of 28°C and a relative humidity of 
60%. Plants were checked daily and watered as needed.

When the soybean seedlings reached the vegetative stage with 
cotyledons (VC) (i.e., unrolled unifoliate leaves; Licht, 2014), one of 
the two plants from each pot was removed. When plants reached the 
V2 growth stage (i.e., two trifoliate leaflets unrolled), the leaves were 
imaged for the automated trichome count. The images were taken 
using a Nikon SMZ745T microscope (Nikon, Tokyo, Japan). The 
software used for the imaging was supplied with the microscope 
(Nikon Imaging Software) and was used to visualize the sample 
during imaging. All samples were put into focus using the highest 
magnification (7.5 : 1) so that the sample was in focus regardless of 
what magnification we decided to use for imaging. The tissue size 
used for imaging was approximately 25 mm × 25 mm.

Leaf clearing and mounting

To better expose the trichomes during the imaging process, a chem-
ical clearing process was used to remove the leaf chlorophyll and 
make the leaf transparent. Prior to the leaf-clearing procedure, three 
trifoliate leaves of each of the 10 soybean genotypes were harvested 
and frozen for 24 h. The frozen leaves were allowed to thaw for one 

TABLE 1. Ten isogenic lines with a shared parental background (Clark) with varying trichome densities were compared with two near-isogenic (~75%) lines with or 
without recombination-activating genes (RAGs).

Plant introduction ID
Trichome type/

phenotype RAG RAG function Reference

PI 548533 Clark — —
PI 547410 Glabrous P1 — Pfeiffer, 1992
PI 547412 Glabrous P1 — Nagai and Saito, 1923; Hunt et al., 2011
PI 547415 Dense 1 Pd1 Controls the formation of a dense 

pubescence phenotype
Bernard and Singh, 1969; Komatsu et al., 

2007; Palmer and Kilen, 1987
PI 547422 Sparse Ps Controls the formation of fewer trichomes 

per unit area
Hill et al., 2004; Komatsu et al., 2007; Palmer 

and Kilen, 1987
PI 547532 Sparse Ps Controls the formation of fewer trichomes 

per unit area
Bernard and Singh 1969; Komatsu et al., 

2007; Palmer and Kilen, 1987
PI 547576 Sharp pubescence tip Pb Controls the formation of sharp trichome tips Ting, 1946; Broich and Palmer, 1981
PI 547625 Dense 2 Pd2 Controls the formation of a dense 

pubescence phenotype
Palmer et al., 2004; Palmer and Kilen, 1987

PI 547643 Normal pubescence Clark-Rsv1 — Ren et al., 2000
PI 547649 Extra-dense Pd1Pd2 Controls the formation of an extra-dense 

pubescence phenotype
Bernard et al., 1991; Gunasinghe et al., 1988
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hour before beginning the clearing process. All clearing procedures 
were performed at room temperature under a fume hood.

For each of the 10 genotypes, one leaflet from each of the three 
trifoliate leaves was randomly chosen for imaging, for a total of 30 
leaflets per genotype. The leaflets of each genotype were placed into 
beakers and submerged in denatured alcohol for 60 min to remove 
the epidermal wax. The residual alcohol was then poured off the 
leaves, after which they were soaked in a solution containing 100 mL  
of water and sodium hydroxide for 18 h to make them translucent. 
Soybean genotypes that appeared to have higher trichome den-
sities were soaked for up to 24 h as these genotypes reached the 
translucent state at a slower rate. Once the leaves were translucent, 
they were placed in a Petri dish and rinsed three times with a gentle 
stream of water. The leaves were then neutralized with acetic acid 
for 30 min while still in the Petri dishes. The acetic acid was poured 
off the leaves, and sodium hypochlorite was added to the Petri dish 
for 30 min to clear the leaves. Afterward, the leaves were rinsed 
three times with water and placed on Kimwipes (Kimberly-Clark, 
Irving, Texas, USA) so that the residual moisture could be absorbed. 

The leaves were left in covered Petri dishes at room temperature and 
set aside for the mounting procedure.

We utilized two leaf-mounting techniques to capture the images. 
For trichome density mounting, a single tissue sample (~1 cm2) was 
cut from each of the three leaves for each genotype and placed on a 
single glass slide, so that there were three samples on one glass slide 
for each genotype. A second glass slide was then used to cover the 
three leaf samples and ensure that the leaves were flat and on the 
same viewing plane for imaging. The glass slides were held together 
with two strips of double-sided tape, one at each end of the slide.

For full-length trichome mounting, a single sample from each 
of the previously cut leaves of each genotype was cut and folded 
once so that trichomes on the bottom of the leaf were exposed and 
trichomes along the crease of the fold stood perpendicular to the 
crease. The leaves were not folded along the major veins as this re-
gion contained significantly more trichomes than other areas of the 
leaf and was not representative of the leaf area. The folded leaf sam-
ples were placed between two glass slides as in the trichome density 
mounting procedure.

Trichome imaging

A Nikon SMZ 745T stereomicroscope 
equipped with a polarizing filter attachment 
and Infinity image analysis software (Teledyne 
Lumenera, Ottawa, Ontario, Canada) was 
used to capture the images of the soybean leaf 
trichomes. The mounted leaf samples were 
placed on the microscope sample stage, and 
images were captured after the desired light-
ing, magnification, and focus were achieved. 
The images did not include areas where ma-
jor veins were visible. Adaxial and abaxial 
trichome density images were captured from 
the same samples because the transparent 
glass slides could easily be flipped to gain 
access to the opposite side of the mounted 
leaves. Images of the standing trichomes were 
captured from the mounted folded leaf sam-
ples. Side view images were used to count the 
number of trichomes (Appendix S2). For the 
adaxial and abaxial views, it was very difficult 
to separate out individual trichomes because 
of the significant occlusion and merging of 
trichomes when they overlap on each other. 
Instead, we visually determined whether the 
trichomes were absent, or of low, medium, 
or high density (Appendix S3). These differ-
ences correspond to the known variation in 
trichome density attributed to the isogenic set 
of genotypes used in this study.

Trichome image preprocessing

Manual counting—All genotypes were 
manually phenotyped (counted). We only 
counted trichomes emerging from the leaf 
base. Trichomes that emerged from the left or 
right border of the image were not counted 
(Appendix S4).

FIGURE 1. Image pre-processing steps. The images were converted from (A) the RGB to (B) the 
LAB color space. (C) The leaf is then segmented. (D) Next, a binary image was obtained using 
Otsu thresholding. (E) A skeleton image was obtained. (F) Final processed image after thinning 
and selecting the biggest component to remove the noise artifacts.
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Trichome segmentation and skeletonization—The image process-
ing (Kulkarni and Patil, 2012) toolbox in MATLAB (MathWorks, 
Natick, Massachusetts, USA) was used to process and analyze the 
images. This toolbox has previously been used for other phenotyp-
ing tasks (Zhou et al., 2019). The pre-processing steps included con-
verting the images from RGB to the LAB color space, binarizing the 
images using a threshold value, and then skeletonizing the obtained 
images. This was done to enable the function of the image-process-
ing algorithm.

Segmenting the trichomes in each image was the first step 
in all of the trichome counting methods outlined below. To do 
so, all images were converted from the RGB color space to the 
LAB color space. LAB is a color space with three axes: L refers 
to lightness while A and B are related to color dimension (Fig. 
1). Because the leaf and trichomes are connected, a threshold-
ing value was selected to separate the individual trichomes. The 
threshold value was applied over the lightness axis; hence, this 
color space is useful for trichome segmentation from the leaf. 
This value was heuristically obtained by comparing the pixel in-
tensity of the light dimension of the LAB color space through-
out the image. Figures 1A and 1B show the conversion between 
these two color spaces. In addition, Fig. 1C shows the bottom 
part of the image where the leaf surface was successfully distin-
guished from the trichomes. This image was converted from the 
LAB color space to grayscale for further analysis. Next, based 
on Otsu’s thresholding (Otsu, 1979), all images were binarized 
so that the trichomes were shown as white pixels. Next, skele-
tonization (using thinning methodology) was applied to rep-
resent each trichome as a line (Lam et al., 1992). These types 
of segmentation and skeletonization are widely used in plant 
phenotyping (Ma et al., 2019; Falk et al., 2020). We then applied 
a Gaussian filter to obtain a skeletonization with less noise. 
Additionally, noise removal was accomplished using the largest 
connected component algorithm. The skeleton image and the 
image obtained after noise removal are illustrated in Figs. 1E 
and 1F, respectively.

Trichome counting methods

After the skeletonization step was performed, we explored both au-
tomated and semi-automated methods to count the number of tri-
chomes on the leaves. We considered two fully automated methods 
and two semi-automated methods for counting the trichomes. The 
correlations between manual counting and each different counting 
method were compared using R2. We outline the conceptual ap-
proach of these methods in Fig. 2.

Fully automated counting

Counting endpoints—In a skeletonized image, all trichomes are rep-
resented as line segments with two endpoints. One endpoint is on 
the surface of the leaf and the other endpoint is free. Thus, the num-
ber of free endpoints in the skeleton image gives a measure of the 
number of trichomes. This method can roughly estimate how dense 
the trichomes are.

Figure 3 shows the number of trichomes detected using the 
counting endpoints method compared with results from the 
manual counting of the same images. We found that this method 
was quite sensitive to the presence of noise in the skeletonized 
image, which resulted in the overestimation of the number of 
trichomes. The average number of trichomes counted manu-
ally was 32.3, while for the automated counting it was 45.5; the 
root mean square error was 20, and the R2 was moderate (0.42,  
P = 0. 0001).

The counting endpoints method was particularly effective when 
the trichome density was low, resulting in sparse images. When the 
trichome density was high, this method underperformed because 
of the impact of noise and occlusions. In the latter case, the end 
of a trichome may lie on the “stalk” of another trichome, meaning 
no endpoint was detected for that particular trichome. In addition, 
the presence of small hairs and protuberances due to noise were in-
correctly counted as endpoints. One approach to circumvent these 
problems in cases of high trichome density was to apply a low pass 
filter to blur (and denoise) the skeleton image.

FIGURE 2. Flowchart of the different methods used to count the number of trichomes.
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Automated surface contouring—In the second automated counting 
method, we circumvented the shortcoming of the endpoint count-
ing approach by counting the number of trichome “stalks.” We first 
automatically detected the base curve of the leaf surface. This base 
curve was then translated vertically upward (see Fig. 4A). The num-
ber of intersections of the skeleton with the translated base curve 
provides an estimate of the number of trichomes at that height. We 
report the mean number of intersections across several vertical 
translations.

The base curve was detected by identifying the lowest white pixel 
in each column of the skeleton image. Four parallel curves with 
equal offset were then plotted (Fig. 4A), and the number of intersec-
tions between each curve and the skeleton images was subsequently 
calculated. The mean value of all intersections was reported as a 
measure of the number of trichomes. The offset value was decided 
based on the distance between the topmost and bottom-most parts 
of the image where white pixels are located. The average trichome 
was divided into four intervals.

The correlations between the results of manual counting and the 
automated surface contouring approach for each repetition are plotted 
in Fig. 5. The number of trichomes counted by this method was lower 
than for the manual counting; however, the R2 for the first and second 
repetitions were relatively good (0.6 and 0.87, respectively). For the 
third repetition, the R2 was only 0.33 (P = 0. 0001). The poor perfor-
mance in the third repetition was due to the incorrect detection of the 
base leaf surface resulting from occlusion and the presence of strange 
shapes resulting from lack of evenness of the leaf surface. Blurring and 
skeletonization did not dramatically improve this issue. A shortcom-
ing of this method is therefore that the accuracy of the results is deter-
mined to a large extent by the quality of the base curve.

Semi-automated counting

Human-annotated surface contouring—In the first semi-automated 
method, we ensured the quality of the base curve by manually 
drawing a yellow curve such that it could pass through the base 
of all trichomes, as shown in Fig. 4B. This was done to eliminate 
the problem noted above for the third repetition and to create an 
accurate base curve, and was the only manual step in the process. 
Following this step, we automatically moved the base curve and 
counted the number of intersections with the skeletonized image. 
The average number of intersections between the translated base 
line and the skeleton image was calculated and reported as the 
number of trichomes.

We see a more consistent performance for the trichome count 
when using a human-annotated base surface. Figure 5B shows a 
comparison of the number of trichomes obtained by this method 
versus the manual counting method. The R2 values for the first and 
second repetitions were still substantial (0.63 and 0.64, respectively, 
with P values of 0.0001 and 0.0001); however, using this approach, 
the issue noted above for the third repetition in the automated 
method was now mostly resolved (R2 = 0.48, P = 0.0001). The images 
in the third repetition were also denser than the other repetitions.

Human-annotated trichome intersection curve—In the previous 
methods, the key idea was to translate the manually or automatically 
detected surface curve to identify the intersections of trichomes 
with the curve. In the final semi-automated approach, the human 
annotator drew a single curve that passes through most of the tri-
chomes. Figure 4C shows this (red) curve drawn by a human so that 
almost all the trichomes pass through this curve. Subsequently, the 

FIGURE 3. Comparison of the number of trichomes counted automat-
ically and manually. R2 value for the fully automated method is 0.42 (P = 
0.0001) when compared with the actual number of trichomes from the 
manual count.

FIGURE 4. Surface contouring methods. (A) Four parallel curves drawn based on the leaf surface line and the offset value. (B) Human-annotated 
surface contouring shown as a yellow line on the surface of the leaf. (C) Human-annotated trichome intersection curve shown as a red line on the 
surface of the leaf.

A B C
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number of intersection points between this one curve and the skel-
eton image was reported as a measure of the number of trichomes.

The comparison between the manually counted trichomes and 
the number calculated by this method is shown in Fig. 5C. In this 
case, the R2 values for the first and second repetitions were 0.62 and 
0.90, respectively. This consistent performance is further improved 
by the manual annotation of a surface with a high number of tri-
chome intersections.

CONCLUSIONS

Characterizing the number, density, and distribution of tri-
chomes can provide valuable insights into the stress responses 

of some plant species. In this work, we detailed a step-by-step 
approach to automatically or semi-automatically quantify the 
number of trichomes on soybean leaves. Fully automating the 
estimation of trichome numbers is challenging as there are sev-
eral difficulties to overcome, primarily because of the variability 
in coloration and the high occlusion of the trichomes. The qual-
ity of imaging (shadowing and contrast) affects the segmenta-
tion pipeline that isolates the foreground (trichomes) from the 
background.

Here, we showed that fully automated image-processing ap-
proaches for trichome counting do not perform as well as methods 
that include some user input. Given that automated trichome count-
ing is a difficult problem, we advocate for the deployment of machine 
learning algorithms (especially object-detection and crowd-sourcing 

FIGURE 5. Comparison of the resulting number of trichomes obtained using each method for each repetition. (A–C) R2 for repetition 1 (A) , repetition 
2 (B), and repetition 3 (C) of the fully automated method using an automatically determined leaf surface line. The predicted data were compared 
with the ground truth. (D–F) R2 for repetition 1 (D), repetition 2 (E), and repetition 3 (F) of the semi-automated method performed using a manually 
drawn leaf surface line. The predicted data were compared with the ground truth. (G–I) R2 for repetition 1 (G), repetition 2 (H), and repetition 3 (I) of 
the semi-automated method performed using a manually drawn curve over the trichomes. The predicted data were compared with the ground truth.
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algorithms) as promising techniques for future work, as these algo-
rithms can have a more robust performance for cluttered images than 
image processing methods (Akintayo et al., 2018). However, images of 
sufficient quality and with varying trichomes density will be needed.

ACKNOWLEDGMENTS

This work was funded by the Iowa Soybean Association (to A.S.), 
the USDA National Institute of Food and Agriculture (grant no. 
2017-67007-26151 to S. Sarkar, B.G., and A.S.), an Iowa State 
University research grant through the PIIR award (to A.S., S. 
Sarkar, and B.G.), a PSI Faculty Fellow award (to B.G. and S. 
Sarkar), and a USDA CRIS project (IOW04314 to A.S.). The 
authors thank Jae Brungardt and Brian Scott for their support 
during the experiment.

AUTHOR CONTRIBUTIONS

A.S., B.G, S. Sundararajan, and S. Sarkar formulated the research 
problem and designed the approaches. S.V.M., T.Y., T.A., S.P., 
M.O., and A.S. collected the data. S.V.M., T.J., K.N., S. Sarkar, B.G., 
S. Sundararajan, and A.S. developed the processing workflow and 
performed the data analytics. All authors contributed to the writing 
and development of the manuscript. All authors read and approved 
the final manuscript.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the 
supporting information tab for this article.

APPENDIX S1. Leaf surface phenotypes of the 10 soybean (Glycine 
max) isolines used in this study. Images taken at growth stage V2, i.e., 
plants with two sets of unfolded trifoliate leaves. Scale bar = 1 mm.

APPENDIX S2. The three different views of imaging for a single 
soybean genotype. Side view images were used to count the num-
ber of trichomes. For the adaxial and abaxial views, it was very 
difficult to separate out individual trichomes due to the significant 
occlusion and merging.

APPENDIX S3. Observed trichome density variation in the 10 
isogenic soybean lines analyzed.

APPENDIX S4. Definition of trichome counting. (A) Trichomes 
were only counted when they were visibly emerging from the leaf 
base on the image (PI 547415, repetition 2). (B) Trichomes that 
emerged from the left or right border of the image were not counted 
(PI 547412, repetition 3).

LITERATURE CITED

Akintayo, A., G. L. Tylka, A. K. Singh, B. Ganapathysubramanian, A. Singh, and S. 
Sarkar. 2018. A deep learning framework to discern and count microscopic 
nematode eggs. Scientific Reports 8(1): 9145.

Baldocchi, D. D., S. B. Verma, N. J. Rosenberg, B. L. Blad, A. Garay, and J. E. 
Specht. 1983. Leaf pubescence effects on the mass and energy exchange 
between soybean canopies and the atmosphere. Agronomy Journal 75: 
537–543.

Bernard, R. L., and B. B. Singh. 1969. Inheritance of pubescence type in soybeans: 
glabrous, curly, dense, sparse, and puberulent. Crop Science 9: 192–197.

Bernard, R. L., R. L. Nelson, and C. R. Cremeens. 1991. USDA soybean genetic 
collection: isoline collection. Soybean Genetics Newsletter 18: 27–57.

Broich, S. L., and R. G. Palmer. 1981. Evolutionary studies of the soybean: The 
frequency and the distribution of alleles among collection of Glycine max 
and G. soja of various origin. Euphytica 30: 55–64.

Cheng, Y., L. Cao, S. Wang, Y. Li, H. Wang, and Y. Zhou. 2014. Analyses of plant 
leaf cell size, density and number, as well as trichome number using cell 
counter plugin. Bio-protocol 4(13): e1165.

Dai, H., Y. Wang, Y. Du, and J. Ding. 2010. Effects of plant trichomes on herbi-
vores and predators on soybeans. Insect Science 56: 406–413.

Falk, K. G., T. Z. Jubery, S. V. Mirnezami, K. A. Parmley, S. Sarkar, A. Singh, B. 
Ganapathysubramanian, and A. K. Singh. 2020. Computer vision and machine 
learning enabled soybean root phenotyping pipeline. Plant Methods 16(1): 5.

Gannon, A. J., and C. E. Bach. 1996. Effects of soybean trichome density on 
Mexican bean beetle (Coleoptera: Coccinellidae) development and feeding 
preference. Environmental Entomology 25: 1077–1082.

Ghorashy, S. R., J. W. Pendelton, R. L. Bernard, and M. E. Bauer. 1971. Effect of 
leaf pubescence on transpiration, photosynthetic rate and seed yield of three 
near-isogenic lines of soybeans. Crop Science 11: 426–427.

Gunasinghe, U. B., M. E. Irwin, and G. E. Kampmeir. 1988. Soybean leaf pubes-
cence affects aphid vector transmission and field spread of soybean mosaic 
virus. Annals of Applied Biology 112: 259–272.

Handley, L. R., C. M. Lockwood, and N. Handley. 2005. Back to the basics: Birmingham, 
Alabama, measurement and scale. Journal of Geography 104: 225–230.

Hill, C. B., Y. Li, and G. L. Hartman. 2004. Resistance to the soybean aphid in 
soybean germplasm. Crop Science 44: 98–106.

Hunt, M., N. Kaur, M. Stromvik, and L. Vodkin. 2011. Transcriptome profiling 
reveals expression differences in wild-type and glabrous soybean lines. BMC 
Plant Biology 11: 145.

Ihsan-ul-Haq, M. A., S. A. Kakakhel, and M. A. Khokhar. 2003. Morphological 
and physiological parameters of soybean resistance to insect pests. Asian 
Journal of Plant Science 2: 202–204.

Kim, H. J., J. H. Han, S. Kim, H. R. Lee, J. S. Shin, J. H. Kim, J. Cho, et al. 2011. 
Trichome density of main stem is tightly linked to PepMoV resistance in 
chili pepper (Capsicum annuum L.). Theoretical and Applied Genetics 
122(6): 1051–1058.

Komatsu, K., S. Okuda, M. Takahashi, R. Matsunaga, and Y. Nakazawa. 2007. 
Quantitative trait loci mapping of pubescence density and flowering time 
of insect-resistant soybean (Glycine max L. Merr.). Genetics and Molecular 
Biology 30(3): 635–639.

Kulkarni, A. H., and A. Patil. 2012. Applying image processing technique 
to detect plant diseases. International Journal of Modern Engineering 
Research 2: 3661–3664. Website http://cites eerx.ist.psu.edu/viewd oc/downl 
oad?doi=10.1.1.416.9110&rep=rep1&type=pdf.

Lam, L., S. W. Lee, and C. Y. Suen. 1992. Thinning methodologies: A comprehen-
sive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 
14: 869–885.

Lam, W. K., and L. P. Pedigo. 2001. Effect of trichome density on soybean pod 
feeding by adult bean leaf beetles (Coleoptera: Chrysomelidae). Journal of 
Economic Entomology 94: 1459–1463.

Levin, D. A. 1973. The role of trichomes in plant defense. Quarterly Review of 
Biology 48: 3–15.

Licht, M. 2014. Soybean growth and development. Iowa State University 
Extension and Outreach, Ames, Iowa, USA.

Ma, L., Y. Shi, O. Siemianowski, B. Yuan, T. K. Egner, S. V. Mirnezami, K. R. Lind, 
et al. 2019. Hydrogel-based transparent soils for root phenotyping in vivo. 
Proceedings of the National Academy of Sciences, USA 116(22): 11063–11068.

Nagai, I., and S. Saito. 1923. Linked factors in soybeans. Japanese Journal of 
Botany 1: 121–136.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.9110&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.9110&rep=rep1&type=pdf


Applications in Plant Sciences 2020 8(7): e11375 Mirnezami et al.—Automated trichome counting in soybean • 8 of 8

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Mirnezami et al.

Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE 
Transactions on Systems, Man, and Cybernetics 9(1): 62–66.

Palmer, R. G., and T. C. Kilen. 1987. Quantitative genetics and cytogenetics. In 
J. R. Wilcox [ed.], Soybeans: Improvement, production, and uses, 2nd ed., 
135–209. American Society of Agronomy, Madison, Wisconsin, USA.

Palmer, R. G., T. W. Pfeiffer, G. R. Buss, and T. C. Kilen. 2004. Qualitative genetics. 
In H. R. Boerma and J. E. Specht [eds.], Soybeans: Improvement, produc-
tion, and uses, 3rd ed., 137–233. American Society of Agronomy, Madison, 
Wisconsin, USA.

Pfeiffer, T. W. 1992. Recombination rates of soybean varieties from introduction 
and release. Theoretical and Applied Genetics 86: 557–561.

Pomeranz, M., D. Siegal-Gaskins, J. Engelmeier, T. Wilson, V. Fernandez, J. Brkljacic, 
and E. Grotewold. 2013. High-resolution computational imaging of leaf hair 
patterning using polarized light microscopy. The Plant Journal 73: 701–708.

Price, P. W., R. F. Denno, M. D. Eubanks, D. L. Finke, and I. Kaplan. 2011. Insect 
ecology: Behavior, populations and communities. Cambridge University 
Press, Cambridge, United Kingdom.

Ren, Q., T. W. Pfeiffer, and S. A. Ghabrial. 2000. Relationship between soybean 
pubescence density and soybean mosaic virus field spread. Euphytica 111: 
191–198.

Serna, L., and C. Martin. 2006. Trichomes: Different regulatory networks lead to 
convergent structures. Trends in Plant Science 11: 274–280.

Stipanovic, R. D.1983. Function and chemistry of plant trichomes and glands 
in insect resistance, 69–100. In P. A. Hedin [ed.], Plant resistance to insects. 
American Chemical Society, Washington, D.C., USA.

Ting, C. L. 1946. Genetic studies on the wild and cultivated soybeans. Journal of 
the American Society of Agronony 38: 381–393.

Turnipseed, S. G. 1977. Influence of trichome variations on populations of small 
phytophagous insects in soybean. Environmental Entomology 6: 815–817.

Werker, E. 2000. Trichome diversity and development. Advances in Botanical 
Research 31: 1–35.

Zhou, Y., S. Srinivasan, S. V. Mirnezami, A. Kusmec, Q. Fu, L. Attigala, M. G. S. 
Fernandez, et al. 2019. Semiautomated feature extraction from RGB images 
for sorghum panicle architecture GWAS. Plant Physiology 179(1): 24–37.


