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Abstract

Background: Estimating infectious disease parameters such as the serial interval (time

between symptom onset in primary and secondary cases) and reproductive number (av-

erage number of secondary cases produced by a primary case) are important in under-

standing infectious disease dynamics. Many estimation methods require linking cases

by direct transmission, a difficult task for most diseases.

Methods: Using a subset of cases with detailed genetic and/or contact investigation data

to develop a training set of probable transmission events, we build a model to estimate

the relative transmission probability for all case-pairs from demographic, spatial and clin-

ical data. Our method is based on naive Bayes, a machine learning classification algo-

rithm which uses the observed frequencies in the training dataset to estimate the proba-

bility that a pair is linked given a set of covariates.

Results: In simulations, we find that the probabilities estimated using genetic distance

between cases to define training transmission events are able to distinguish between

truly linked and unlinked pairs with high accuracy (area under the receiver operating

curve value of 95%). Additionally, only a subset of the cases, 10–50% depending on sam-

ple size, need to have detailed genetic data for our method to perform well. We show

how these probabilities can be used to estimate the average effective reproductive num-

ber and apply our method to a tuberculosis outbreak in Hamburg, Germany.

Conclusions: Our method is a novel way to infer transmission dynamics in any dataset

when only a subset of cases has rich contact investigation and/or genetic data.

Key words: Tuberculosis, reproductive number, naive Bayes, machine learning

VC The Author(s) 2020; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association 764

IEA
International Epidemiological Association

International Journal of Epidemiology, 2020, 764–775

doi: 10.1093/ije/dyaa031

Advance Access Publication Date: 24 March 2020

Original article

http://orcid.org/0000-0003-1542-4239


Introduction

Infectious disease parameters such as the serial interval

(time between symptom onset from primary to secondary

case) and the reproductive number (average number of sec-

ondary cases produced by a primary case over the infection

course) are instrumental in managing outbreaks.1 For dis-

eases in which disease progression shortly follows infec-

tion, these parameters have been studied extensively.1–6

For others, such as tuberculosis (TB), the serial interval

and reproductive number estimates are few and inconsis-

tent.7–9

Serial interval and reproductive number estimation

methods often rely on determining which cases are linked

by direct transmission. Pathogen whole genome sequence

(WGS) data are a powerful tool to link cases, and several

methods have been developed to analyse these data.10–22

However, WGS data are still relatively expensive and re-

quire bioinformatics expertise, making universal use in

high disease burden settings unfeasible. Therefore, datasets

may have WGS data on only a proportion of cases.

Another way to link cases is contact investigations, which

are often part of an outbreak response.23–29 However,

these investigations do not perfectly identify infectors due

to nonspecific transmission mechanisms, disease character-

istics and the willingness and ability of cases to share con-

tact information.26,29–33 Additionally, contact

investigations are time consuming and require significant

human resources, again meaning that these data are un-

likely to be available for all cases.

Here, we present a novel method to predict the rela-

tive probability of direct transmission between infec-

tious disease patients using pathogen WGS data and/or

contact investigations when these data are only available

on a proportion of cases, paired with other risk factor

data. These probabilities can be used to understand out-

break transmission dynamics and estimate the reproduc-

tive number without a reliable serial interval estimate.

We apply our method to a TB outbreak in Hamburg,

Germany.

Methods

Data structure

Our method requires individual-level case data, e.g. geo-

graphical location, clinical information, demographics and

observation date. At least a subset of the cases needs addi-

tional information, e.g. detailed contact investigation and/

or pathogen genome WGS data, to form the training set to

generate the model. We transform this dataset of individu-

als into a dataset of ordered case-pairs (i; j), where case i

was observed before case j. We convert the individual-level

covariates (X1; X2; . . . ; Xp) into pair-level covariates

(Z1; Z2; . . . ; Zp) by computing ‘distances’ which cap-

ture how well the individuals match on covariate values.

For example, if the individual-level covariate X1 was town

of residence, the pair-level covariate Z1 could indicate if

the individuals live in the same town, neighbouring towns

or more distant towns (see Supplementary Methods avail-

able as Supplementary data at IJE online).

Naive Bayes

To estimate the probability that cases i and j are linked by

direct transmission, pði! j), we use a classification tech-

nique called naive Bayes. This method uses Bayes rule to

estimate the probability of an outcome given a set of cova-

riates from the observed frequencies in a training dataset.

Our outcome, Lij equals 1 if case i infected case j and 0

otherwise. We know the probable value of Lij for case-

pairs in the training set based on pathogen WGS and/or

contact investigation data, and want to predict the proba-

bility that Lij ¼ 1 for the remaining pairs.

We first use the training set to calculate

PðZk ¼ zkjL ¼ lÞ, the probability that the pair-level covari-

ate Zk equals zk for each covariate k 2 f1; 2; . . . ; pg for

a pair with link status l 2 f1; 0g, using:

P Zk ¼ zkL ¼ lð Þ ¼
P

i;j1 Lij ¼ l; Zkij ¼ zk

� �
þ a

P
i;j1 Lij ¼ l
� �

þ ank

: (1)

Key Messages

• This paper introduces a method to calculate the relative probability that two infectious disease patients are connected

by direct transmission using clinical, demographic, geographical and genetic characteristics.

• We use naive Bayes, a machine learning technique, to estimate these probabilities using a training set of probable

links defined by contact investigation and/or pathogen whole genome sequence data on a subset of cases.

• These probabilities can be used to explore possible transmission chains, rule out transmission events and estimate

the reproductive number.
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The indicator function, 1, equals 1 if the input is true

and 0 if false, nk is the number of levels of Zk for

k 2 f1; 2; . . . ; pg, and a is a smoothing parameter to

avoid zero-probabilities resulting from sparse data. The

numerator,
P

i;j1fLij ¼ l; Zkij ¼ zkg, counts how often a

pair i; j has linked status l and value zk for covariate Zk,

k 2 f1; 2; . . . ; pg. The denominator counts the number

of pairs with link status l plus the total added because of

the smoothing correction (ank). Then we use the training

set to calculate PðL ¼ lÞ, the prior probability of link sta-

tus for l 2 f1; 0g using:

P L ¼ lð Þ ¼
P

i;j1 Lij ¼ l
� �

þ a

N þ 2a
(2)

where N is the total number of cases in the training set. We

used an a value of 1, which is equivalent to the Bayesian es-

timate of the probabilities in Equations 1 and 2 with a uni-

form prior.34–36

We then use Bayes rule to calculate the predicted proba-

bility that case i infected case j, pði! jÞ for all pairs in the

prediction set as:

pði! jÞ ¼ PðLij ¼ 1jZ1ij ¼ z1; . . . ; Zpij ¼ zpÞ

¼ PðZ1 ¼ z1; . . . ; Zp ¼ zpjL ¼ 1ÞPðL ¼ 1Þ
PðZ1 ¼ z1; . . . ; Zp ¼ zpÞ

¼
Qp

k¼1 PðZk ¼ zkjL ¼ 1ÞPðL ¼ 1Þ
Qp

k¼1 PðZk¼zkjL¼1ÞPðL¼1Þþ
Qp

k¼1 PðZk¼zkjL¼0ÞPðL¼0Þ
:

(3)

We calculate the conditional probability of all covariate

values given link sta-

tus PðZ1 ¼ z1; . . . ; Zp ¼ zpjL ¼ 1Þ, as the product of

the conditional probabilities of each cova-

riate, PðZk ¼ zkjL ¼ 1Þ for k 2 f1; 2; . . . ; pg, assum-

ing that covariates are conditionally independent.

Finally, we scale the estimated probabilities to represent

the relative likelihood that case j has been infected by case

i rather than any other sampled case, using:

p i! jð Þs ¼ p i! jð Þ
P

m6¼jp m! jð Þ : (4)

We call this scaled probability, p i! jð Þs, the ‘relative

transmission probability’. Note: the ordered nature of the

pair dataset implies that if case j was observed before case

i, then p i! jð Þ ¼ 0.

Training dataset construction

Naive Bayes uses a training set with a known outcome to

inform a model to estimate probabilities in a separate pre-

diction set. In our training set however, the outcome

represents probable rather than certain transmission

events, inferred from a subset of cases with pathogen WGS

and/or detailed contact investigation data. Because of this

uncertainty, we want to estimate the transmission proba-

bility of the training case-pairs as well as those that lack

WGS or contact data. Therefore, we use an iterative esti-

mation procedure where each pair has a turn in the predic-

tion set. The algorithm used to create the training set and

iterative estimation procedure is diagrammed in Figure 1

and described further in the Supplementary Methods avail-

able as Supplementary data at IJE online.

Reproductive number estimation

To estimate the reproductive number, we use the Wallinga

and Teunis approach3 which calculates the relative proba-

bility that each case was infected by all other cases, using

the serial interval distribution. The effective reproductive

Figure 1. Flowchart depicting the algorithm we used to create the train-

ing dataset and the iterative procedure to estimate the relative transmis-

sion probabilities.
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number (Ri) for each case is then calculated by summing

the scaled probabilities for all possible infectees with:

Ri ¼
P

m6¼ip i! mð ÞS (5)

assuming that all cases are sampled, and the outbreak is

completed. We use this equation, but with probabilities de-

rived from our naive Bayes approach.

By averaging the individual reproductive numbers for

all cases observed at each time point, we obtain time-level

effective reproductive number (Rt) estimates and average

those values for the stable portion of the outbreak, to give

an average reproductive number estimate over the study

period (Rt). We calculate confidence intervals for Rt and

Rt using parametric bootstrapping (see Supplementary

Methods available as Supplementary data at IJE online).

Simulation study

We assess our method by using an R package called

TransPhlyo, developed by Didelot et al.,21 to simulate

1000 outbreaks of at least 500 cases with TB transmission

dynamics and composed of multiple transmission

chains.11,37 We simulate each transmission chain with an

Rt of 1.2 and a shifted gamma distributed generation inter-

val (shape¼ 1.05, scale¼ 2.0, shift¼ 0.25) so at least 3

months separated each transmission event (Ma et al., in

press at AJE). We simulate representative pathogen

genomes and inform the model with four different covari-

ates, representing clinical and demographic variables and a

discretized version of the time between infection. We order

cases by the date of infection.

We compare our method performance when training us-

ing probable transmission events defined by single nucleo-

tide polymorphism (SNP) distances, with performance when

training using truly linked and unlinked case-pairs. We also

compare the performance with that of probabilities derived

from the time between infection dates and the serial/genera-

tion interval distribution motivated by the Wallinga and

Teunis method.3 For each simulation scenario (Box 1), we

calculate the area under the receiver operating curve (AUC),

assess how the probability of the true infector rank com-

pares with the probabilities of all possible infectors and esti-

mate Rt. To determine what proportion of cases needs to be

in the training set to achieve good performance, we use a

sensitivity analysis with various outbreak sizes and training

proportions. We also assess the performance when using the

date of observation instead of the date of infection to order

the cases. The simulation structure is explained further in

the Supplementary Methods available as Supplementary

data at IJE online.

Hamburg TB outbreak application

We apply our method to a small TB outbreak in Hamburg

and Schleswig-Holstein, Germany, analysed in Roetzer et

al.10 The outbreak includes 86 individuals from the largest

strain cluster in a long-term surveillance study conducted by

the health departments in these cities. The dataset includes

pathogen WGS data for all individuals as well as clinical, de-

mographic and social risk factor data. Furthermore, a subset

of these individuals was involved in contact investigations

performed by the local health authorities.

We define probable links in the training set in two ways:

(i) SNP distances, and (ii) contact investigation. When train-

ing with SNP distance, case-pairs with <2 SNPs are consid-

ered linked and those with >12 SNPs are considered

unlinked. Pairs with 2–12 SNPs are excluded from the train-

ing set as indeterminate.11,37 When using contact investiga-

tion data, pairs who had confirmed contact with each other

are considered linked, pairs without confirmed contact are

considered unlinked and cases who did not undergo contact

investigation are excluded. For comparison, we also calculate

the relative transmission probabilities randomly and using the

same serial intervals as the simulation study. We also tested

different smoothing parameters, a, to assess the possible im-

pact of adding one to each cell on the estimate of Rt.

We implemented the method to calculate relative trans-

mission probabilities and estimate the reproductive number

in an R package, nbTransmission, available from [https://

github.com/sarahleavitt/nbTransmission]. Additionally, the

code used to produce the simulations, analyse the

Hamburg outbreak and produce all results reported in this

paper is also available on GitHub at [https://github.com/sar

ahleavitt/nbSimulation and https://github.com/sarahleavitt/

nbPaper1].

Results

Simulation study

The sample sizes of the 1000 outbreaks (which were simu-

lated to have at least 500 cases) ranged 500–1178 (median:

Box 1. Description of simulation scenarios

Simulation scenarios

Model trained on true links

Model trained on SNPa distance links

Correct serial interval—gamma (1.05, scale ¼ 2.0)

Wide serial interval—gamma (1.30, scale ¼ 3.3)

Narrow serial interval—gamma (0.54, scale ¼ 1.9)

Random probabilities

aSingle nucleotide polymorphism.
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545). Each outbreak had 2–39 (median: 14) transmission

chains with 2–846 (median: 9) cases each. Supplementary

Figure S1, available as Supplementary data at IJE online,

shows the relative transmission probability distributions

for one outbreak comparing truly linked and unlinked

case-pairs. In that outbreak, our method estimated relative

transmission probabilities of <0.005 for most unlinked

pairs (92% when training with the truth and 89% training

using SNP distance). With both ways of defining the train-

ing set, our method assigned more than 75% of truly

linked case-pairs higher probabilities than the serial inter-

val method (Supplementary Figure S2, available as

Supplementary data at IJE online).

Over 1000 simulations, the average AUC was 97%

[standard deviation (SD) 0.6] compared with 95% (SD

1.2) when the model was trained using true links and SNP

distances, respectively (Figure 2; Supplementary Table S1,

available as Supplementary data at IJE online). When the

model was trained with links determined by SNP distances,

the estimated probability of the true infector was the high-

est of all possible infectors 22% of the time and ranked in

the top 25% of all possible infectors 93% (SD 2.4) of the

time [compared with 46% (SD 2.6) and 95% (SD 1.6)

when training with true links]. Our method outperformed

probabilities estimated using serial intervals (Figure 2;

Supplementary Table S1, available as Supplementary data

Figure 2 Violin plots of the performance metrics for the different scenarios across 1000 simulated outbreaks. The scenarios were: our method with a

training set of true links; our method with a training set of links defined by single nucleotide polymorphism (SNP) distance; probabilities derived from

the serial interval distribution used to simulate the outbreak: gamma(1.05, 2.0); probabilities derived from a serial interval distribution that is too

wide: gamma(1.3, 3.3) and too narrow: gamma(0.54, 1.9); and random probabilities. The metrics shown are the area under the receiver operating

curve (AUC), the proportion of time the true infector was assigned the highest relative transmission probability (Proportion Correct), and the propor-

tion of time the probability of the true infector was ranked in the top 5%, 10%, 25%, and 50% of all possible infectors.

Figure 3 Violin plots of the distribution of the average effective repro-

ductive number for different scenarios across 1000 simulated out-

breaks. The dashed horizontal line indicates the true value of 1.2 that

was used to simulate the outbreaks.
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at IJE online). Figure 3, and Supplementary Table S2

(available as Supplementary data at IJE online), show the

Rt estimates for each of the different scenarios compared

with the 1.2 value used to simulate the outbreaks. Both our

method and the correct serial interval estimated Rt accu-

rately. However, when incorrect serial intervals were used,

the Rt estimates were either too high or too low.

In our sensitivity analysis, the performance improved

and the metrics’ variability decreased as the proportion of

cases in the training set increased (Supplementary Figure

S3, available as Supplementary data at IJE online). If the

sample size was at least 500, only 10% of all cases were

needed to train the model to obtain good performance. For

a sample size of 200–500, training the model with 20% of

cases resulted in good performance. For smaller outbreaks,

the performance was best with at least 50% of the cases in

the training set (Figure 4). The Rt estimates grew increas-

ingly accurate as the training dataset proportion increased

(Supplementary Figure S4, available as Supplementary

data at IJE online). We also found that there was little

change in the performance when using the observation

date instead of the infection date (Supplementary Figure

S5, available as Supplementary data at IJE online).

Hamburg TB outbreak application

Case counts over the course of the Hamburg outbreak and

clinical and demographic characteristics are shown in

Figure 5 and Table 1. The 86 cases resulted in 3633 possi-

ble ordered case-pairs where the possible infector was ob-

served before the infectee. These pairs were separated by

0–20 SNPs (median: 4). Of the 86 individuals, 31 (36%)

were part of contact investigations, with 51 confirmed con-

tacts. All individual-level covariates were transformed into

pair-level covariates (Table 2).

Figure 6 shows heatmaps of all potential infectors using

our method compared with random probabilities (Figure 6A)

and a serial interval distribution (Figure 6B). Using our

method, defining links with either SNP distance (Figure 6C)

or confirmed contact (Figure 6D), there is more variation in

the relative transmission probability across possible infectors

than the serial interval or random scenarios. Some infectees

have infectors with a higher probability than all others in the

row, suggesting this is the likely true infector. However, even

for rows without a clear infector, many of the possible infec-

tors have very low probabilities and can be eliminated.

Figure 4 Boxplots of the performance metrics by training set proportion in 300 simulated outbreaks stratified by the total sample size of the outbreak.

The metrics shown are the area under the receiver operating curve (ROC) and the proportion of time the relative transmission probability of the true

source case was ranked in the top 25%. The dotted black line indicates a value of 90% on either metric.

Figure 5 Case counts by year for the Hamburg outbreak described in

Roetzer et al.10.
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All methods except random probabilities show spikes

in Rt at the second peak in case counts, but to different

degrees (Figure 7). The Rt estimate was 0.97 [95% confi-

dence interval (CI) 0.73–1.19] when training with con-

firmed contacts and 0.85 (95% CI 0.63–1.07) when

training with SNP distances (Figure 8; Supplementary

Table S3, available as Supplementary data at IJE online,).

Changing the smoothing parameter, a, had negligible effect

on these estimates (Supplementary Table S4, available as

Supplementary data at IJE online).

Discussion

We have developed a method to estimate the relative trans-

mission probability between pairs of infectious disease

cases using clinical, demographic, geographical and genetic

data, which accurately distinguishes between linked and

unlinked case-pairs. Using an SNP distance proxy for

transmission to train the model, the classification accuracy

was 95%, and 93% of the time the true infector had a

probability in the top 25% of all possible infectors.

Therefore, our method provides a powerful way to rule out

transmission events, outperforming the serial interval

method in all metrics and accurately estimating Rt. This

is important because the serial interval is difficult to esti-

mate and highly variable,7,8,38 highlighting the value of es-

timation methods that are independent of the serial

interval.

Applying our method to the Hamburg outbreak, we

found that both ways of model training allowed for the

Table 1. Individual-level demographic and clinical character-

istics for the Hamburg outbreak

Covariate Level n (%) of all individuals

(n¼86)

City Hamburg 62 (72.1%)

Schleswig-Holstein 24 (27.9%)

Nationality German 66 (76.7%)

Other 20 (23.3%)

Sex Female 16 (18.6%)

Male 70 (81.4%)

Age group <25 years old 5 (5.8%)

25–34 years old 13 (15.1%)

35–44 years old 24 (27.9%)

45–54 years old 20 (23.3%)

55–64 years old 16 (18.6%)

�65 years old 8 (9.3%)

Smear status Negative 50 (58.1%)

Positive 36 (41.9%)

HIVa status Negative 81 (94.2%)

Positive 5 (5.8%)

Substance abuse No 33 (38.4%)

Yes 53 (61.6%)

Residence Permanent residence 71 (82.6%)

Homeless 15 (17.4%)

Affiliation to al-

cohol-consum-

ing milieu/

street scene

Not affiliated 21 (24.4%)

Affiliated 65 (75.6%)

aHuman immunodeficiency virus.

Table 2. Pair-level demographic and clinical characteristics

for the Hamburg outbreak

Covariate Level n (%) of all pairs

(n¼3633)

City Same city 2148 (59.1%)

Different city 1485 (40.9%)

Nationality Both German 2129 (58.6%)

Same foreign country 19 (0.5%)

One German, one foreign

country

1315 (36.2%)

Different foreign countries 170 (4.7%)

Sex Male to male 2401 (66.1%)

Female to female 120 (3.3%)

Male to female 757 (20.8%)

Female to male 355 (9.8%)

Age group Same age group 695 (19.1%)

Different age group 2938 (80.9%)

Smear status Infector smear– 2339 (64.4%)

Infector smearþ 1294 (35.6%)

HIVa status Infector HIV– 3463 (95.3%)

Infector HIVþ 170 (4.7%)

Substance abuse Both yes 1372 (37.8%)

Both no 526 (14.5%)

Different 1735 (47.8%)

Residence Both permanent 2473 (68.1%)

Both homeless 105 (2.9%)

Different 1055 (29.0%)

Affiliation to alcohol-

consuming milieu/

street scene

Both affiliated 2062 (56.8%)

Both not affiliated 210 (5.8%)

Different 1361 (37.5%)

Observation time

difference

<1 year 546 (15.0%)

1–2 years 485 (13.3%)

2–3 years 374 (10.3%)

3–4 years 305 (8.4%)

>4 years 1923 (52.9%)

SNPb distance <2 SNPs 796 (21.9%)

2–12 SNPs 2452 (67.5%)

>12 SNPs 385 (10.6%)

Confirmed contact Yes 51 (1.4%)

No 408 (11.2%)

Unknown 3174 (87.4%)

aHuman immunodeficiency virus.
bSingle nucleotide polymorphism.
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elimination of many transmission links. The training meth-

ods produced slightly different �Rt estimates, which is

expected because neither of the probable transmission

events used to train the model perfectly capture the truth.

Using contact investigation for training is more discrimi-

nating than SNP distance, because we know the cases have

interacted but we may miss links with unknown or unre-

ported contacts. Using SNP distances for training will re-

sult in fewer missed links, but could connect cases that

never had contact with one another. We hypothesize that

the true reproductive number for M. tuberculosis in this

context lies in between these two estimates (0.85–0.97).

We recognize however, that for TB, reactivation risk and

long time-frames may limit the usefulness of this conven-

tional Rt estimate. Our method is applicable to outbreaks

of diseases other than tuberculosis. Method performance

depends on how likely the training links are true links and

therefore will perform better with faster mutating patho-

gens or rich contact investigations.

Most established methods for exploring transmission

focus on either identifying recent transmission clus-

ters,11,14,37,39–42 recreating possible transmission

chains12,13,15–20,43–45 or identifying the true infector.46–50

When estimating transmission parameters, simply knowing

clusters is not informative enough and identifying the true

infector is often impossible. The strength of our method is

that it directly estimates the relative transmission probabil-

ity for all case-pairs, instead of seeking to find the true in-

fector or a set of possible transmission trees. This gives our

method broad applicability as it can identify potential true

infectors (pairs with very high probabilities) or transmis-

sion clusters (groups of pairs with high probabilities).

These probabilities can then be used to estimate transmis-

sion parameters incorporating the uncertainty around the

true infector.

If all cases in an outbreak have WGS data, numerous

powerful analytical methods have been developed to ana-

lyse transmission dynamics and estimate transmission

probabilities which also can incorporate covari-

ates.21,22,39 Teunis et al. developed a way to estimate

transmission probabilities without relying on WGS data,

but it requires prior knowledge of the relationship be-

tween the covariates and transmission.51 Our method’s

use of training and prediction sets means that not all cases

require highly discriminatory information such as WGS

data to estimate relative transmission probabilities. This

is relevant because existing datasets often have rich demo-

graphic, clinical and spatial data but lack detailed contact

investigation or pathogen WGS data due to the significant

time and resources needed to obtain these data. Provided

a subset of cases, 10–50% depending on the sample size,

has this information, our method can infer transmission

patterns among the remaining cases as well. Additionally,

our method does not assume any relationship between

covariates and transmission.

Our method is based on naive Bayes, a simple but

powerful machine learning tool that has many diverse

applications.34,35,52–54 We preferred naive Bayes to logis-

tic regression or other more complex machine learning

algorithms due to its simplicity and ease of incorporating

missing values and sparse data. Although traditionally a

naive Bayes model is trained with a set of true events, our

method performs almost as well when SNP distance is

used as a transmission proxy. Though it has many

advantages, the method also makes assumptions. First,

naive Bayes assumes independence of the covariates

when conditioning on the outcome, which may not be

realistic. However, numerous papers have shown that

naive Bayes still performs well even when this assumption

is violated.53,55–57 Furthermore, many naive Bayes

extensions have been developed which relax this assump-

tion,35,58,59 which could be easily integrated into our

method.

The Wallinga and Teunis3 approach for estimating Rt

we used assumes that every case was infected by someone

who has been sampled. These authors and others found

Figure 6 Heatmaps of the relative probabilities that each infectee (rows)

was infected by each possible infector (columns) in the Hamburg TB

outbreak. Darker squares represent higher probabilities. The cases are

ordered by infection date, with the earliest cases on the top and to the

left. Each panel shows the results from a different method of calculating

probabilities: A) randomly assigned probabilities; B) probabilities calcu-

lated using a gamma(1.05, 2.0) serial interval distribution; C) probabili-

ties calculated using our method and a training set with links based on

single nucleotide polymorphism (SNP) distance; and D) probabilities

calculated using our method and a training set with links based on con-

tact investigations.
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that simulations incorporating random incomplete report-

ing did not substantially decrease the accuracy of their �Rt

estimates, so this is unlikely to be an issue here.3,60 Our

probability estimates themselves do not assume that all

cases in an outbreak are sampled, because we estimate the

relative probability that one case was infected by another

over any other sampled case. If the infector for a case was

not sampled, our method may assign a high transmission

probability to another case, but this should be interpreted

as relative to all sampled cases as opposed to the absolute

probability that this case is the true infector. Our method

could also be affected by biased sampling, e.g. because

only certain types of cases are observed or have the infor-

mation needed to define training links. Future work could

more fully examine the effect of biased reporting and bi-

ased training sets.

Finally, as with other infectious disease analytical

approaches, our method assumes that cases were infected

in the same order as that in which they were observed.42,61

Although not a strong assumption for diseases with clear

symptoms and a short latent period, this may not be appro-

priate for diseases such as TB, with a highly variable,

Figure 7 Monthly reproductive number over the course of the 14 years of the Hamburg TB outbreak estimated from the relative transmission proba-

bilities with bootstrap confidence intervals. Each panel shows the results from a different method of calculating probabilities: our method and a train-

ing set with links based on contact investigation data; our method and a training set with links based on single nucleotide polymorphism (SNP)

distance; probabilities derived from narrow: gamma(0.54, 1.9), medium: gamma(1.05, 2.0) and wide: gamma(1.33, 3.0) serial interval distributions;

and random probabilities. The months in between the dotted horizontal lines were averaged to find the average effective reproductive number for

the scenario which is shown by the solid horizontal line.

Figure 8 Average effective reproductive number for the Hamburg TB

outbreak calculated using the relative transmission probabilities de-

rived from different methods of calculating probabilities: our method

and a training set with links based on contact investigation data; our

method and a training set with links based on single nucleotide poly-

morphism (SNP) distance; probabilities derived from narrow:

gamma(0.54, 1.9), medium: gamma(1.05, 2.0) and wide: gamma(1.33,

3.0) serial interval distributions; and random probabilities. The vertical

bars represent 95% bootstrap confidence intervals. The dotted horizon-

tal line represents an average effective reproductive number of 1.
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potentially long latent period and often substantial delays

in care-seeking and diagnosis.62,63 Although this assump-

tion is a known problem in infectious disease research, it is

frequently made,46,47 and we found that using the observa-

tion date instead of the infection date in our simulations

did not substantially change our results.

We have developed a method to estimate the relative

transmission probabilities between pairs of cases

which is flexible, using any information sources that are

available without making assumptions about the

relationship between these covariates and transmission.

The power of our method is that only a subset of cases

requires pathogen WGS or contact investigation data,

making this method applicable to many outbreak

and surveillance datasets. These probabilities can be used

to better understand the transmission dynamics of an out-

break by identifying or ruling out possible transmission

events and estimating transmission parameters. In a

disease where determining transmission events can be

extremely difficult, using transmission probabilities be-

tween all possible cases provides a unique and powerful

analysis tool.
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