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Synergistic drug combinations 
and machine learning for drug 
repurposing in chordoma
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Chordoma is a devastating rare cancer that affects one in a million people. With a mean-survival of 
just 6 years and no approved medicines, the primary treatments are surgery and radiation. In order 
to speed new medicines to chordoma patients, a drug repurposing strategy represents an attractive 
approach. Drugs that have already advanced through human clinical safety trials have the potential 
to be approved more quickly than de novo discovered medicines on new targets. We have taken 
two strategies to enable this: (1) generated and validated machine learning models of chordoma 
inhibition and screened compounds of interest in vitro. (2) Tested combinations of approved kinase 
inhibitors already being individually evaluated for chordoma. Several published studies of compounds 
screened against chordoma cell lines were used to generate Bayesian Machine learning models 
which were then used to score compounds selected from the NIH NCATS industry-provided assets. 
Out of these compounds, the mTOR inhibitor AZD2014, was the most potent against chordoma cell 
lines (IC50 0.35 µM U-CH1 and 0.61 µM U-CH2). Several studies have shown the importance of the 
mTOR signaling pathway in chordoma and suggest it as a promising avenue for targeted therapy. 
Additionally, two currently FDA approved drugs, afatinib and palbociclib (EGFR and CDK4/6 inhibitors, 
respectively) demonstrated synergy in vitro (CI50 = 0.43) while AZD2014 and afatanib also showed 
synergy (CI50 = 0.41) against a chordoma cell in vitro. These findings may be of interest clinically, and 
this in vitro- and in silico approach could also be applied to other rare cancers.

Chordoma is a rare cancer that occurs in the bones of the skull base and spine which is part of a larger class of 
tumors known as sarcomas. Chordoma tumors develop from cells of the notochord, an embryonic structure that 
facilitates development of the spine1. The notochord disappears when the fetus is about 8 weeks old, but some 
notochord cells remain in the bones of the spine and skull base2. This is a rare occurrence, but when they do, these 
cells can turn into chordoma. A chordoma tumor usually grows slowly without symptoms for years before diag-
nosis, which is often in the 5th and 6th decades of life (although it can occur at any age). Studies have demonstrated 
that skull base chordomas are observed more often in children, whilst spinal chordomas are more frequently 
observed later in life2,3. It has also been described that when chordomas metastasize they frequently distribute to 
the lungs, liver, bones, or lymph nodes. This occurs in 30 to 40 percent of people where the tumor metastasizes to 
other parts of the body2. At this point in time there are no known environmental, dietary or lifestyle risk factors 
for this rare type of cancer. Chordomas often occur at random with no direct inherited genetic trait, however 
familial cases can be caused by duplications of the brachyury gene4. A SNP in the brachyury gene occurs in 95 
percent of people with this tumor5,6, and furthermore, chordomas have been reported at a higher incidence in 
children diagnosed with the genetic disease Tuberous Sclerosis Complex (TSC)7. With a mean-survival rate 
of just 6 years and poor response to current medications, surgical resection is the main course of treatment2. 
Patients therefore need new and effective drugs to expand their treatment options and improve survival rates.
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Chordoma tumors, which occur in both pediatric and adult populations, are known to overexpress multiple 
kinases4. Kinases are a family of ~ 500 proteins, collectively known as the kinome, integral for a multitude of 
cellular functions relevant to cancer pathogenesis. In a 2013 study8, a tissue microarray containing 58 chordomas 
was used to examine the expression of the kinases PDGFR-α, PDGFR-β, EGFR, c-Met, c-Kit, pAKT, mTOR, 
and HER2. Most tumors were positive by immunohistochemistry for PDGFR-α (92%), PDGFR-β (85%), c-Kit 
(77%), c-Met (96%), pAKT (82%), mTOR (56%), HER2 (24%), and EGFR (26%), yet imatinib, an FDA-approved 
drug that inhibits PDGFR-α, PDGFR-β, and c-Kit, has shown little to no efficacy in chordoma in vivo models9. 
A body of such molecular, preclinical, and clinical evidence of interest to chordoma oncogenesis has begun to 
emerge for several kinases: Epidermal Growth Factor Receptor (EGFR), Cyclin-dependent kinase 4 (CDK4), 
Cyclin-dependent kinase 6 (CDK6) and the mammalian target of rapamycin (mTOR). These kinases are well-
studied in the field of oncology, with several FDA-approved drugs on the market targeting each kinase and they 
may serve as drug repurposing candidates for the treatment of chordoma.

Drug repurposing or repositioning is an approach whereby new therapeutic uses for existing drugs or clini-
cal candidates are identified10-14. High throughput screens, virtual screening or serendipitous observations are 
employed to enable drug repurposing13. For example we have previously identified approved drugs active against 
the Ebola virus15 and Chagas Disease16 using Bayesian and other machine learning models. In addition, there 
are several ongoing efforts to demonstrate new uses for molecules that have been through clinical trials for 
other uses but were subsequently shelved. One such example is the NIH NCATS industry-provided assets that 
could be potentially repurposed (https​://ncats​.nih.gov/ntu/asset​s/curre​nt). We have now developed a strategy 
for virtual screening such compounds then testing in vitro and will describe this approach applied to chordoma.

Further, two FDA-approved kinase inhibitor drugs—palbociclib, a breast cancer drug, and afatinib (Fig. 1A,B), 
a non-small cell lung carcinoma drug—have shown equally robust efficacy in patient derived xenograft (PDX) 
and cell-line derived xenograft (CDX) models of chordoma. Palbociclib17 and afatinib18 were designed to spe-
cifically target different kinases, CDK4/6 and EGFR, respectively. The utility of each in preclinical chordoma 
models implies that multiple oncogenic biological pathways may drive chordoma as is true in many other cancers.

We hypothesized that combinations of clinical kinase inhibitors in chordoma models and patients may act 
additively or synergistically by dampening oncogenic signaling in multiple pathways. Both primary targets and 
secondary targets can play a role in this. A combination therapy of afatinib and palbociclib is of particular interest 
but there may also be many other potential combinations of kinase inhibitors. Chordoma PDX and CDX mouse 
models respond equally well to afatinib and palbociclib, though these drugs target divergent and minimally over-
lapping regions of the kinome19. A combination of EGFR/CDK inhibitors, i.e., afatinib/palbociclib, may target 
multiple oncogenic signaling pathways simultaneously. Following the same rationale, we now evaluate the in vitro 
efficacy of EGFR/CDK inhibitor combinations prior to future in vivo PDX and CDX mouse model studies. We 
envision that these proposed studies will enable and support future drug combination chordoma clinical trials.

Results
Machine learning models for chordoma drug discovery.  Several recently published studies of com-
pounds screened against chordoma cell lines20,21 were used to generate Bayesian machine learning models with 
our Assay Central software10,12,22-29. In one published chordoma study 1097 compounds were screened against 3 
chordoma cell lines (U-CH1, U-CH2, MUG-Chor1) and 27 had chordoma selective cytotoxicity20 and many of 
these were EGFR inhibitors. A more recent study from the Broad Institute and collaborators profiled 459 com-

.B.A .C

.D            E. F.

Figure 1.   Molecule structures evaluated in this study. (A) Palbociclib (CDK4/6) and (B) Afatinib (EGFR), (C) 
AZD2014 (targets mTOR1 and mTOR2), (D) RDEA119 (targets MEK1/2), (E) AZD4054 (targets endothelin A 
receptor). (F) AZD0530 (Src inhibitor). Images created with Mobile Molecular DataSheet (Molecular Materials 
Informatics, Inc., Montreal Canada).

https://ncats.nih.gov/ntu/assets/current
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pounds in 4 chordoma cell lines (JHC7, MUG-Chor1, U-CH1, UM-Chor1) and identified 28 potent antipro-
liferative compounds with several kinase inhibitors including CDK 7/12/13 inhibitors21. These data sets (which 
for ease we have called EGFR or Broad) were used either separately or combined to generate machine learning 
models that were evaluated with fivefold cross validation (Table 1, Figure S1). These models were also used to 
score the 3 molecules not in these training sets (Table 2 and Fig. 1C,D) and their scores would suggest the value 
of testing them in vitro. The atom coloring feature helps to suggest which molecule features correspond to activ-
ity with a particular model [e.g. with the EGFR model AZD2014 has a large area of the molecule colored green 
(favorable for activity) while the other molecules have fewer green colored atoms (Fig. 2A–C)].  

In vitro studies.  We tested AZD2014 (Fig. 1C), RDEA119 (Fig. 1D), AZD4054 (Fig. 1E) AZD0530, (Fig. 1F) 
in UCH1 and UCH2 cell lines, along with known chordoma inhibitors afatinib and palbociclib, using reduc-
tion of resazurin to resarufin as an assay for metabolic activity of chordoma cell lines. As previously reported18, 
afatinib is a potent inhibitor of U-CH1, but not U-CH2. The Bayesian model we have termed ‘EGFR’ correctly 
predicted the rank order of these 3 compounds not in the training sets (Table 2). Of the drugs predicted by our 
model, AZD2014 was the most potent against both cell lines (IC50 0.35 µM U-CH1 and 0.61 µM U-CH2, Table 3 
and Fig. 3A,B), though maximal inhibition of U-CH2 cells was limited. AZD0530 and RDEA119 also showed 
moderate potency against U-CH1 (IC50 1.5 µM and 2.4 µM, respectively) but not U-CH2. AZD4054 had low 
potency, but even at 11 µM this was unexpected given that its target, the endothelin A receptor, has no known 
functions in chordoma.

In vitro studies—combination studies of approved drugs.  Next we tested the combinations of drugs 
used in this study to determine whether inhibition of multiple biological pathways would result in synergistic 
effects on chordoma cell lines. In order to determine this we calculated the combination index (CI) for each of 
the pairs of drugs mixed at different ratios, where CI < 1 indicates a synergistic effect. For each of the pairs of 
drugs used, CI was then calculated using five eight-point dose curves, each with a constant ratio of the two drugs. 
In U-CH1 cells, we observed substantial synergy between afatinib and palbociclib (CI = 0.43, 95% CL 0.28–0.66, 
Fig.  4A, Table  4). We also observed substantial synergy between afatinib and AZD2014 (CI = 0.41, 95% CL 
0.34–0.78, Fig. 4B). The combination of AZD0530 and AZD2014 showed more modest synergy (CI = 0.77, 95% 
CI 0.67–0.88, Fig. 4C), while the combination of palbociclib and AZD0530 had weak but detectable synergy 
(CI50 = 0.61, 95% CI 0.49–0.77, Fig. 4D). However, in U-CH2 cells, we did not observe synergistic effects in any 
tested combinations (Table 5).

Discussion
Epidermal Growth Factor Receptor (EGFR) is a receptor tyrosine kinase (RTK)30. Activation of EGFR leads to 
the phosphorylation of proteins in downstream signaling pathways, including the PI3k-Akt-mTOR and RAS-
RAF-MEK-MAPK pathways30. Both of these pathways are critical in regulating cellular apoptosis, proliferation, 
migration, and survival. Broadly speaking, over-expression of EGFR, which is located on chromosome 7p12, 
can increase cellular proliferation and contribute to aggressive tumor behavior31. Within the molecular context 

Table 1.   Chordoma Bayesian model statistics. Datasets were named as “Broad”21 and “EGFR”20, and 
underwent curation to remove problematic molecules before model building. Data represent fivefold cross 
validation. The “Broad” dataset is named as such because the data came from a chordoma screen at the Broad 
Institute. The “EGFR” data set is so named because it came from a paper that highlighted the activity of EGFR 
compounds in chordoma and is not meant to construe a dataset made up entirely of EGFR compounds. Both 
datasets contain a wide variety of compounds that inhibit a broad range of targets.

Model name Actives Size ROC F1 Kappa MCC Domain

Broad 150 454 0.67 0.54 0.23 0.25 0.36

Broad + EGFR 289 1486 0.81 0.52 0.36 0.39 0.33

EGFR 147 1064 0.84 0.44 0.30 0.37 0.28

Table 2.   Bayesian Machine Learning predictions for chordoma activity for compounds not in the training 
sets. Datasets were named as Broad21 and EGFR20 and models are described in Table 1. Model applicability 
assesses the portion of fragments overlapping with the training set molecules, higher values indicate more 
fragments overlapping with the training set. The “score” is the prediction score, a measure of probability of 
activity with higher values being desirable.

Compound Broad Bayesian score Broad model applicability
Broad/EGFR Bayesian 
score

Broad/EGFR model 
applicability EGFR Bayesian score

EGFR model 
applicability

AZD2014 0.46 0.91 0.56 0.96 0.67 0.82

RDEA11 0.62 0.66 0.66 0.67 0.60 0.57

AZD4054 0.53 0.53 0.50 0.60 0.55 0.55
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of chordoma, copy number variations at chromosome 732, i.e., gains and partial polysomies, are commonly 
observed in chordoma, and EGFR gene copy number variations are likewise observed8. Several FDA-approved 
and clinical kinase inhibitors whose main therapeutic target is EGFR have been tested in preclinical in vitro and 
in vivo models of chordoma33. Gefitinib and erlotinib, two FDA-approved EGFR inhibitors used in the treatment 
of non-small-cell lung carcinoma (NSCLC), individually inhibited U-CH1, U-CH7, UM-Ch-SCor1, and MUG-
Chor1 cellular proliferation in dose-dependent manners20,34. Afatinib, another FDA-approved EGFR inhibitor 
used against NSCLC, had anti-proliferative activity against all chordoma cell lines tested (IC50 < 0.7 µM) except 
for JHC720. Afatinib was also found to promote degradation of EGFR and brachyury, both of which are crucial 
to chordoma cell growth20. In vivo studies for erlotinib and afatinib have been reported. Erlotinib treatment 
significantly lowered tumor volume relative to controls in a PDX mouse model and reduced p-EGFR9. Afatinib 
treatment resulted in tumor growth inhibition in three PDXs and one CDX with no signs of toxicity in any of the 
mouse models9. In addition to this preclinical data, some clinical evidence exists to support EGFR and its thera-
peutic agents as potential chordoma treatments. A retrospective study found the median PFS was ~ 15.0 months 
for five patients treated with erlotinib35. For afatinib, there is currently an open clinical trial in the Netherlands 
(NCT03083678) to evaluate its efficacy against locally advanced and metastatic chordoma.

Figure 2.   Examples of atom highlighting derived from Bayesian models. The molecules not in each model 
were tested with (A) Broad, (B) Broad + EGFR and (C) EGFR models. Molecules shown are: AZD2014 (top), 
RDEA119 (middle), AZD4054 (bottom) on each panel. Images were generated in Assay Central (Collaborations 
Pharmaceuticals, Inc.).

Table 3.   Summary of resazurin reduction assays for chordoma cell lines. Data generated includes geometric 
mean IC50, and arithmetic mean of maximal inhibition. Absolute IC50 is the dose that reduces resazurin 
fluorescence by 50%, relative to positive and negative controls. Relative IC50 is the dose that has 50% of the 
maximal inhibition for a given drug. Where values are absent this represents the drug never reaching 50% 
inhibition in several replicate experiments.

Drug

U-CH1 U-CH2

IC50 (µM, 
absolute)

IC50 (µM, 
relative)

Maximal 
inhibition (%) n

IC50 (µM, 
absolute)

IC50 (µM, 
relative)

Maximal 
inhibition (%) n

Afatinib 0.54 0.38 93 6 9.4 8.8 98 7

Palbociclib 11.4 10.8 96 6 20.8 19.5 94 6

RDEA119 – 2.4 59 2 24.5 24.4 94 4

AZD0530 2.7 1.5 85 5 29.4 26.6 100 3

AZD2014 0.94 0.35 72 7 – 0.61 53 8

AZD4054 11.9 11.0 84 2 18.8 19.2 100 2
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Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are serine-threonine kinases36. 
CDK4/6 are known oncoproteins, as upregulation of these kinases or inactivation of CDKN2A lead to cell cycle 
deregulation, increased cell proliferation, and tumorigenesis37. CDK4/6 functions downstream of a number of 
oncogenic pathways, implying that CDK4/6 inhibition may be effective when combined with inhibitors of the 
upstream pathways38,39. Combination treatment of an EGFR sensitive non-small cell lung cancer PDX model 
with a CDK4/6 inhibitor and an EGFR inhibitor showed combinatorial benefit, providing precedent for a similar 
application in chordoma tumors which are also sensitive to EGFR inhibition40. In another study, palbociclib 
sensitized lung cancer cells to treatment with EGFR inhibitors41. Importantly, in chordoma the CDK4/6 regula-
tory gene CDKN2A (also known as p16) is frequently lost. CDK4/6 are thus found in an over-activated state 
in chordoma42. From a gene expression perspective, CDK4 and CDK6 mRNAs have been detected in all eight 
chordoma cell lines that were interrogated: U-CH1, U-CH2, U-CH3, U-CH6, U-CH7, U-CH10, U-CH11, and 
U-CH1243. Likewise, CDK4 and CDK6 protein were observed in the same eight chordoma cell line as above42. 
An immunohistochemistry study of 25 patient samples showed CDK4 was overexpressed in 20% of cases44. Tis-
sue microarray analysis of 85 samples from 72 chordoma patients found that ~ 98% of tissue samples expressed 
CDK442. Additionally, the mean expression level of CDK4 was significantly higher for non-survivors than survi-
vors at the time of publication42. There are three FDA-approved kinase inhibitors whose main therapeutic targets 
are CDK4/6. Palbociclib, one of these dual CDK4/6 inhibitors, has been tested extensively in preclinical in vitro 
and in vivo models of chordoma43. Palbociclib treatment resulted in decreased cell growth in a dose-responsive 
manner for all eight chordoma cell lines tested43. In PDX and CDX models, treatment with palbociclib resulted 
in significant inhibition of tumor growth in 5/6 individual models (Table S1). There is currently a clinical trial 
enrolling in Germany (NCT03110744) to evaluate the efficacy of palbociclib against locally advanced and meta-
static chordoma.

mTOR is a serine threonine kinase which is a member of two protein complexes, mTOR complex 1 (mTORC1) 
and complex 2 (mTORC2). By virtue of these interactions it plays key roles in a variety of cellular processes 
including metabolism and proliferation. It lies in the PI3K–AKT–mTOR signaling pathway, and components 
of this pathway are implicated in a wide range of cancers. Chordoma is no exception. Analysis of 50 chordomas 
showed that a high percentage of tumors were positive for p-AKT, piTSC2, p-mTOR, total mTOR, p-P70S6K, 
p-RPS6, p-4EBPI and eIF-4E45. These are all linked to the complicated mTOR signaling pathway. The authors sug-
gested that a majority of chordomas may respond to mTOR inhibitors or mTOR inhibitors in combination with 
other drugs. A loss of PTEN (a tumor suppressor which negatively regulates this PI3K-AKT-MTOR pathway) 
was also observed in 16% of these chordoma cases. A study of chordoma tumors from 111 patients demonstrated 
that three key proteins in the mTOR pathway (p4EBP1, pS6-Ser240/244, pS6-Ser235/236) were activated in 46% 
of the tumors46. In a different study of just skull base chordoma, expression of PI3 and AKT pathway genes was 
significantly upregulated in brachyury high expression tumors. Importantly, the transcription factor brachyury 
(gene name TBXT), a key driver of chordoma, seems linked to this pathway47. The U-CH2 cell line is inhibited by 

Figure 3.   Representative dose response curves for compounds tested against chordoma cell lines in vitro. 
Molecules were tested in (A) U-CH1 cells and (B) U-CH2 cells. Graphs produced with R66 version 3.6.2 (https​://
cran.r-proje​ct.org/), with the following packages: drc 3.0–6 for general dose–response curve fitting and analysis, 
medrc 1.1–0 for mixed-effects modeling of dose–response data, multcomp 1.4–11 for multiple comparison 
testing, and ggplot2 3.2.1 for plotting.

https://cran.r-project.org/
https://cran.r-project.org/
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the dual PI3k/mTOR inhibitor BEZ-235, but not the mTORC1-specific inhibitor rapamycin47. Given our observa-
tions that U-CH2 is inhibited by AZD2014, a highly specific inhibitor of mTOR which inhibits both mTORC1 
and mTORC2 activity, we hypothesize that mTORC2 has a critical role in promoting chordoma proliferation or 
survival. An analysis of sacral chordomas demonstrated that mTOR expression levels were significantly higher 
than in adjacent normal tissue48. The PI3K-mTOR pathway is also upregulated in the UCH-1 chordoma cell line. 
A PI3K/mTOR inhibitor inhibited both AKT and MTOR activation in this cell line. The compound inhibited 
proliferation and induced apoptosis49. Finally, the MTOR inhibitor MLN0128 (sapanisertib) decreased activity of 
the PI3K-AKT-MTOR pathway in vivo in a clival chordoma PDX model50. Taken together, clearly this pathway 
is consistently dysregulated in chordomas, and a promising avenue for targeted therapy. Additionally, it has been 
observed clinically that in one patient, rapamycin, an FDA-approved mTOR inhibitor, slowed the progression of 
a recurrent chordoma tumor51. The utility of these various kinase inhibitors in preclinical and clinical chordoma 
settings implies that multiple oncogenic biological pathways may drive chordoma.

Based on these observations, we hypothesized that combinations of clinical EGFR, CDK, and mTOR inhibi-
tors may act synergistically by dampening oncogenic signaling in multiple pathways. Using a combination of 

Figure 4.   Isobolograms for combinations of compounds demonstrating significant synergy. (A) palbociclib 
and afatanib, (B) AZD2014 and afatanib, (C) AZD2014 and AZD0530, (D) AZD0530 and palbociclib. The 
Loewe Additivity isobole is shown as the diagonal grey line, representing the expected IC50 of non-interacting 
combinations of drugs. Measured absolute IC50 of drug combinations (black line and solid dots) represent 
the isobole of dose combinations with equivalent activity, with dashed lines and open dots indicating the 95% 
confidence band. Points below and to the left of the isobole indicate a synergistic drug interaction. Graphs 
produced with R66 version 3.6.2 (https​://cran.r-proje​ct.org/), with the following packages: drc 3.0–6 for general 
dose–response curve fitting and analysis, medrc 1.1–0 for mixed-effects modeling of dose–response data, 
multcomp 1.4–11 for multiple comparison testing, and ggplot2 3.2.1 for plotting.

https://cran.r-project.org/
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computational and in vitro approaches we have identified AZD2014 (targets mTORC1 and mTORC2), RDEA119 
(targets MEK1/2), and AZD4054 (targets endothelin A receptor) as compounds which inhibit chordoma cell lines 
to differing extents. We also assessed several kinase drug combinations, of these, afatinib (EGFR) and palbociclib 
(CDK4/6) as well as afatinib and AZD2014 showed substantial synergy against U-CH1 cells in vitro. Since each 
of these pairs of compounds likely have kinome inhibition profiles that are distinct from one another19, co-dosing 
will allow us to target two key chordoma vulnerabilities simultaneously. Another advantage of working with 
these compounds is that pharmacokinetics data for in vivo studies is available52-55. There is a growing body of 
data on the effects of small molecules on the growth of chordoma cell lines20,21. The results of our studies indicate 
that machine learning approaches utilizing these data20,21 can help identify compounds suitable for testing in 
chordoma cell line models, and that we have identified combinations of inhibitors that act on different pathways 
important for chordoma cell growth which can behave synergistically. This work paves the way for future in vivo 
evaluation of CDK / mTOR inhibitor combinations in animal models of chordoma and then in the clinic. A 
treatment for chordoma would fill a dire unmet clinical need, and repurposing of available medicines is likely 
the quickest approach to approved treatments.

Table 4.   Summary of drug combinations in U-CH1 cells. Each CI was calculated at the specified effect level, 
along with upper and lower confidence limits (UCL and LCL). Combinations with significant synergy are 
indicated in bold.

Effect level Drug 1 Drug 2 Ratio CI UCL LCL

50% Afatinib Palbociclib

0.0094:1 0.58 0.79 0.43

0.038:1 0.43 0.66 0.28

0.15:1 0.48 0.96 0.25

50% Afatinib AZD0530

0.025:1 0.98 2.92 0.34

0.1:1 1.10 2.63 0.48

0.4:1 1.05 2.36 0.53

50% Afatinib AZD2014

0.075:1 0.51 0.78 0.34

0.3:1 0.57 0.84 0.39

1.2:1 0.75 1.14 0.50

50% Palbociclib AZD0530

0.67:1 1.08 1.62 0.72

2.7:1 0.95 1.14 0.79

11:1 0.77 0.88 0.67

75% Palbociclib AZD2014

2:1 1.432 2.289 0.895

8:1 1.398 1.911 1.024

32:1 1.248 1.478 1.053

50% AZD0530 AZD2014

0.75:1 0.61 0.77 0.49

3:1 0.81 0.99 0.66

12:1 1.19 1.50 0.94

Table 5.   Summary of drug combinations in U-CH2 cells. Each CI was calculated at the specified effect level, 
along with upper and lower confidence limits (UCL and LCL). No combinations had significant synergy.

Effect level Drug 1 Drug 2 Ratio CI UCL LCL

50% Afatinib Palbociclib

0.096:1 0.68 1.45 0.33

0.38:1 0.52 1.76 0.25

1.5:1 0.59 5.47 0.40

50% Afatinib RDEA119

0.074:1 1.04 2.25 0.49

0.29:1 0.98 2.78 0.48

1.2:1 0.53  > 10 0.36

75% Afatinib AZD2014

0.62:1 0.71 2.37 0.22

2.5:1 0.83 1.41 0.49

10:1 0.75 1.14 0.50

75% Palbociclib RDEA119

0.19:1 1.00  > 10 0.33

0.76:1 0.57 5.60 0.06

3.1:1 0.38  > 10 0.03

75% RDEA119 AZD2014

2.1:1 1.77  > 10 0.08

8.5:1 3.02  > 10 1.16

34:1 1.63 4.97 0.54
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Methods
Compounds.  Palbociclib was obtained from Apexbio (Houston TX). Afatinib, AZD0530, RDEA11, 
AZD4054 and AZD2014 were obtained from Selleckchem (Houston, TX). Compounds were dissolved in 
DMSO, before dilution in cell culture media for cell-based assays.

In vitro testing.  All chordoma cell lines were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM): 
Roswell Park Memorial Institute (RPMI) in a 4:1 ratio (Gibco, Life Technologies, NY, USA) and 10% fetal bovine 
serum (Seradigm, VWR, USA) at 37 °C, 5% CO2 in 0.1% gelatin coated flasks. There were no media antibiotics 
used. Cell lines were then seeded with approximately 800 cells/well in 384 well gelatin coated plates and allowed 
to adhere overnight before the addition of drugs. Drugs were added in quadruplicate wells using a Tecan EVO150 
with 96 MCA head (Tecan Group Ltd, Switzerland). Each plate included controls for drug solvation effects from 
DMSO. Plates were incubated with drugs for 48hrs prior to the addition of resazurin substrate (Alamar Blue, 
Biosource International, Camarillo California). Plates were then incubated for a further 18hrs before reading 
using an Infinite F200 microplate reader with a Connect Stacker (Tecan Group Ltd). iControl software (Version 
1.11) was then used to measure the fluorescence intensity of resarufin at EX535nm and EM595nm. The resulting 
relative fluorescence units are proportional to cellular redox activity, which is a common proxy for the quantity 
of living cells56.

After adjusting for the effects of DMSO in vehicle-only controls, raw fluorescence data was fitted to a four-
parameter log-logistic dose response model. This model was constrained to fit a common upper asymptote for 
each individual experiment, and a positive lower asymptote. Each experiment was repeated for a total of 2–7 
biological replicates, and estimated IC50′s and maximal effects were combined using geometric and arithmetic 
means, respectively.

Combination testing.  For synergy experiments, drugs were tested in combination using a fixed-ratio 
“ray” design57. Drugs were diluted to 10 × previously estimated IC50 and combined in specific ratios (80%:20%, 
50%:50% and 20%:80%). These combined drugs were serially diluted to maintain a constant ratio. Dose–
response curves were fit for each mixture of drugs. Data from multiple biological replicates was combined in a 
mixed-effects model, using the function metadrc() in the R package medrc.58 Absolute IC50 estimates from 
these models were then used to calculate the combination index CI = a/A + b/B, where A and B are doses of 
individual drugs that produce a specified effect, and (a, b) is the pair of doses in a combination that produces the 
same effect59. Confidence intervals of CI were estimated using confidence limits of each IC50 estimate in the same 
equation. CI < 1 indicates synergy, CI = 1 no effect, and CI > 1 antagonism.

Software for machine learning.  Chordoma datasets were named as Broad21 and EGFR20. These datasets 
consist of molecules screened against multiple cell lines and the original authors provided potency or activity 
classifications which were used as a binary score. These datasets underwent curation to remove problematic mol-
ecules before model building as described elsewhere10,12,22-29. We utilized Assay Central which has been previously 
described in detail10,12,22-29 to prepare and merge datasets collated in Molecular Notebook60, as well as generate 
Bayesian models using ECFP6 descriptors61,62. Briefly, the Assay Central project includes automated workflows 
for curating well-defined structure–activity datasets that employ a set of rules for the detection of problematic 
data (i.e. abnormal valences, multiple components) that can be corrected by multiple means. Data that is com-
patible with machine learning is then used to generate a Bayesian model for prospective bioactivity predictions. 
Each Bayesian model in Assay Central includes the following metrics generated from fivefold cross validation: 
Recall, Precision, Specificity, F1-Score, Receiver Operating Characteristic (ROC) curve, Cohen’s Kappa (CK)63,64, 
and the Matthews Correlation Coefficient (MCC)65. Assay Central prediction workflows assign a probability-
like score61,62, with values above 0.5 considered an active prediction, and an applicability score which assesses 
the portion of fragments overlapping with the training set molecules to the input compounds. Predictions were 
applied to the specific compounds of interest from NCATS (https​://web.archi​ve.org/web/20170​71616​3452/https​
:/ncats​.nih.gov/ntu/asset​s/2017#Adult​_Indic​ation​s ) that were not in the training sets (AZD0530 was in the 
Broad dataset and was therefore not scored by the models) prior to in vitro testing as we have done previously25.
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