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Non-disruptive collagen characterization in clinical
histopathology using cross-modality image
synthesis
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Kevin W. Eliceiri 1,2,3,6✉

The importance of fibrillar collagen topology and organization in disease progression and

prognostication in different types of cancer has been characterized extensively in many

research studies. These explorations have either used specialized imaging approaches, such

as specific stains (e.g., picrosirius red), or advanced and costly imaging modalities (e.g.,

second harmonic generation imaging (SHG)) that are not currently in the clinical workflow.

To facilitate the analysis of stromal biomarkers in clinical workflows, it would be ideal to have

technical approaches that can characterize fibrillar collagen on standard H&E stained slides

produced during routine diagnostic work. Here, we present a machine learning-based stromal

collagen image synthesis algorithm that can be incorporated into existing H&E-based his-

topathology workflow. Specifically, this solution applies a convolutional neural network

(CNN) directly onto clinically standard H&E bright field images to extract information about

collagen fiber arrangement and alignment, without requiring additional specialized imaging

stains, systems or equipment.
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Collagen forms the structural network of the extracellular
matrix (ECM) in biological tissues and is the most
abundant protein in vertebrates. The organization of

fibrillar collagen, such as fiber density, distribution, and align-
ment are important tissue characteristics and have been
demonstrated to be critical factors involved in a wide array of
diseases. Properties of collagen fiber organization have been
identified as candidate image biomarkers in a number of patho-
logical studies including cancer, aging, wound healing, athero-
sclerosis, and diabetes. In cancer, Tumor Associated Collagen
Signatures (TACS) were described as alterations in collagen
reorientation and deposition during mouse mammary tumor
progression1. Subsequently, it was observed that TACS-3, where
highly aligned collagen fibers are oriented perpendicular to the
tumor boundary, was negatively prognostic in human breast
cancer2. Similar correlations were found in other cancer types
such as skin3, ovarian4, prostate5, pancreas6,7, and others8.

Collagen fibers in tissues can be visualized by several methods:
(1) Stains: Movat’s pentachrome and Masson’s trichrome and
antibody staining9; (2) Polarization based microscopy, in which
picrosirius red (PSR) is usually used to enhance detection due to
low retardance of native collagen10, or polarized imaging of native
collagen using LC-PolScope and Polychromatic PolScope11,12; (3)
Second Harmonic Generation imaging (SHG)13–15 which is now
the gold standard in many stromal research studies.

SHG imaging is a label-free imaging technique highly specific
to collagen fibers. Fibrillar collagen has a non-centrosymmetric
structure which is necessary for producing detectable SHG sig-
nals. Because of the specificity, label-free detection, and the ability
to penetrate deep into thick tissues, SHG imaging has become a
widely used tool for investigating collagen topology and organi-
zation and it is considered a candidate quantitative imaging
method for visualization of collagen fibers in histopathology
studies. However, it is not used clinically due to the high cost,
complexity, and the typical requirement for optics experts to
operate. Undoubtedly, SHG imaging has great research advan-
tages including large imaging depth, optical sectioning, and the
ability to provide higher-order information such as forward SHG
to backward SHG ratio and polarization-based excitation4,15,16,
However, most of the tissue sections used in clinical histo-
pathological studies for collagen topology and organization
investigation have the standard thickness of 5 µm, which makes
the mentioned advantages of SHG imaging not of primary
interest,2,6,7,17–19

We showed that LC-PolScope, a sensitive polarization imaging
system, can be used for imaging collagen in histopathology slides
without the need for intensifying birefringence using picrosirius
red staining, with results comparable to SHG when quantifying
fiber orientation or alignment11,20, Although LC-Polscope is
simpler and very cost effective compared to SHG imaging, and
does not require additional staining methods, this modality
requires several modifications to the pathologist’s microscope
including additions of a chromatic filter, special variable retar-
ders, and circular and linear polarizers. The final image is ren-
dered computationally after post processing. This adds more steps
thus making it less suitable for incorporation into real-time
pathology workflows.

Over the last decade, cross-modality image synthesis has
attracted many researchers in the field of image analysis. The
intent of their research has mainly been to synthesize radiative
image modalities such as Computed Tomography (CT) scans
from non-radiative modalities such as Magnetic Resonance
Imaging (MRI) images21,22, or even more radiative and more
expensive modalities such as Positron Emission Tomography
(PET) from CT-scans23. These image synthesis methods can be
roughly categorized in three groups: (1) Segmentation based

methods, which segment the tissue into different classes and
assign new contrast values based on known attenuation
properties24,25; this type of method may fail due to the existence
of some ambiguous tissue classes, such as air and bone. (2) Atlas
based methods that register the subject specific scan to an atlas
and warp the attenuation map of the atlas to the subject, in which
image synthesis accuracy highly depends on the registration
accuracy26,27, (3) Machine learning based methods, in which a
trainable model such a Convolutional Neural Network (CNN),
Gaussian Mixture Model (GMM), or other method is used to
learn the relationship between MRI and CT images,28,29

Deep learning has been extensively used in biomedical image
analysis applications from single image super-resolution techni-
ques30, image segmentation31,32, image classification33–35 and
more. Deep Convolutional Neural Networks (CNN), inspired by
human visual cortex neuronal structures, have outperformed
most of the previous computer vision and classification methods,
which are based on human defined features such as SURF fea-
tures36. The expression “digital pathology” was coined when
referring to advanced slide-scanning techniques in combination
with AI-based approaches for the detection, segmentation, scor-
ing, and diagnosis of digitized whole-slide images37. Xu et al.
proposed a novel GAN-based approach to convert the H&E
staining of WSIs to virtual immunohistochemistry staining based
on cytokeratins 18 and 19, an approach that potentially obviates
the need for destructive immunohistochemistry-based tissue
testing38. Ilhe et al. used Cycle-GAN for segmenting unlabeled
data of VGG cells, VGG Cells dataset, bright-field images of cell
cultures, a live-dead assay of C. Elegans and X-ray-computed
tomography of metallic nanowire meshes39.

In this study, we developed a CNN model to generate syn-
thesized collagen images from bright field (BF) images of H&E
stained histopathology slides such as those regularly used in
diagnostic pathology. This model was trained on an image dataset
consisting of more than one million pairs of collagen and BF
images of human breast and pancreatic cancer. Known prognostic
biomarkers such as fibrillar collagen orientation and alignment
were measured and compared on an independent validation set
for both real and synthesized SHG images of fibrillar collagen. No
significant difference was found between results obtained from
the real and synthesized collagen images. Our proposed CNN
model achieved superior performance compared to two other
state-of-the-art Generative Adversarial Networks (GAN) for
image to image translation and cross-modality image synthesis.
Such a low cost, instantaneous and highly accurate deep learning-
based computational method can open the gate for discovery and
application of new biomarkers, such as stromal collagen sig-
natures, in pathologic diagnosis, thereby improving risk stratifi-
cation and the formulation of precision treatment plans for
individual patients.

Results
Visualization of collagen image and stromal biomarkers. After
training the network, we first evaluated the synthesis performance
on some of the images from two testing sets. Figure 1 compares
the real and synthesized collagen image of a pancreatic cancer
TMA core. The top row shows a BF image (Fig. 1a), synthesized
collagen (Fig. 1b), and the real collagen image (Fig. 1c) of the
same core. The bottom row shows the same image types from an
area of the same core (blue rectangle) at higher magnification
(Fig. 1d–f). The synthesized collagen shows smoother fiber ridges
compared to the real collagen image of SHG imaging. This
alteration can actually facilitate fiber tracking in CurveAlign40.
This discontinuity is due to unmet phase matching conditions in
SHG imaging that we will address in the discussion.
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Tumor associated collagen signatures are prognostically linked
to poor survival among patients with breast cancer1,2, TACS-3 is
defined as highly aligned collagen fibers close to the tumor
interface that have a large angle with respect to the tumor
boundary. Figure 2 shows that the synthesized SHG image can be
used to identify TACS-3 regions and yields similar relative angle
measurements for a breast cancer TMA core previously annotated
as TACS-3 by Conklin et al.2 The first row shows the BF image of
a whole TMA core (Fig. 2a), a heatmap of fiber orientations with
respect to tumor boundaries on a synthesized collagen image
(Fig. 2b), and the corresponding heatmap from the real collagen
image (Fig. 2c). The second row shows the same characteristics in
the region of interest depicted in the rectangle on the H&E
stained image in the top row (Fig. 2d–f). The third row shows the
fiber orientation colormap with respect to tumor boundaries
(Fig. 2g) the boxplot for fiber angles for both synthesized (red)
and real (blue) collagen images (Fig. 2h). In the fiber orientation
heatmap, red shows angles of 60 degrees and above with respect
to tumor boundaries, yellow shows 45–60,10–45 is shown in
green, and angles of 0–10 are blank/clear.

Output comparison to state-of-the-art networks. To further
validate the synthesized SHG images generated by our trained
model, we calculated image similarity metrics such as Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM)41, Mean Square Error (MSE) and l1;norm between network
output and ground truth images using an independent new

pancreatic cancer TMA that was not used in the training dataset
(Table 1).

Figure 3 shows sample collagen image patches synthesized
from BF images by our network in comparison to two state of the
art networks: Pix2Pix42, proposed for image to image translation,
and Cycle-GAN43, proposed for cross-modality image synthesis.
Pix2Pix produced similar but blurry results compared to real
collagen images, but Cycle-GAN failed to retrieve the collagen
context from BF images. Our network showed superior
performance for generating a synthesized collagen image. In fact,
it even removed the shot noise and overcame the phase-matching
constraint that results in a pixelated image in actual SHG
imaging,13,16

Collagen fiber quantification results. Collagen reorganization
parameters such as fiber orientation and alignment have been
extensively explored and widely accepted as hallmarks of disease
progression and patient prognosis through alteration in tumor
cell signaling with the surrounding microenvironment2,6,14,18,44,
Thus, it was important to verify that real and synthesized collagen
images can statistically achieve the same result with regard to
fiber orientation and alignment. We used a new independent
pancreatic TMA7 (not in the training set) for verification. Col-
lagen and BF images were registered using the same algorithm
described in the methods section and synthesized collagen images
were obtained from BF images, so both synthesized and real
collagen images have the same size. Real collagen images were
divided into a grid of 256 × 256 blocks and those with less than

Fig. 1 Comparison of real and synthesized collagen images of a pancreatic cancer TMA core. Top row shows a BF image of pancreatic ductal carcinoma
(a), synthesized collagen using our proposed CNN network from the BF image (b), and the ground truth collagen image (c). Bottom row shows the zoomed
in version of the same images as top row from the blue ROI rectangle (d–f). Scale bars: Red 200 µm and Black 100 µm.
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30% second harmonic signal were excluded from analysis (An
example of selected ROIs is illustrated in Fig. 4a, b). This resulted
in 5840 image blocks for both real and synthesized collagen
images. Images were first analyzed using CT-FIRE fiber seg-
mentation software40 and then CurveAlign45 was used to calcu-
late fiber orientation and fiber alignment for each block. The
comparison.

A Bland-Altman plot shows the difference between two
measurements of the same parameter vs. the average of these
values, which can be used to describe the agreement between two
quantitative measurements by constructing limits of
agreement46,47, Bland-Altman plots of sinusoids of orientation
and alignment for both image sets are plotted in Figs. 4c, d. Blue
dotted lines show the mean of differences or constant bias

Fig. 2 Synthesized SHG image and actual SHG image can locate similar TACS-3 regions and yield similar relative angle measurements for a breast
invasive ductal adenocarcinoma TMA core previously used by Conklin et al. The top row shows a BF image (a), synthesized collagen image using our
proposed CNN network from the BF image overlaid by fiber orientation analysis results from CurveAlign (b) and ground truth collagen image overlaid by
fiber orientation analysis results from CurveAlign (c). Middle row shows the zoomed in version of the same images as the top row from the region of
interest in the blue rectangle (d–f). Bottom row shows the fiber orientation colormap with respect to tumor boundaries (g) the boxplot for fiber angles for
both synthesized (blue) and real (red) collagen images (h) (P < 0.005). Scale bars: Red 200 µm and Black 100 µm.

Table 1 Performance comparison among proposed CNN,
Pix2Pix and Cycle-GAN.

PSNR SSIM MSE l1;norm

Proposed network 32.11 0.66 0.002 0.022
Pix2Pix 27.26 0.59 0.003 0.036
Cycle-GAN 23.72 0.46 0.007 0.055

Metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM)41, Mean
Square Error (MSE) and l1;norm . Bold: Best values.
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between two measurements and the red lines show the 95%
confidence interval (CI) (mean ± 1.96 STD). The bias between
our measurements are negligible (0.02 for orientation and −0.07
for alignment), which suggests no systematic difference between
measurements from real and synthesized collagen images of SHG
microscopy. For both orientation and alignment, differences
between two measurements of more than 95% of the data falls
between ±1.96 STD, which is proposed as a good agreement
between two methods by Bland and Altman46.

The correlation coefficient ranges from −1 to +1, where values
of −1 or +1 indicate a perfect negative or positive linear
relationship, while value of 0 indicates no linear relationship.
According to the guidelines for interpretation48, the agreement
between synthesized and real collagen images for orientation
(0.86) and alignment (0.78) is excellent

Discussion
A variety of methods have been used for imaging fibrillar collagen
for biological and pathological research, including different stains,
immunohistochemical dyes, polarized and SHG imaging etc., but
none of these methods have been incorporated in the workflows
of diagnostic pathology. The role of stroma as a key player in
disease progression is only slowly being acknowledged in the
clinical domain. Stromal biomarkers are still not well recognized,
and pathologists are not yet trained to use them in prospective
outcome studies, let alone standard clinical practice. In addition,
the methods traditionally used to study and characterize collagen
have not been amenable for use in routine practice, as they are
costly and require equipment and technical expertise not available
in most diagnostic laboratories.

Many studies have by now demonstrated that the amount of
collagen deposition, fiber orientation around the tumor, and
alignment of collagen fibers are prognostic biomarkers2,6,7,18,
Accurate measurement of these parameters will be an important
factor in prospective clinical studies and clinical applications.
Picrosirius red stained tissue imaged with polarized microscopy is

one of the widely used imaging methods in stromal analysis
research. The source of contrast in this imaging method is
enhanced dichroism detected through birefringence measurement
using crossed polarizers. The intensity of transmitted light passed
through two polarizers at various angles can be calculated using
Malus’ law:

I ¼ I0 cos
2θ ð4Þ

where I is the intensity of light passed through the second
polarizer (analyzer), I0 is the intensity of an incident beam of
linearly polarized light, and θ is the azimuthal angle between
incident light polarization and transmission axis of the analyzer49.
This shows the limitation of using picrosirius red combined with
crossed polarizers, which results in intensity change due to
change in collagen orientation and total extinction when the
optical axis of the collagen fiber is perpendicular to the analyzer
axis. This in turn results in discontinuities and can result in false
fiber segmentation. We have previously shown that using fluor-
escence imaging of picrosirius red stained tissue can help solve
this problem, however, this type of imaging is not used in routine
diagnostic pathology, and an additional staining protocol other
than H&E is required50.

Similar to polarized microscopy, generating second harmonic
signal, which is specific to non-centrosymmetric molecules such
as collagen I, II, and III is highly orientation dependent. This
means that SHG signal is maximum for zero degrees and mini-
mum for 90 degrees of angle between light polarization and fiber
angle13,16, Moreover, due to the small size of the individual col-
lagen fibrils (less than 50 nm), usually there are so many fibers in
one focal volume, and recorded signal is emanated from all of the
fibrils inside the focal volume (the SHG signal from one fibril is
too weak to detect)51. Two fibrils with opposite polarities generate
π-phase-shifted signal, that completely cancel each other. As SHG
results from the coherent summation of several fibrillar responses
in every pixel, the relative polarity between adjacent fibrils can
highly affect the signal intensity. Therefore, the tissue is defined
by the following parameter f that indicates the number of fibrils

Fig. 3 Comparison of synthesized collagen images generated by our proposed network and two other image synthesis networks used for cross-
modality image synthesis and image to image translation. Scale bars: Red 20 µm and Blue 10 µm.
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with positive polarity:

f ¼ N þχ2ð Þ
N þχ2ð Þ þ N �χ2ð Þ ð5Þ

Where χ2 is the second order susceptibility and N ± χ2ð Þ is the
total number of collagen fibril dipoles with one polarity or the
other51. The SHG signal is zero for f ¼ 0:5, because of equal
number fibrils with opposite polarities, and it increases as f
moves towards 0 or 1, which means one polarity is dominant. As
a result, the SHG signal depends on both collagen presence and
fibril polarity that can change the intensity and cancel the SHG
signal in case of antiparallel alignment. This discontinuity can be
seen in the SHG images of collagen, which again can result in low
accuracy in pixel-wise fiber segmentation (Fig. 1).

Unlike polarization microscopy and SHG imaging that exploit
collagen optical properties for contrast, convolutional neural net-
works have to take a fundamentally different approach. CNNs
consist of a trainable set of filters that are applied to an image to
adaptively extract desired information by minimizing an objective
loss of function based on a target output52. In the input BF image,
Eosin stains the cytoplasm and other structures including extra-
cellular matrix components such as collagen53–55 in up to five
shades of pink and red blood cells as intensely red56. The eosino-
philic (substances that are stained by eosin)53 structures in human
tissue are generally composed of intracellular or extracellular

proteins. Therefore, the training task for the network is not merely
color-based or even texture-based classification, but to learn where
to expect collagen in tissue. Our CNN has learned this with a high
level of accuracy. This result is very promising for two reasons: 1) by
including more samples from different tissue types and retraining
the network, CNNs can replace certain imaging methods, such as
SHG and polarization, for thinly sectioned slides in research and the
clinic; and 2) this network can be re-trained for other cellular and
extracellular components stained with their specific dyes.

To train our CNN model, we used l1 norm and SSIM with a
factor ρ that were changed during the course of the training.
Using SSIM for training not only decreases the blurriness of the
synthesized SHG but also keeps the main structures in the image
and removes the shot noise that adversely affects SHG imaging.
As can be seen in the figures provided, the synthesized collagen
images have a smoother fiber representation compared to real
collagen images from SHG microscopy, which are affected by
imaging noise. Although GAN has been previously put forth as a
solution for blurriness in reconstructed images, our method
achieved superior performance for image-to-image translation in
comparison to two state of the art GAN structures, Pix2Pix42 and
Cycle-GAN43 (Table 1 and Fig. 3).

The blocks selected from our validation TMA were from
collagen-rich regions of breast tissue and pancreatic tissue stroma,
with more than 30% SHG signal that show different levels of

Fig. 4 No significant difference in fiber orientation and alignment were found between synthesized SHG images and real SHG images of an
independent pancreatic TMA slide. Top row shows the ROI selection for fiber metrics analysis based on 30% SHG signal for synthesized SHG (a) and real
SHG (b). Bottom row shows the Bland-Altman analysis plot for fiber alignment inside ROI as the difference of two measurement vs. the mean (c) and the
same plot for sin() of orientation of the fibers inside blocks (d). Each block is 256 × 256 pixels (110 × 110 µm).
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alignment visually. The agreement between real and synthesized
collagen images for orientation (0.86) and alignment (0.78) shows
that (1) BF images of H&E stained slides contain high levels of
information in collagenous regions; and (2) powerful computa-
tional techniques such as deep learning-based algorithms can
harness this information. Although the results show that our
CNN can be used to analyze the organization of the collagen
network, several sources contribute to deviation from complete
correlation with actual collagen images. These include: (1) SHG
shot noise and lack of detectable SHG signal can result in frag-
mented fibers from a single fiber, whereas synthesized SHG shows
a smoother fiber ridge that can be easily detected as an intact
single fiber. (2) The appearance of collagen fibers in the actual
SHG image highly depends on the working numerical aperture
(NA) of the optical system, meaning that images acquired with
20x, 0.75 NA are not the same as down-sampled versions of
images acquired with 40x, 1.25 NA. Moreover, due to photon
density needed for SHG imaging of fibrillar collagen, very small
fibers won’t be detected; or if these small fibers are close enough,
they will be represented as a single fiber. Whereas this is not the
case in BF imaging as it is a first order optical phenomenon.

In this study, we showed the ability of our designed convolu-
tional neural network to synthesize a nonlinear microscopic
modality, specifically fibrillar collagen images (produced by SHG
imaging), from BF images of H&E stained slides. These images
can be used to extract quantitative stromal biomarkers that are
not detectable by routine pathologic examination but appear to
have prognostic significance. There are slight variations in H&E
staining in different pathology laboratories, and the colors could
be additionally distorted by the WSI modality used to create a
digitized image. However, these differences are not significant
enough to hinder the network in its ability to identify collagen
and its arrangement relative to the tumor. We are modifying and
training the same designed network to normalize color and fix
staining issues in H&E stained samples that will be the subject of
future work. Moreover, although in this study we have only used
breast and pancreatic tissue, the network should be readily
adaptable to other disease types, as well. We used greater than
one million image patches to achieve the high accuracy and
robustness reported here, but we believe the performance of this
network can be even more improved by including more training
images from other tissue types. We are actively engaged in this
exercise. This trained model is available on GitHub57 will soon be
available in FIJI58, open source software platform for biological
image analysis and can be tested with different disease types.

Methods
Histological samples. Breast tissue slides were acquired through various colla-
borations. All slides were de-identified. The cohorts are as follows: core needle
biopsies (CNB) from healthy volunteer women; CNBs from prophylactic mastec-
tomies of women at high risk for the development of breast cancer; diagnostic
breast biopsy tissue with benign or normal results; and CNBs from the breast
contralateral to cancer which was without malignancy or atypia, with paired tissue
from the tumor itself and an adjacent normal area from the diseased breast. The
biopsies were done while the breast was still in place but just before the surgery
started—the patient was anesthetized. In total we used pairs of collagen (SHG) and
BF images of annotated regions of 278 normal and 211 breast cancer tissue. The
pancreatic tissue dataset consisted of 1196 biopsy cores of tissue microarray (TMA)
slides that had been used in our previous studies. Complete information about the
samples can be found in6,7,10; one additional TMA slide named PA 2081b, was
purchased from US Biomax, Inc. website (www.biomax.us) and SHG and BF
imaging was performed as described in next section. All tissues were formalin-fixed
and paraffin-embedded, then cut into 5 µm thin slices, affixed to a slide and stained
with hematoxylin and eosin (H&E) before mounting with a coverslip.

Imaging systems. Bright-field imaging of pancreatic samples was performed on all
the TMA slides using an Aperio CS2 Digital Pathology Scanner (Leica Biosystems)
at 40x magnification, and all the cores were separated manually. All the SHG
imaging and bright-field imaging of breast samples in this study was done with a

custom built integrated SHG/bright field imaging system. A MIRA 900 Ti: Sapphire
laser (Coherent, Santa Clara, CA) tuned to 780 nm, with a pulse length of less than
200 fs, was directed through a Pockels cell (ConOptics, Danbury, CT, USA), half
and quarter waveplates (ThorLabs, Newton, NJ, USA), beam expander (ThorLabs),
a 3 mm galvanometer driven mirror pair (Cambridge, Bedford, MA), a scan/tube
lens pair (ThorLabs), through a dichroic beam splitter (Semrock, Rochester, NY)
and focused by either a 40X/1.25NA water-immersion or 20X/0.75NA air objective
lens (Nikon, Melville, NY). SHG light was collected in the forward direction with a
1.25 NA Abbe condenser (Olympus) and filtered with an interference filter cen-
tered at 390 nm with a full width at half maximum bandwidth of 18 nm (ThorLabs
MF390–18). The back aperture of the condenser lens was imaged onto the 5 mm
aperture of a H7422-40P photomultiplier tube (Hamamatsu, Hamamatsu, Japan)
the signal from which was amplified with a C7319 integrating amplifier (Hama-
matsu) and sampled with an analog to digital converter (Innovative Integration,
Simi Valley, CA). Timing between the galvo scanners, signal acquisition, and
motorized stage positioning was achieved using our custom acquisition software
called WiscScan. Bright field images of breast samples were captured with the same
system using a MCWHL2 white LED lamp (ThorLabs) set up for Koehler illu-
mination. White light from this lamp was separated from SHG light traveling
through the condenser assembly using a short pass dichroic mirror with a cutoff at
670 nm (Semrock). An RGB CCD camera (QImaging QICAM, Surrey, BC,
Canada) was used to capture bright field images through WiscScan to allow for
acquisition within a single application. Both SHG and white light images were tiled
with 5% overlap using automation provided by WiscScan. Stage positions for
individual images and pixel size data were stored in Bio-Formats image metadata59

and this was then used by the grid/collection stitching ImageJ plugin to reassemble
a high-resolution large field of view image of the entire imaged area.

For the pancreatic TMAs, BF and SHG imaging was performed on every single
core. For breast samples, suitable imaging areas were identified by eye using the
bright-field imaging mode, and the captured image array size was typically
~1.5 mm × 1.5 mm. In order to alleviate out of focal plane issues due to the
unevenness of the tissue slice, 3 z-planes were captured per SHG image and then
maximum-intensity projected to capture the entire axial field of view. The SHG and
bright-field images were registered using in-house written code60. Both images
were then used to perform a segmentation of the epithelium from the rest of the
tissue. This segmentation was turned into a binary mask for tumor boundary
creation.

Image preprocessing. After acquisitions, BF and SHG images of collagen were
stitched using a stitching plugin in FIJI58. Since SHG and BF images are not
registered during the acquisition, we developed an image registration algorithm to
overlay BF and SHG images of H&E stained slides. A two-step process was used to
register SHG and BF images, the details of which have been previously described60.
However, we briefly overview the general scheme of the algorithm here. The first
step was to extract the stroma, which is stained as red using eosin from H&E
stained slides using K-means clustering for generating a pseudo-collagen image.
The second step was using an iterative intensity-based image registration algorithm
to find the affine transform for mapping the pseudo-collagen image to the SHG
image. Here we briefly explain each step:

Stroma extraction from H&E stained tissue image. H&E staining protocol paints the
nuclei dark blue using hematoxylin, while eosin stains the cytoplasm and other
structures, including extracellular matrix components such as collagen53–55, in up
to five shades of pink and red blood cells as intensely red56. We first adjusted the
dynamic range of each channel of the BF image by adjusting the mean and stan-
dard deviation of the histogram of each channel; then, using HSV color space, we
separated the stroma from the nuclei. Nuclear images were smoothed using a
Gaussian filter, and binarized. Since cytoplasm also stains with eosin but is not
present in SHG images of fibrillar collagen, we dilated this binary image to create a
cell mask. By element-wise multiplication of this mask with the stroma image we
could remove the cytoplasm from the stroma image. The resulting image mainly
contains collagen (IBF;C).

Registration based on mutual information maximization. The algorithm is multi-
resolution and starts with the coarsest level of the images and uses the joint
probability distribution of a sampling of pixels from two images to measure the
certainty that the values of one set of pixels map to similar values in the other
image. In another word, the algorithm will try to find the optimal affine transform
parameters that maximize the mutual information between template (SHG) and
source image (BF) defined as:

M ISHG; T IBF;C
� �� �

¼
X
x2X

X
y2Y

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ

� �
ð1Þ

Where p x; yð Þ is the joint probability mass function of SHG image ISHGð Þ and
affined transformed of extracted collagen image form FB image (T IBF;C

� �
). p xð Þ

and p yð Þ are the marginal probability mass functions of ISHG and T IBF;C
� �

,

respectively. x are the pixel values of SHG image (ISHG) and y is the affine trans-

formed of the pseudo-collagen image extracted from BF image T IBF;C
� �

. The
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marginal and joint probability densities of the image intensities are estimated using
Parzen windowing. At each iteration, the pseudo-collagen image extracted from BF
image is rotated, translated or scaled based on affine transform parameters and
mutual information between this transformed image and collagen image is cal-
culated. The transformation parameters found at lower resolution are passed to the
higher resolution level as an initial estimate in an image pyramid, until the optimal
solution is found for the finest level. This process will be continued using one-plus-
one evolutionary algorithm until the convergence criterion is met that means the
mutual information is maximized. Figure 5 shows the block diagram of this
process.

After registering BF and SHG images, for every pair of these images, we used
both original and down-sampled images by a factor of 2 before generating image
patches. This method not only increases the size of the dataset, but also forces the
network to learn the underlying feature space at lower resolutions that makes the
network’s output robust to different imaging setups. Image patches were initially
generated with size of 100 × 100 pixels with 50% overlap between images and then
rescaled to 128 × 128 before training. More than one million pairs of input-output
patches were created using this method.

Network design. We initially started the project by testing various state-of-the-art
networks that have been proposed for image synthesis and segmentation. However,
most of these networks either failed to converge at all or produced blurry results.
Two of the networks that could successfully converge the images, Cycle-GAN43

and Pix2Pix42, are represented in the results section for comparison. Based on our
previous study in which we tested the performance of state-of-the-art networks for
grading pancreatic cancer using both cell and stromal features, ResNet 10161

outperformed all other networks in classifying all image patches, even those con-
taining only stroma. For this study, an encoder-decoder network was designed
consisting of residual modules in both the encoder and decoder. The encoder
estimates the underlying feature space by passing the input into a stack of residual
modules. The decoder structure is similar to that of the encoder, however despite
residual modules in the encoder that reduce the spatial size of the feature map by
using a stride of 2, the encoder up-samples these feature maps to finally half the
size of the output. A pixel shuffle layer as the last layer will reconstruct the network
output to the size of input-output pair (128 × 128). The proposed CNN structure is
shown in Fig. 6 and its constructing blocks are described below:

Residual blocks. Residual mapping was previously introduced for image repre-
sentation in dictionary learning62,63, and it’s a powerful shallow representations for
image retrieval and classification64,65, This concept has been used later for training
deep residual networks to overcome the vanishing backpropagated gradient pro-
blem in ResNet networks61. If H(x) is the desired underlying mapping, we let the
stack of convolutional layers in each residual module estimate another mapping, F
(x) = H(x) – x, so the original mapping will be H(x) = F(x) + x. It has been
previously shown in dictionary learning and deep learning that optimizing residual

mappings are easier than optimizing original mappings66. In this study, we found
that a combination of residual mapping with two different filter sizes and skip
connections yielded better results for edge preserving for SHG image synthesis. In
the encoder of the model, every residual block is composed of two convolutional
layers with the same number of kernels each followed by a batch normalization and
a leaky ReLU layer. The first convolutional layer has a filter size of 3 × 3 with a
stride of 2 for reducing the size of feature maps, and the second convolutional layer
has a filter size of 1 × 1 and a stride of one (Fig. 7). Output from this channel is
added to the output of the input passed through a convolutional layer with filter
size of 2 × 2 and stride of 2 with the same number of kernels.

Skip connections and up-sampling. Skip connections added to the network effec-
tively improved the training accuracy and speed. These paths are composed of two
convolutional layers followed by batch normalization and leaky ReLU layers, with
filter sizes of 3 × 3 and 1 × 1 and strides of 2 and 1, respectively. The decoder will
recover the underlying feature space with the same size as the encoder by bicubic
interpolation at each step that can be connected using skip connections.

Pixel shuffle layer. The purpose of this layer is to recover the full-size synthesized
collagen image (128 × 128) from 64 × 64 feature space produced by the last layer of
the decoder. To this end, we used a pixel shuffle layer similar to the one proposed
in64. The upscaling of the last feature maps to the size of the collagen image was
implemented as a convolution with a filter θsub whose stride is 1/r(r is the reso-
lution ratio between the feature maps and collagen image). Let the size of the filter
θsub be fsub . A convolution with a stride of 1/r on feature maps with a filter θsub
(weight spacing 1/r) would activate different parts of θsub for the convolution. The
weights that fall between the pixels will not be activated. The patterns are activated
at periodic intervals of mod x; rð Þ and mod y; rð Þ where x and y are the pixel position
in the collagen image. This can be implemented as a filter θfinal , whose size is
n ´ r2 ´ f ´ f , given that f ¼ fsub=r and mod(f_sub, r)=0. This can be written as

Y ¼ γ θfinal ´Y þ b
� �

ð1Þ

Where γ is periodic shuffling operator to rearrange r2 channels of the decoder
output to the size of collagen image. Figure 8 illustrates operating mechanism of
pixel shuffle layer visually for the case where the upscaling factor is 2 and the kernel
size is 4 × 4. The upsampling procedure can be considered as convolving the kernel
with a subpixel image which is created by zero-padding unpooling with a stride of
2. The purple kernel weights are set first and activated by nonzero pixels. Then by
moving one subpixel to the right in the subpixel image, the blue weights are
activated, and so on for green and red weights (Fig. 8a). Instead of convolving the
(1, 1, 4, 4) kernel with the unpooled subpixel image, the input can be convolved
with the (4, 1, 2, 2) kernel directly, and using periodic shuffling we can achieve the
same output as illustrated in Fig. 8b: Thus, pixel shuffle layer can upsample the
feature maps with a much smaller memory footprint.

First level pyramid

Downsample

H&E image

Segmentation

SHG image

Second level pyramid

Downsample

Third level pyramid One-plus-one 
evolution

One-plus-one 
evolution

One-plus-one 
evolution

Pass as warm start

Pass as warm start

Final transformation 
parameters 

Converge?
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No
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Fig. 5 Block diagram of the multi-resolution registration algorithm. BF image is first segmented to extract the ECM image features using K-means color
segmentation scheme. The ECM image and SHG image are then downsampled to the coarsest level of the image registration pyramid to find the best
parameters of the fitted affine transform by maximizing mutual information using one-plus-one evolutionary algorithm.
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Model training and loss functions. The objective function for training the network
is crucial in determining the quality of synthesized collagen images. Using only pixel-
wise norms such as l1 OR l2 norms between the real and synthesized collagen image,
which while easy to optimize, often causes blurriness and correlates poorly with
human perception of image quality. This is because these norms return the average of
several possible solutions, which does not perform well for high-dimensional data67.
To address this issue, we trained our CNN using linear combination function of
Structured Similarity Index Measure (SSIM) in addition to l1 norm between the
synthesized Sð Þ and the real SHG image Rð Þ. SSIM can be calibrated to capture
perceptual metrics of image quality. In addition, its pixel-wise gradient has a simple
analytical form and is inexpensive to compute and therefore can be easily back-
propagated in gradient descent algorithm. Let x and y be two patches of equal size

from the two images S and R being compared. Assume μx μy

� �
denote the mean,

σ2x σ2y

� �
denote the variance of the patch x yð Þ respectively, and σxy denote their

covariance. Therefore, the SSIM function can be defined as:

SSIM x; yð Þ ¼ I x; yð ÞαC x; yð ÞβS x; yð Þγ ð2Þ

where I x; yð Þ ¼ 2μxμyþc1ð Þ
μ2xþμ2yþc1ð Þ is the luminance based comparison, C x; yð Þ ¼ 2σxσyþc2ð Þ

σ2xþσ2yþc2ð Þ
is a measure of contrast difference and S x; yð Þ ¼ σxyþc3

σxσyþc3
is the measure of structural

differences between the two images. ci , for i ¼ 1; 2; 3f g, are small values added for
numerical stability, and the α; β and γ are the relative exponent weights in the
combination. The structural similarity between the images S and R is averaged over
all corresponding patches x and y. This single-scale measure assumes a fixed image
sampling density and viewing distance and may only be appropriate for certain range
of image scales. Our final loss function is defined as:

L S;Rð Þ ¼ ρl1;norm S;Rð Þ þ ρ� 1ð ÞSSIM S;Rð Þ ð3Þ
where ρ is between 0 and 1. Since both terms in the objective are differentiable, we
can train the neural network using gradient descent, adopting standard back pro-
pagation methods.

Statistics and reproducibility. Fiber orientation was defined as the angle with
respect to the horizontal axis, which causes angle ambiguity between the angles

Fig. 7 Residual module used in our proposed network. The module
consists of two convolutional layers followed by batch normalization and
leaky ReLU layers, with filter sizes of 3 × 3 and 1 × 1 and strides of 2 and 1,
respectively. Residual signals are expanded by a 1 × 1 convolution to match
the number of channels of the output.
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Fig. 6 Proposed CNN structure for synthesizing SHG images of collagen from BF images of H&E stained slides. An ecoder-decoder network with
residual blocks and skipping concatenations. The last upsampling layer is replaced by a pixelshuffle layer. The number of channels and the size of the
feature maps are listed next to each layer.
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around the lower and upper limits. More specifically, angles close to 0° and 180°
essentially indicate similar orientations, but the absolute angle differences are
significant. Hence a sinusoid function “sin (π x/180)” (x is the orientation value in
degree) was used to map the orientation values from [0 180] degrees to [0, 1] to
avoid the ambiguity. Collagen alignment coefficient ranging from 0.0 to 1.0 indi-
cates how similarly the orientations of collagen fibers are distributed in a given
area. It is defined as the mean resultant vector length in circular statistics68, with
1.0 indicating all fibers are aligned in one direction, while small values close to 0.0
indicate fibers are oriented in random directions. Pearson correlation coefficient
between synthesized and real collagen images was 0.86 for orientation and 0.78 for
measured alignment. Pearson’s correlation coefficient, which is a statistical measure
of the strength of a linear relationship between paired data, is defined as:

ρxy ¼
cov x; yð Þ
σxσy

Where cov x; yð Þ is the covariance and σx and σy are the standard deviations of
variables x and y, respectively.

Informed consent. This study is human subject exempt as approved by the
University of Wisconsin Institutional Review Board.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. The dataset contains digital
images of registered SHG and H&E image pairs in TIFF format. Part of the data is
currently being analyzed for other studies and the access will be released in later GitHub
repository updates. Data associated with Figs. 2 and 4 can be found in the Supplementary
Data 1 and 2.

Code availability
The code is available at GitHub code repository57 and it is being maintained by the
researchers at the Laboratory for Optical and Computational Instrumentation.
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