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Abstract

Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in
plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the
neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic
lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory,
cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical.
Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.
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Introduction
Polyphenols are a wide group of plant-derived molecules
resulting from secondary metabolism, ubiquitously distrib-
uted in vegetable kingdom where they display different activ-
ities such as protective effect against UV rays, bacteria, virus
and fungi infections, modulation of plant hormones, enzyme
inhibition and pollinator attraction [1]. In nature, there are a

plethora of different polyphenols that can be classified in the
following main classes: simple phenolic acids (e.g. gallic,
vanillic, syringic, p-hydroxybenzoic), hydroxycinnamic acid
derivatives (such as caffeic acid, p-coumaric, ferulic, sinapic),
flavonoids, stilbenes and lignans. The largest common class
of polyphenols present in human diet is represented by flavo-
noids [2, 3]. Chemically flavonoids are classified in flavans,
flavones, flavonols, and anthocyanidins [4]. Among the flavo-
nols, myricetin, a 3,3′,4′,5,5′,7-hexahydroxyflavone, possess
one of the most hydroxylated structures (Fig. 1). The solubil-
ity of myricetin in water is poor (16.6 μg/mL) but increases
when deprotonated in basic aqueous media and in some or-
ganic solvents (dimethylformamide, dimethylacetamide,
tetrahydrofuran and acetone) [5]. The chemical stability of
myricetin is pH and temperature dependent [6]. Depending
on the environment conditions, myricetin can exert, in vitro,
both a potent antioxidant and a pro-oxidant effect. Buchter
et al. [7] attributed its direct antioxidant action to several
structural elements. On the other hand, Chobot and
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Hadacek [8] demonstrated the pro-oxidative properties of
myricetin to molecular oxygen reduction to reactive oxygen
species (ROS) and iron (III) to iron (II) and also highlighted
the ability of myricetin to serve as a substitute for ascorbic
acid, albeit less efficiently.
Myricetin is mainly present in the glycoside form

(O-glycosides), in vegetables, fruits, nuts, berries,
herbs, plants together with beverages, such as tea,
wine, fruit and medicinal plants [9–15]. There are nu-
merous factors that can influence myricetin levels in
plant foods such as genetic and environmental factors,
germination, and ripeness degree, variety, seasonal
variation, and storage, processing and cooking. The
estimate of total flavonoid intake is difficult to calcu-
late, as appropriate tables of food composition are
not yet available. However, reliable data on daily fla-
vonoid intake in a population are needed to develop
proper dietary recommendations and even for correct
data interpretation from intervention studies. The
Flemish Dietetic Association database determined an
average daily intake of myricetin of 2.2 ± 2.5 mg Mul-
lie et al. [16]. In a Korean adult population, Jun et al.
[17] estimated an average intake of 0.8 mg/day repre-
senting about 1–2% of flavonol subclass, while a
mean intake of myricetin 2 mg/day ranged from 1 to
4 mg/day in adults (18 to 64 years) in the European
Union was reported by Vogiatzoglou et al. [18]. The
knowledge on habitual flavonoids consumption is also
crucial to determine their possible impact on human
health. Myricetin exhibited antioxidant properties and
free radical-scavenging effects [19]. These activities
seem to support a wide range of beneficial outcomes
including, anti-platelet aggregation, antihypertensive,
immunomodulatory, anti-inflammatory, anti-allergic,
analgesic, anticancer actions and so on [6, 20–25].
The main goal of the present review is to provide
new insights on myricetin preclinical pharmacological
activities, and its role in selected clinical trials.

Myricetin in plants
Myricetin glycosidies include myricetin-3-O-(4″-acetyl)-α-L-
arabinopyranoside, myricetin-3-O-(3″-acetyl)-α-L-arabino-
pyranoside, myricetin-3-O-β-D-galactopyranoside, myricetin-
3-O-α-L-rhamnopyranoside, myricetin-3-O-β-D-xylopyrano-
side, myricetin-3-O-α-L- arabinofuranoside, myricetin-3-O-
(6″-galloyl)-β-D-galactopyranoside [26], myricetin-3-O-(3″-
O-galloyl)-α-L-rhamnoside, myricetin-3-O-(2″-O-galloyl)-α-
L-rhamnoside, and myricetin-3-O-α-L-rhamnoside [27].
The first time myricetin was identified was in plants of

the Myricaceae, Comptonia peregrina (L.) Coult. and
later Morella cerifera (L.) Small [28, 29]. The myricetin
concentration in the plants such as Rosa canina L. (rosa
hip), Urtica dioica L. (nettle), and Portulaca oleracea L.
(purslane) found between 3 and 58 mg/kg [13].
Myricetin was isolated from Polygonum bellardii All.

(Polygonaceae) as yellow needles (50 mg) from aerial
parts using MeOH extract [30]. Previously, a prescreen-
ing of leaves of 28 polygonaceous plants was estimated
that myricetin glycosides were relatively rare consituents
[31]. Trigonella foenum-graecum L. gemmo-modified ex-
tract had the richest content in myricetin (830 mg/kg),
followed by Euphorbia tirucalli L. (821 mg/kg), rhizomes
of Cyperus rotundus L. (702 mg/kg) and seed extract of
T. foenum-graecum (547 mg/kg). C. rotundus gemmo-
modified extracts contained 104 mg/kg myricetin [10].
The highest level of myricetin content has been identi-
fied in the strawberry and spinach [9]. Species of Ana-
cardium and Mangifera (Anacardiaceae) found to have
high levels of hydroxylated compounds like myricetin,
gallic acid, proanthocyanidins and flavonols. In Maran-
todes pumilum (Blume) Kuntze (Primulaceae) were iden-
tified quercetin, myricetin, kaempferol, catechin and
epigallocatechin [32].
The most common sources of myricetin are vegeta-

bles, fruits, nuts, berries and tea [33]. Myricetin-rich
foods are listed in Table 1 based on the USDA Food
Database (compiled data from all fruits and vegetables
that contain information on myricetin concentration)
[34]. In black fruits the quantities varied between 14 and
142 mg/kg [12]. Myricetin is the most abundant flavonol
of black currant, and its quantity varied significantly
among black currant cultivars [35]. At the same time,
honey is also a source of flavonoids, especially myricetin.
The HPLC analyses of honeys from Australian Eucalyp-
tus have shown that the flavonoids myricetin, quercetin,
tricetin, kaempferol and luteolin exist in all honeys. Myr-
icetin was found in range from 29.2–289.0 μg/100 g
honey [36]. In grapes, flavonol glycosides from the fol-
lowing aglycons have been identified: myricetin (3′,4′,
5′-triOH), laricitrin (3′-MeO analog of myricetin) and
syringetin (3′,5′-diMeO analog of myricetin), quercetin
and kaempferol [37]. The simultaneous presence of
these aglycons was detected in different types of red

Fig. 1 Molecular structure of Myricetin
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wine Vitis vinifera L. grapes [38], while in white wine,
only quercetin, kaempferol and isorhamnetin were de-
tected [37].

Preclinical pharmacological activities of Myricetin
Myricetin displays multiple preclinical biological effects
[19]. Thus, in the following subsections, the antimicro-
bial, antioxidant, neuroprotective, antidiabetic, antican-
cer, immunomodulatory, cardioprotective, analgesic,
anti-hypertensive and wound healing potential of myri-
cetin are briefly discussed and summarized.

Antimicrobial activities
Antimicrobial mechanism of flavonoids may involve
membrane disruption, inhibition of cell envelope synthe-
sis, inhibition of nucleic acid synthesis, inhibition of bac-
terial virulence and quorum sensing, which impairs their
ability to form biofilms, inhibition of efflux pumps, and
inhibition of NADH-cytochrome C reductase activity
and ATP synthase [39, 40]. Myricetin inhibited Escheri-
chia coli DNA gyrase (IC50 1.18 mg/dL) [41], and DnaB
helicase (IC50 11.3 μM) [42], and cellular DNA and RNA
polymerases [43].
Myricetin showed a significant antimicrobial activity

against foodborne pathogens in terms of minimum in-
hibitory concentration (MIC, mg/mL) <15.0, <15.0, <
20.0, <10.0 at 24 h and <20.0, <20.0, <15.0, <5.0 at 60 h
incubation for Escherichia coli, Salmonella paratyphi,
Salmonella cholerasuis, and Salmonella enteritidis, re-
spectively [44]. The compound myricetin revealed curli-
dependent E. coli biofilm formation inhibition (IC50 =
46.2 μM), curli contributes to the robustness of E. coli
biofilms [45].
At 100 μM concentration, myricetin exhibited in vitro

anti-HIV activity in cell cultures: TZM-bl (> 87%; IC50

20.43 μM), PBMC (86%; IC50 4.49 μM, 3.23 μM), and H9

cell (≥86%; IC50 22.91 μM, 1.76 μM) [46]. Myricetin ex-
hibited the highest anti-HIV reverse transcriptase activ-
ity (> 49%, IC50 203.65 μM) at the concentration of
100 μM [46].
Yadav et al. [47] demonstrated the anti-tubercular ac-

tivity of 15 selected flavonoids including myricetin and
their structure–activity relationships were evaluated
against Mycobacterium tuberculosis H37Rv strain radio-
metrically. Myricetin was found to be active against M.
tuberculosis, with a MIC of 50 μg/mL, and structure–ac-
tivity relationships authenticated their anti-tubercular
potential due to the presence of hydroxy groups in their
structure.
The inhibitory activity of the compounds were evaluated

against DNA gyrase from E. coli by DNA supercoiling.
Mean antibacterial activity in terms of MIC and IC50 were
142 μg/mL and 1.18mg/mL respectively. The structure-
activity relationship analysis suggests that, the presence of
hydroxyl and substitution in the ring A and B position are
essential for the best inhibitory effects [41].
The inhibitory effect of myricetin on severe acute re-

spiratory syndrome-coronavirus (SARS-CoV) helicase,
nsP13, and hepatitis C virus (HCV) helicase, NS3h was
also assessed [48]. Myricetin was found to inhibit SARS-
CoV helicase protein by affecting the ATPase activity
(IC50 2.71 μM), however, it failed to affect the ATPase
activity of the HCV NS3 helicase.
DeSouza and Wahidullah [49] reported the antimicro-

bial activity on E. coli, Klebsiella pneumoniae, Proteus
mirabilis, Pseudomonas aeruginosa, Salmonella typhi,
Shigella flexneri, Staphylococcus aureus, Vibrio cholerae
and myricetin showed the best activity against P. aerugi-
nosa (MIC 1.5 μg/mL). Gendaram et al. [50] reported
the myricetin antibacterial effect against S. aureus by the
disc diffusion method (300 μg/disc, inhibition zone 9
mm) but reported no antibacterial activities against P.
aeruginosa, E. coli, Enterococcus faecalis, or Micrococcus
luteus. However, at 100 μM concentration, myricetin did
not exhibit antimicrobial activity on Gram-positive bac-
teria but showed inhibitory activity against sortase A
(SrtA) from S. aureus (92%; IC50 4.63 μM) [51]. In vitro
antimicrobial activity of six natural phytochemicals in-
cluding myricetin (alone and with combination) were
evaluated against five strains of P. aeruginosa by using a
time-kill assay. The compound showed the MIC as
500 μg/mL against all five strains of P. aeruginosa [52].
Other reports of the compound based on antimicrobial
and antiviral studies are presented in Table 2.

Antioxidant activities
Plant-based compounds considered as natural antioxi-
dants have attracted a large number of communities of
scientist, researchers, industries and traditional healers for
their health-promoting characteristics. The antioxidant

Table 1 Myricetin (mg/100 g) rich foods [34]

Cranberry 6600

Dock 5700

Sweet potato leaves 4400

Chard, swiss 3100

Broadbeans, immature seeds 2600

Rutabagas 2100

Garlic 1600

Blueberry 1300

Peppers, hot chili, green 1200

Blackberry 700

Lotus root 600

Lemon 500

Source: USDA Food Database (compiled data from all fruits and vegetables
that contain information on myricetin concentration)
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potential of myricetin has been reported by several au-
thors in the last few decades.
Hou et al. [61] studied the antioxidant effect of HS15-

Myr micelles and independent myricetin by using FRAP
(ferric reducing antioxidant power) and ABTS (2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) as-
says. The ABTS assay displayed an improved value from
22.20 to 41.77% in HS15-Myr micelles and 0 to 6.12% in
independent myricetin at two different concentrations
and incubation periods. The FRAP assay also presented
an improved value from 1.27 to 8.94 mM Fe2+/g in
HS15-Myr micelles and 13.63 to 16.33 mM Fe2+/g in in-
dependent myricetin at two different concentrations and
incubation periods. Myricetin in HS15-Myr micelles ex-
hibited in both assays stronger antioxidant effects when
compared to independent myricetin.
Barzegar [62] reported the ROS-protection efficiency

of the compound myricetin in a cell-free and cell-based
system. A low concentration of compound significantly
inhibited intracellular ROS production and also pro-
tected cells against toxicity induced by peroxide
compounds.
Guitard et al. [63] reported that, myricetin is more effi-

cient than α-tocopherol and synthetic antioxidants on
preservation of omega-3 oils. Other studies on antioxi-
dant potential of the compound are presented in
Table 3.

Neurobiological activities
Natural flavonoids have exerted positive impacts on
body through affecting multiple cell systems and modu-
lating the activity of various pathways to reduce cogni-
tive decline and neuronal dysfunction [79]. Myricetin is
one of such flavonoids, and multiple studies have been
conducted to assess the neuroprotective effects of this
compound and its interaction with brain receptors
(Table 4). The main mechanisms are shown in Fig. 2.

Table 2 Antimicrobial profiling of the compound myricetin

Strains Results References

Antiviral

HIV Reverse Transcriptase 0.08 a [43]

HIV Reverse Transcriptase,
Moloney murine leukemia virus

0.08 b [53]

Antimicrobial

Gram positive

Actinomyces viscosus 20 b [54]

Burkholderia cepacia >512 b [55]

Corynebacterium diphtheriticum 18.2 e [56]

Enterococcus faecalis 17.0 e [56]

Enterococcus faecalis 2400 17.0 e [56]

Enterococcus faecium 16.8 e [56]

Methicillin-resistant Staphylococcus aureus 256 b [55]

Staphylococcus aureus ATCC6538p > 300 c [57]

Staphylococcus aureus > 2000 b [58]

Staphylococcus epidermidis ATCC14490 64 b [55]

Staphylococcus epidermidis > 2000 b [58]

Staphylococcus epidermidis 17.4 e [56]

Staphylococcus saprophyticus 17.6 e [56]

Streptococcus mutans 20 b [54]

Streptococcus pneumoniae 49 128 b [55]

Streptococcus pneumoniae 17.4 e [56]

Streptococcus pyogenes 16.4 e [56]

Vancomycin-Resistant Enterococci (VRE) 512 [55]

Gram negative

Burkholderia cepacia 64 b [55]

Enterobacter aerogenes 256 b [55]

Escherichia coli > 2000 b [58]

Escherichia coli WT 12.2 e [56]

Escherichia coli BU40 12.6 e [56]

Escherichia coli FPL5014 11.6 e [56]

Escherichia coli DnaB helicase 11.3 d [42]

Klebsiella pneumoniae ATCC13883 64 b [55]

Klebsiella pneumoniae 128 b [59]

Klebsiella pneumoniae > 2000 b [58]

Klebsiella pneumoniae 16.6 e [56]

Porphyromonas gingivalis 2500 b [54]

Prevotella intermedia 1250 b [54]

Proteus mirabilis 16.5 e [56]

Pseudomonas aeruginosa ATCC27853 256 b [55]

Pseudomonas aeruginosa > 2000 b [58]

Pseudomonas aeruginosa PAO286 15.6 e [56]

Salmonella paratyphi A 14.4 e [56]

Salmonella paratyphi B 14.4 e [56]

Table 2 Antimicrobial profiling of the compound myricetin
(Continued)

Strains Results References

Salmonella typhi 14.4 e [56]

Shigella dysenteriae 15.5 e [56]

Shigella flexneri 13.4 e [56]

Shigella sonnei 14.6 e [56]

Anti-chlamydial

Chlamydia pneumoniae 29 c [60]

Microbial strain is inserted when microbial type is repeated and
information available
aKi (μM)
bminimum inhibitory concentration (MIC, μg/mL)
cMIC (μM)
dhalf maximal inhibitory concentration (IC50, μM)
ezone of inhibition (ZOI, mm) for 100 μL of 0.5 mg/mL myricetin
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Antidiabetic activities
Myricetin antidiabetic activity has been reported by sev-
eral authors in the last few years and limited reports are
also available on its anti-obesity activity but in this re-
view, we focused on only its antidiabetic potential. Karu-
nakaran et al. [101] reported the in vitro effect of
myricetin on high glucose-induced β-cell apoptosis, pos-
sibly via cyclin-dependent kinase 5 (CDK5) inhibition.
Data revealed that myricetin (20 μM) significantly pro-
tect β-cells reducing apoptosis in INS-1 cells and rat
islets that were incubated with glucose at the concentra-
tion of 30 mM for 24 and 48 h, respectively. Docking
studies predicted myricetin inhibited activation of
CDK5.
The effect of myricetin was evaluated in diabetes

mellitus-associated kidney injuries and dysfunction in
an experimental mouse model with diabetes mellitus
induced by 5 consecutive injections of low-dose strep-
tozotocin (STZ) [20]. The data revealed that myricetin
(orally twice a day, 100 mg/kg/day, for 6 moths)
inhibited the IκBα/NF-κB pathway, with this pathway
being independent of nuclear factor erythroid 2-
related factor (Nrf2) regulation. It was also reported

that myricetin activates glucagon-like peptide 1 recep-
tor (GLP-1R) and its long-term oral administration
(200 mg/kg, for 40 days) validates its glucoregulatory
effects [102].
Insulin’s metabolic action is mediated via the activa-

tion of phosphatidylinositol 3-kinase (PI3K) and its
downstream effectors, the protein kinase B (PKB/Akt)
kinases [103]. In contrast, AMP-activated protein kinase
(AMPK) signal pathway is likely to mediate the effect of
insulin-independent stimuli for glucose uptake in muscle
[104]. In an in vitro study, myricetin enhanced Akt and
AMPK protein activity, encouraged glucose uptake and
reduced insulin resistance [105]. The mechanisms of
myricetin for improving insulin-sensitive tissue might be
the amelioration of impaired signaling intermediates
downstream of insulin receptors through enhancing the
secretion of β-endorphin, which in turn led to the acti-
vation of peripheral μ-opioid receptors [106, 107]. Then,
myricetin affects insulin receptor phosphorylation, insu-
lin receptor substrate-1 (IRS-1), the p85 regulatory sub-
unit of PI3K, Akt and Akt substrate of 160 kD, with
subsequent effects on glucose transporter 4 (GLUT4)
translocation [108].

Table 3 Antioxidant activities of myricetin

Assay Model Results Ref.

Density functional theory in
silico

The bond dissociation enthalpy computed and the compound showed ionization potentials 161.4
kcal/mol.

[64]

Antioxidant response element
(ARE) activation

in vitro Activates Nrf2 antioxidant response element pathways and is involved in myricetin-induced expres-
sion profiling in hepatic cells.

[65]

Deoxyribose degradation in vitro Significant antioxidant activity (complex with iron) in the presence of ascorbic acid. [8]

DPPH in vitro Myricetin/HP-β-CD inclusion complex formation enhances antioxidant activity of drugs. [66]

DPPH in vitro Significant RSA dose-dependently [50]

DPPH, ABTS in vitro Inhibition activity from 13.3 to 99.8% at doses of 0.03 to 1 mg/ml during 5 to 20 min. [67]

DPPH, FRAP in vitro High RSA in DPPH assay, and intermediate ferric reducing ability in FRAP assay. [68]

DPPH, FRAP, ABTS in vitro Mean activity for FRAP (27.2, 26.7) mmol Fe2+/L, DPPH (7.9, 9.3) mmol TEAC/L, and ABTS (9.3, 11.5)
mmol TEAC/L.

[69]

DPPH, FRAP, ORAC in vitro EC50 value of DPPH, FRAP and ORAC assays were recorded as 7.60 μg, 8.86 and 12.99 mmol Trolox
equivalents per gram.

[70]

DPPH, TPTZ, superoxide in vitro Myricetin and its derivatives showed IC50 value from 1.82 to 3.27 μg/mL in DPPH assay and 1.86 to
3.83 μg/mL in superoxide assay however, 1.38 to 2.89 μM equivalent to Fe2+ /mL for TPTZ assay.

[71]

H2O2 in vitro Increases hydrogen peroxide resistance in Saccharomyces cerevisiae. [72]

DPPH, ROS in vitro 21–54% scavenging activity in DPPH assay (5–10 μg/mL) and 35–73% intracellular ROS scavenging
activity (1–10 μg/mL). Significantly inhibits H2O2-induced cell death and activated antioxidant
enzymes.

[73]

NO in vitro Mean scavenging activity compared to hydrophilic antioxidants. [74]

ROS in vitro Inhibits peroxynitrite-mediated DNA damage in primary astrocytes at 5 μM. [75]

ROS in vitro The IC30 value for inhibitory effect on triglyceride and ROS were recorded as > 150 μM and 122.7 μM. [76]

ROS in vitro Inhibits H2O2-induced cell death and increases cell survival (65%). [77]

DCFH-DA in vivo Inhibits ROS production in normal individuals and in patients with sickle cell anemia. [78]

ABTS 2,2′ azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, ARE antioxidant response element, DCFH-DA dichloro-dihydro-fluorescein diacetate, DPPH 2,2-diphenyl-
1-picrylhydrazyl, FRAP ferric reducing antioxidant power, NO nitric oxide, ORAC oxygen radical absorbance capacity; ROS reactive oxygen species, RSA radical
scavenging activity, TEAC trolox equivalent antioxidant capacity, TPTZ tri-pyridyl triazine
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Other previous studies on antidiabetic potential of the
compound are shown in Table 5.

Anticancer activities
Cancer is responsible for second highest cause of death
across the globe [124, 125]. It has been reported that
number of death due to this devastating disease would
expand to over 13 million by 2030 [126, 127]. Laboratory

and clinical studies have reported that myricetin from
natural sources exerts promising effects against various
types of cancer [19, 21]. The dietary compound myrice-
tin also has the potential to inhibit key enzymes involved
in cancer initiation and growth.
Myricetin has presented cytotoxic activity in human

colon cancer cells. Kim et al. [21] demonstrated that
myricetin significantly induces the Bcl2-associated X

Table 4 Neurobiological effects produced by myricetin

Model Results Ref.

Anxiety

In vitro and
in vivo

Dose-dependent reduction in lithium-induced head twitches and anxiolytic activity by altering 5-hydroxytryptamine
transmission.

[80]

Alzheimer disease

In vitro Pro-oxidant agent and reduced the formation of ordered amyloid beta (Aβ)42 aggregation. [81]

In silico Destabilizes the β-sheet ordered amyloid oligomers formed by the undecapeptide Aβ (25–35) model. [82]

In vitro Marked modulation of metal-induced Aβ aggregation, more than metal-free Aβ aggregation. Increase cell survival rate of
Aβ (with metal ions).

[83]

In vitro Increases α-secretase (ADAM10) enzyme activity and decreases of β-secretase (BACE-1). It also exerts neuroprotective activ-
ity against Aβ (1–42) with multifunctional role in counteracting AD progress.

[84]

In vitro Dose-dependent inhibition of α-synuclein fibrils formation and destabilization (EC50 = 0.21–1.8 μM). [85]

In vitro Dose-dependent inhibition of Aβ fibrils formation from fresh Aβ (1–40) and Aβ (1–42). The EC50 value for formation,
extension and destabilization Aβ fibrils ranges from 0.13–1.8 μM.

[86]

In vivo Increases the number of hippocampal CA3 pyramidal neurons and survival in a rat model (10 mg/kg). Improved learning
and memory in a rat model with AD.

[87]

CNS

In vitro Reduces the aggregation of different abnormal proteins and eliminates various toxic proteins related to neurodegenerative
diseases. Improves physiological functions of Hsp70 molecular chaperone and reduces mis-folded proteins.

[88]

In vitro and
in vivo

Increases GABA receptor activity via calcium channel/ CaMK-II dependent mechanism, which is distinctively different from
that of most existing benzodiazepine binding site agonists of GABA receptor.

[89]

In vivo Increases mRNA for brain-derived neurotrophic factor (BDNF) in the hippocampus of male C57BL/6 mice at 10 and 20 mg/
kg (7 days).

[90]

In vivo Increases BDNF concentrations in the hippocampus of male C57BL/6 mice at 50 mg/kg (21 days). [91]

In vivo Enhances expression and activity of ERK1/2-CREB pathway and Na+, K+-ATPase while reduces oxidative stress level in
hippocampus. Improves learning and memory when compared with D-galactose.

[92]

Epilepsy

In vivo Reduces seizure severity and mortality rates in mouse models and signaling pathways (BDNF-TrkB) and regulates GAD65/
GABA with MMP-9 expression.

[93]

Huntington disease

In vivo Interacts with RNA, especially CAG motif, and decreases the huntingtin protein translation and sequestration. Reduces
cytotoxicity in HD and other polyQ disease models.

[94]

Parkinson disease

In vitro Suppresses intracellular ROS production, re-establishes mitochondrial trans-membrane potential, and inhibits MKK4 and JNK
activation.

[95]

In vitro and
in vivo

Inhibits activation of microglia (neuroinflammation), expression of pro-inflammatory mediators and reduces the number of
dopaminergic neurons.

[96]

In vivo Dose-dependent delay in climbing ability loss, but increases the life span of flies expressing human α-synuclein in brain. [97]

In vivo Prevents the loss of dopaminergic neurons and dopamine content in brain of Parkinson flies. [98]

In vivo Dose-dependent inhibitory activity on α-synuclein aggregation. [99]

In vivo Diminishes dopamine neuron degeneration, which is induced by 6-hydroxydopamine and 1-methyl-4-phenyl-pyridinium in
substantia nigra-striatum.

[100]

Aβ amyloid beta, CNS central nervous system, BDNF brain-derived neurotrophic factor
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protein (BAX)/Bcl2 ratio, and induces apoptosis of
HCT-15, in a dose-dependent manner (5 to 100 μM).
This study suggested that myricetin can be utilized for
the design of therapeutic agents against human colon
cancer. Myricetin also acts as a potent inhibitor of hu-
man flap endonuclease 1 (hFEN1) protein (IC50 690
nM), based on inhibitory mechanisms, molecular dock-
ing, and cancer cell-based assays [128]. The hFEN1 pro-
tein is a functional member of the 5′-nuclease
superfamily. By chemical nature, hFEN1 is a metal ion-
dependent and structure-specific nuclease and also in-
strumental in DNA replication and repairing processes.
Molecular docking studies revealed that ring A of myri-
cetin compound, including 4-keto and 5-OH, was found
stretched towards the two divalent metal ions. Both
metal ions are critical as they seem to interact with
Arg100 and Lys93 amino acids through hydrogen bonds.
These interacted residues are well known for their
critical interplay in hFEN1’s activity during human colon
cancer.
Myricetin has also been shown to protect against ovar-

ian cancer through suppressing ovarian cancer cell

angiogenesis [129]. Anti-angiogenic effects of myricetin
(5 to 20 μM) assessed through in vitro (HUVEC) and
in vivo (CAM) models revealed that this compound sig-
nificantly inhibits angiogenesis induced by OVCAR-3
cells. In SKOV3 human ovarian cancer cells, myricetin
inhibited viability and induced apoptosis (40 μg/mL,
time-dependent manner) through endoplasmic
reticulum stress and DNA double-strand breaks [130].
Zheng et al. [131] stated that in A2780 and OVCAR3
ovarian cancer cells, the dietary flavonoid myricetin in-
duced significant cytotoxicity (IC50 = 25 μM). In a recent
study, Tavsan and Kayali [132] reported that myricetin
suppressed ovarian cancer cell growth, induced apop-
tosis, arrested cell cycle and also had the potential to in-
hibit cell invasion in a significant manner (IC50 = 184 μM
A2780, 32 μM OVCAR-3, 3.3 μM SKOV3, and > 500 μM
OSF). Thus, it can be concluded that myricetin has
enough potential to cope with ovarian cancer in a sig-
nificant manner.
Myricetin has potent anticancer-promoting activity

against skin cancer. It was found capable of inhibiting
neoplastic cell transformation and mitogen-activated

Fig. 2 Main mechanisms and activities of myricetin as neuromodulator
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protein kinase 1 (MEK1) activity (myricetin 1 or 5 μM)
[133]. Molecular interaction between myricetin and
MEK1 suppressed MEK1 activity leading to downstream
signaling to the ERK/p90RSK/AP-1 pathway. In another
study, myricetin has been presented as a potent chemo-
protective agent against skin cancer [134]. Myricetin can
bind directly to central kinases including PI3-K, Akt,
JAK1, Raf1, MEK1, MKK4, and Fyn, which regulate mul-
tiple cell signaling pathways in cancer cells. Myricetin
inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-
and epidermal growth factor (EGF)-induced cell trans-
formation by 76 and 72%, respectively at 10 μM concen-
tration. Sun et al. [135] recently reported that myricetin
has anticancer activity against skin cancer A431 cell
lines, by inducing apoptosis and cell cycle arrest and ex-
hibited low toxicity.
An earlier in vitro study demonstrated the anti-

metastatic effect of myricetin in human lung adenocar-
cinoma A549 cells [136]. This study revealed that myri-
cetin (5 to 20 μM) suppresses adenocarcinoma A549 cell
invasion and migration through inhibition of the ERK
pathway in a time-dependent manner. Along with a
combination of radiotherapy, myricetin was found re-
sponsible to enhance the tumor radio-sensitivity of lung
cancer A549 and H1299 cells through significant sup-
pression of cell-surviving fraction and proliferation
[137]. Wang et al. [138] found that the combination of

myricetin with 5-fluorouracil chemotherapy has the po-
tential to enhance tumor chemo-sensitivity of esophageal
cancer EC9706 cells. Sun et al. [139] investigated the
function of myricetin phytochemical against human T24
bladder cancer in a dose- and time-dependent fashion,
and stated that myricetin significantly inhibits both T24
cancer cells viability and proliferation (IC50 = 85 μM).

Immunomodulatory activities
The preclinical immunomodulatory effects of myricetin
have also been increasingly reported. Ghassemi-Rad
et al. [140] concluded that myricetin has the potential to
inhibit T-lymphocyte activation in a mouse model
through bead-immobilized anti-CD3 and anti-CD28
monoclonal antibodies. This study clarified the mechan-
ism of action and reported the suppressive effect of myr-
icetin on T lymphocytes mediated through extracellular
H2O2 generation. In mouse primary macrophages and
RAW264.7 monocytic cell-line, this phenolic compound
was found to inhibit the lipopolysaccharide (LPS)-in-
duced interleukin (IL)-12 production in a significant
manner through down-regulation of NF-κB binding ac-
tivity [22]. In isolated rat aortic rings, myricetin induced
endothelium-dependent contractile responses at 50 μM.
Earlier, Jiménez et al. [141] reported that, in cultured bo-
vine endothelial cells, this compound is responsible for
stimulating the production of cytosolic free calcium. In a

Table 5 Previous studies on preclinical antidiabetic potential of myricetin

Compound / Plant species Model Results Ref.

Myricetin in vivo Enhanced enzymatic and non-enzymatic antioxidant defense system and showed protective
effects against oxidative damage in liver and kidney of streptozotocin-cadmium-induced dia-
betic model.

[109]

Myricetin in vivo Inhibitory activity against α-glucosidase (IC50 = 414 μM) in dose dependent manner. [110]

Myricetin in vivo Anti-hyperglycemic and renoprotective effects at 1.0 mg/kg. [111]

Myricetin in vivo Improved and re-established renal functions and activities of the glutathione peroxidase and
xanthine oxidase enzymes in diabetic rat model.

[112]

Myricetin in vivo Antidiabetic activity against t-BHP-induced oxidative stress. [113]

Myricetin in vivo Reduced glycemia in diabetic rats up to 50% after 2 days of treatment at 3 mg/12 h. [114]

Myricetin in vivo Stimulated lipogenesis in rat adipocytes and enhanced the stimulatory effect of insulin (EC50 =
65 μM).

[115]

Myricetin in vitro Inhibited intestinal α-glucosidase (29%) and porcine α-amylase (64%) with IC50 vale of 0.38
mM.

[116]

Abelmoschus moschatus Medik. (aerial
part)

in vivo Improved insulin sensitivity in rats. [117]

Ampelopsis grossedentata (Hand.-
Mazz.) W.T. Wang (leaves)

in vivo Inhibitory activity against α-glucosidase (IC50 = 319.3 μM). [118]

Azadirachta indica A.Juss. (leaves) in vivo Enhanced insulin signaling pathway and glucose utilization in skeletal muscle. [119]

Hovenia dulcis Thunb. (seeds) in vitro Inhibited intestinal α-glucosidase with IC50 = 3 μg/mL and α-amylase with IC50 = 662 μg/mL. [120]

Myrtus communis L. (leaves) in vivo Significant antidiabetic activity in diabetic models. [121]

Syzygium cumini (L.) Skeels (seeds) in vitro Inhibitory activity against α-glucosidase (IC50 = 1.7 μg/mL) and α-amylase (IC50 = 7.62 μg/mL). [122]

Syzygium malaccense (L.) Merr. &
L.M.Perry (leaves)

in vitro Inhibitory activity against α-glucosidase (IC50 = 15.52 μg/mL) and α-amylase (IC50 = 147.30 μg/
mL).

[123]
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dose-dependent manner, myricetin inhibited the secre-
tion of a potent T cell growth factor, namely IL-2 pro-
tein from mouse EL-4 T cells, activated with phorbol 12-
myristate 13-acetate (PMA) plus ionomycin [142]. In
vitro evidence demonstrated that at 5–100 μM, myrice-
tin inhibits CD69 expression and lymphocytes prolifera-
tion in a mouse model. Moreover, an in vitro
investigation revealed that myricetin significantly effects
IL-2 expression. However, further in vitro and in vivo in-
vestigations are required to explore myricetin as an im-
munomodulatory agent.

Cardioprotective activity
Previous studies have demonstrated that myricetin also
has beneficial effects on the human vascular system [23].
In human umbilical vein endothelial cells, myricetin
(100 μM), revealed vasculoprotective effects through
changes at the transcriptional level [143]. Myricetin has
been presented as a functional agent towards preventing
atherosclerosis through inhibition of CD36 cell surface
protein and mRNA expression in a significant manner
[144]. In isolated and Langendorff-perfused rat hearts,
without affecting contractility and relaxation, myricetin
elicited coronary dilation [145]. In Triton-treated hyper-
lipidemic rats, evidence from an in vivo investigation
demonstrated that myricetin exerts lipid-lowering activ-
ity and suggests that myricetin can be utilized in the
treatment of hyperlipidemia and cardiovascular diseases
(CVD) [146].
In Wistar rats, myricetin significantly inhibited the ef-

fects of histopathological changes of isoproterenol on
heart rate, the levels of different cardiac marker en-
zymes, including lactate dehydrogenase (LDH), creatine
kinase (CK), aspartate aminotransferase (AST), super-
oxide dismutase (SOD) and catalase (CAT), as well
changes in vascular reactivity and electrocardiographic
patterns [147].
A mechanism-based study by Scarabelli et al. [148]

demonstrated that myricetin exerts strong inhibitory ac-
tivity against signal transducer and activator of transcrip-
tion 1 (STAT1) activation, and also protects the heart
from ischemia/reperfusion-injury. The available genomic
and genetics data from preclinical experiments have
shown that myricetin is likely to confer the first line of
defense against cardiovascular and other associated
diseases.

Analgesic activities
In acetic acid-induced writhing response, formalin-
induced paw licking, sedative activity and hot plate test
models, myricetin revealed potent analgesic effects,
closely related with peripheral analgesia, but not with
the opioid system [24]. The compound also produced a
significant analgesic effects in a rat model of neuropathic

pain, by decreasing spinal nerve ligation-induced mech-
anical allodynia and thermal hyperalgesia lasting for sev-
eral hours (0.1–10mg/kg i.p.) [149].

Antihypertensive activities
The antihypertensive effects of myricetin were evaluated
in the deoxycorticosterone acetate (DOCA)-salt-hyper-
tensive rat model. Myricetin reduced systolic blood pres-
sure, vascular reactivity changes and reversed the
increased heart rate induced by DOCA. At oral doses of
100 and 300 mg myricetin/kg b.w., the compound dis-
played antihypertensive propertie in the DOCA rat
model of hypertension [25]. In another study, the com-
pound lowered the high blood pressure that was induced
by fructose doses of 100 and 300 mg/kg p.o. in rats and
reversed sugar-triggered metabolic changes [150].

Wound healing
The wound-healing effects of myricetin-3-O-β-rhamno-
side were investigated on three different types of cells,
keratinocytes, fibroblasts, and endothelial cells. The
compound exhibited significant wound healing activity
at 10 μg/mL [151].

Myricetin in clinical trials
Although the number of clinical studies reporting myri-
cetin health benefits in ailments and disorders is low,
the increasing data from preclinical studies have sup-
ported its beneficial effects [152, 153].
In a 4-week randomized placebo-controlled clinical

trial the effect of 300 mg Blueberin (250 mg Blueberry
leaves, Vaccinium arctostaphylos L., and 50 mg myrice-
tin, three times per day) on fasting plasma glucose and
some other biochemical parameters has been investi-
gated in 42 female volunteers (46 ± 15 years; body mass
index, BMI, 25 ± 3 kg/m2) with diabetes type 2. The
Blueberin treatment significantly reduced fasting plasma
glucose from 143 ± 5.2 mg/L to 104 ± 5.7 mg/L. In
addition to antidiabetic effects, results showed that Blue-
berin also possessed pharmacologically relevant anti-
inflammatory properties, reduced plasma enzyme levels
of alanine aminotransferases (ALT), AST, glutamyltrans-
ferase (GGT), and reduced serum C-reactive proteins
(CRP) [154]. Emulin™ (250 mg of patented blend of
chlorogenic acid, myricetin, and quercetin), when regu-
larly consumed, was able not only to lower the acute gly-
cemic impact of foods, but also to chronically decrease
blood glucose levels in type 2 diabetic humans (reduc-
tions between 1 and 5%) [155]. This study was per-
formed in 40 male and female with fasting glucose range
between 126 to 249 mg/mL and a BMI ≥ 30 kg/m2.
Data from different studies also indicate the import-

ance of myricetin as a chemopreventive agent, acting on
cell proliferation, signaling mechanisms, apoptosis,
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angiogenesis, and tumor metastasis [156]. Through the
analysis of habitual food consumption of 10,054 partici-
pants of Finnish Mobile Clinic Health Examination Sur-
vey developed during 1966–1972, Knekt et al. [157]
estimated that higher myricetin intakes in men led to
lower prostate cancer risk. In a prospective study, Gates
et al. [158] analyzed the association between the 5 com-
mon dietary flavonoids (myricetin, kaempferol, quer-
cetin, luteolin and apigenin) intake and epithelial ovarian
cancer incidence in 66,940 women. No clear association
was found between total intake of examined flavonoids
and incidence of ovarian cancer (Relative Risk [RR] =
0.75 for the highest versus lowest quintile, 95% confi-
dence interval [CI] = 0.51–1.09; p-trend = 0.02), nor for
myricetin intake (RR = 0.72, 95% CI = 0.50–1.04; p-
trend = 0.01). However, there was a significant 40 and
34% decrease in ovarian cancer incidence for the highest
versus lowest quintile for kaempferol and luteolin intake,
respectively [158]. The association between flavonoids
and flavonoid-rich foods intake and exocrine pancreatic
cancer development within the α-tocopherol, β-carotene
cancer prevention study cohort were also examined
[159]. Of the 27,111 male smokers with 306 pancreatic
cancers, the data obtained suggests that a flavonoid-rich
diet may decrease pancreatic cancer risk in male
smokers not consuming supplemental α-tocopherol and/
or β-carotene. Tang et al. [160] showed that high/in-
creased flavonoids (e.g., myricetin) intake is associated
with lower lung cancer risk in their studied population
(meta-analysis of 8 prospective studies and 4 case-
control studies involving 5073 lung cancer cases and
237,981 non-cases).
The intake of 36 g lyophilized grape powder (rich in fla-

vans, anthocyanins, quercetin, myricetin, kaempferol, and
resveratrol) also had a great impact in key risk factors for
coronary heart disease (lowered levels of triglyceride, low-
density lipoproteins, apolipoproteins B and E) in both pre-
and post-menopausal women [161]. The study was per-
formed on 24 pre- and 20 post-menopausal women for 4
weeks. However, wide ranges of clinical studies are still
needed on the potential activities of myricetin which have
been already indicated through in vitro and in vivo
experiments.

Conclusions
Myricetin is a flavonoid present in many foods that has
shown biological activities in numerous studies and has
a potential use as a nutraceutical. Its antimicrobial and
antioxidant role is widely studied, and numerous studies
have shown neurobiological activities and a potential
beneficial impact on AD, PD, HD and ALS. Also, pre-
clinical studies have revealed antidiabetic, anticancer,
immunomodulatory, anti-cardiovascular, analgesic and
antihypertensive activities. These studies investigated the

effect of myricetin, pure compound or plant extract rich
in this compound. In plant studies, the extracts rich in
myricetin always have other flavonoids that have also
shown antioxidant activity alone. Nevertheless, new
well-designed studies have to be performed to study all
of the biological effects described before, as well as pre-
clinical studies comparing the effect of myricetin com-
pared to other flavonoids and phytochemicals. In the
case of neurological diseases, more in-depth studies have
to be designed to show the pre-clinical results.
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