Table 5.
Comparison table of available deep learning approaches with our proposed framework (Faster R–CNN).
Method | Accuracy % | F1 Score % | Specificity % | Precision % | Sensitivity % |
---|---|---|---|---|---|
DenseNet | 92.64 | 95.72 | 77.42 | 96.45 | 95.00 |
ResNet50 | 89.61 | 93.94 | 67.74 | 94.90 | 93.00 |
InceptionV3 | 88.74 | 93.33 | 74.19 | 95.79 | 91.00 |
AlexNet | 90.50 | 94.63 | 71.43 | 96.86 | 92.50 |
Faster R–CNN (Proposed) | 97.36 | 98.46 | 95.48 | 99.29 | 97.65 |