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Abstract

Differential gene expression in the airway epithelium of asthmatics vs. controls has been reported 

in several studies. However, there is no consensus on which genes are reproducibly affected in 

asthma. We sought to identify a consensus list of differentially expressed genes (DEGs) using a 

meta-analysis approach.

We identified eight studies with data that met defined inclusion criteria. In total, these studies were 

comprised of 355 cases and 193 controls and involved sampling of either bronchial or nasal 

epithelium. We conducted study-level analyses, followed by a meta-analysis. Likewise, we applied 

a meta-analysis framework to the results of study-level pathway enrichment.

We identified 1,273 DEGs, 431 of which had not been identified in previous studies. 450 DEGs 

exhibited large effect sizes and were robust to study population differences in age, sex, race/

ethnicity, medication use, smoking status, and exacerbations. The magnitude of differential 

expression of these 450 genes was highly similar in bronchial and nasal airway epithelia. Meta-

analysis of pathway enrichment revealed a number of consistently dysregulated biological 

pathways, including putative transcriptional and post-transcriptional regulators.

In total, we identified a set of genes that are consistently dysregulated in asthma, link to known 

and novel biological pathways, and will inform asthma sub-type identification.

Introduction

Multiple lines of evidence indicate that the airway epithelium plays an important role in the 

pathogenesis of asthma. Pattern recognition receptors, cytokines, and alarmins secreted by 

airway epithelia play critical roles in the initiation of allergic inflammation [1]. Results from 
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genome-wide association studies (GWAS) also implicate genes expressed by the airway 

epithelium, such as IL33 and TSLP [2]. Protease containing allergens (e.g., house dust mite) 

disrupt epithelial barrier intregity, and there is evidence of decreased barrier function in 

asthmatics [3]. Lastly, the hallmark asthma phenotype of mucus hyper-secretion is caused by 

changes in the function and activity of secretory cells in the airway and submucosal glands 

[4].

Transcriptomic studies of airway epithelium have provided a snapshot of the state of this 

tissue after disease onset. Woodruff et al. first reported on the identification of 22 genes that 

were differentially expressed between asthma cases and controls [6]. This group later 

showed that that the expression of just three genes (POSTN, CLCA1, and SERPINB1) 

distinguished “Th2-high” from “Th2-low” sub-types of asthma and was associated with 

response to inhaled corticosteroids [7]. Other studies have shown that changes in gene 

expression are mirrored by changes in the epithelial methylome [7, 8] and that distinct gene 

sets are associated with asthma exacerbations [10, 11]. Thus, the airway epithelium may not 

only be crucially involved in disease pathogenesis, but can also provide information about 

disease status (i.e., exacerbations) and therapeutic response.

Since the initial studies of gene expression in epithelial cells in asthma, more have followed, 

including studies with larger sample sizes and different demographics. While these more 

recent studies have contributed to our newly appreciated understanding of epithelial 

responses in asthma, with few exceptions there is no consensus on which genes and 

pathways are reproducibly affected in asthma. We therefore set out to utilize existing gene 

expression datasets to identify which genes were consistently dysregulated in the airway 

epithelium of asthma cases versus controls using a meta-analysis approach. In lieu of 

sampling bronchial epithelium, some studies utilized nasal epithelia, allowing us to assess 

the concordance of results between nasal and bronchial epithelia. We also used the asthma 

case-control gene expression data to evaluate enrichment of biological pathways implicated 

in a similar meta-analysis framework.

Methods

Additional information on methods is available in the Supplement.

Study identification

Case-control studies were identified in PubMed, NCBI’s Gene Expression Omnibus (GEO) 

and EMBL EBI’s ArrayExpress using search terms including “asthma”, “airway epithelia”, 

“bronchial epithelia”, and “nasal epithelia” (or combinations thereof). In total, we identified 

18 studies (Supplementary Table 1). Some publications contained overlapping study 

populations, thus we chose one study from each set to avoid duplication (see Supplement for 

details). Prior to reviewing the studies, we designated a set of study exclusion criteria. These 

included: (1) lacking a case definition, (2) sample size less than five in any study group 

(cases or controls), which would limit power, or (3) unavailability of gene expression or 

covariate (age, sex and smoking) data. Covariate data were obtained either through the data 

repository or through contact with the study investigators. Application of the aforementioned 

exclusion criteria resulted in the exclusion of six studies (listed in Supplementary Table 1). 

Tsai et al. Page 2

Eur Respir J. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After these exclusions, our meta-analysis consisted of eight studies comprising 548 subjects 

in total (355 cases and 193 controls). All eight studies used brushes to sample airway 

epithelium: two studies sampled nasal epithelia while the rest sampled bronchi. All studies 

but one utilized microarray platforms. Descriptions of each study are provided in Table 1.

Data processing, normalization, and annotation

The overall workflow for data acquisition, normalization, study-level analysis and meta-

analysis is shown in Supplementary Figure 1. Data were obtained either from GEO or 

directly from the study investigator. Affymetrix array data were normalized using robust 

multi-array averaging [11] and Agilent array data were quantile normalized and then log2 

transformed (see Supplementary Table 2). Normalized read counts from the single RNA-seq 

dataset (GSE85568) were also log2 transformed. In most cases, we used the array probe-

gene annotation provided in GEO corresponding to the array platform used (see 

Supplementary Table 2).

Study level analyses

To identify outlier samples within each study, we used Bolstad’s relative log expression 

method [12]. We then conducted an analysis to identify differentially expressed genes using 

LIMMA [13], adjusting at a minimum for age, sex and race, but in some cases also smoking 

status and array hybridization batch (see Table 1). For each study, p-values were adjusted 

using the false discovery rate (FDR) correction method [14], and we recorded the t statistic, 

beta, p-value, log fold change, Cohen’s D and Hedges’ adjusted g for use in the meta-

analysis.

Meta-analysis

We estimated summary effect sizes for each gene using an inverse variance model as 

advocated by Ramasamy et al. [15]. Specifically, we calculated pooled effect sizes using 

Hedges’ adjusted g and included the use of a random effects model to account for between 

study heterogeneity. This analysis was carried out using the R package meta [16]. We 

declared genes as differentially expressed (DE) if the meta-analysis false discovery rate 

(FDR) adjusted p-value (q value) was less than 0.05 and the gene was evaluated in at least 

two of the eight studies.

Overlap of Asthma DEGs with GWAS hits

To assess whether any of the differentially expressed genes (DEGs) we identified by meta-

analysis were also implicated by GWAS, we merged our meta-analysis results with data the 

NHGRI-EBI Catalog of published GWAS (https://www.ebi.ac.uk/gwas/, accessed on 

1/31/2018) [17]. To be inclusive, we applied a GWAS p-value threshold of 1x10−7. We used 

the gene reported by the original study as the key identifier, acknowledging that the gene 

implicated by GWAS is not necessarily the causal gene. If the same gene was reported from 

multiple GWAS, we report the single most significant result.
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Pathway Enrichment Meta-Analysis

We evaluated pathway enrichment in each study using Gene Set Variation Analysis (GSVA) 

[18]. Briefly, GSVA works by estimating a gene set score in an unsupervised way by 

calculating an enrichment statistic for each gene set in each study (see Supplement). In this 

way, the gene by sample matrix is transformed to a matrix of gene set by sample. The gene 

set by sample matrix was then used for study-level differential expression analysis, followed 

by meta-analysis using the same methods as described above for individual genes. Gene sets 

for analysis were collected from Enrichr (http://amp.pharm.mssm.edu/Enrichr/) and include 

KEGG and Biocarta pathways, transcription factor targets from ENCODE, and many others 

(see Supplement).

Results

Study level analyses

We obtained gene expression and covariate data for 355 cases and 193 controls from eight 

studies (Table 1). Demographic variables differed considerably between studies. For 

example, two studies were comprised exclusively of children, while the remaining were 

comprised largely of adults of a wide age range (20-74 years). Across studies the percent of 

study subjects that were female ranged from ~40 to 70%. While by and large most study 

subjects were Caucasian, some studies involved African-Americans, Hispanics, Asians, or 

other racial/ethnic categories. Except for two studies, most studies involved exclusively non-

smoking subjects.

For each study, we conducted an analysis to identify DEGs after the exclusion of outliers 

(Supplementary Figure 2). Because different studies utilized different array platforms (or 

RNA-seq) with different numbers of genes tested, we compared the eight studies by plotting 

the fraction of genes identified as DE (Supplementary Figure 3, Supplementary Table 2). 

These values ranged from 0.01% to 27%, with no obvious correlation between sample size 

and the fraction of DEGs detected.

Meta-analysis

We then applied a meta-analysis approach, using a random effects model to allow for 

heterogeneity in effect sizes across studies. In total, we identified 1,273 genes that were DE 

with q-values < 0.05 (Figure 1, Supplementary Table 3), the majority (64%) of which were 

upregulated. Notably, more than one third of these DEGs (n = 431 or 34%) were not 

identified as DE in any single study (at FDR q<0.05), highlighting the utility of the approach 

to reveal genes of interest. In terms of effect size, CST1 (up) and APELA (down) were the 

most extreme genes; in terms of statistical significance, CEACAM5 (up) and C3 (down) 

were the most affected genes.

As expected, the three Th2 biomarker genes (POSTN, CLCA1, and SERPINB1) were 

consistently upregulated, though with some heterogeneity in effect size across studies 

(Figure 2). Likewise, genes positively associated with mucus production (e.g., IL13, 

FOXA3, and MUC5AC) were increased significantly, while MUC5B and FOXA2 were 

downregulated. Genes related to endoplasmic reticulum stress (e.g., AGR2 and ERN1), 
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which has been linked to mucin hyper-secretion [19, 20], were also upregulated, though 

XBP1 was not (see Supplementary Figure 4).

We noted an obvious enrichment of genes involved in protease/antiprotease pathways, 

including serine protease inhibitors (SERPINB2, SERPINB4, SERPINB8, and 

SERPINB10), cathepsins (CTSC and CTSG were upregulated while CTSL was down 

regulated), and cystatins (CST1, CST2, CST3, CST4, CST6, and CSTA) (Figure 2, 

Supplementary Figure 4). In contrast, genes involved in barrier function (including CLDN1, 

CLDN18, CLDN4, TJP1, TJP2, TJP3, OCLN, and CDH1) were not DE, with the sole 

exception of TJP1 (ZO1). Six genes reflective of recruited leukocytes were DE, including 

CCL26 and CLC, markers of eosinophils, and TPSAB1, CPA3, MS4A2 and HDC, markers 

of mast cells and/or basophils (see Supplementary Figure 4).

Seventeen genes implicated by GWAS were in the list of DEGs (Supplementary Table 4). 

While overall there was no over-representation of upregulated versus downregulated genes 

in this list, the five most differentially expressed genes in terms of effect size (LRRC8A, 

ALOX15, IL18R1, IL1RL1, ADAMTS9) were all upregulated. Conversely, all three HLA 

genes (HLA-DOA, HLA-DPA1, HLA-DRA) were downregulated. Surprisingly, we found 

that expression of the asthma associated gene CHI3L1 [21] was decreased among cases 

(Figure 2). Genes identified by positional cloning, including ADAM33, DPP10, PCDH1, 

HLA-G, and SPINK5, were not DE, nor was CDHR3 [22], a gene associated with asthma 

exacerbations.

A large number of genes (n = 450) were consistently DE across many of the eight studies 

and had large effect sizes, which we defined as pooled effect size (Hedges’ g) values greater 

than 0.5 (Figure 3, Supplementary Table 5). These findings indicate that differential 

expression of these genes is robust to differences in age, sex, smoking status, race/ethnicity, 

exacerbations, and tissue type (bronchial vs. nasal). We further examined the commonality 

of differential gene expression between bronchial and nasal epithelia by comparing the 

pooled effect sizes from the six studies involving bronchial epithelia versus the pooled effect 

size from the two studies involving nasal epithelia (Figure 4). This analysis revealed that the 

pattern of differential gene expression across tissue types was completely consistent for 

these 450 genes, and the magnitude of differential expression for most genes was only 

marginally decreased in nasal compared to bronchial epithelia (slope = 0.91, p<0.01 for test 

that slope = 1), though CST1 was more pronounced in nasal epithelia compared to bronchial 

epithelia.

Heterogeneity

While the consistency of differential gene expression signal in asthma cases versus controls 

was clear for many genes, in particular the Th2 marker genes POSTN, CLCA1, and 

SERPINB1, this level of analysis obscures potential heterogeneity which could inform 

disease mechanism and treatment [6]. To examine this, we plotted the distribution of 

aggregate expression scores for POSTN, CLCA1, and SERPINB1 (Figure 5). We found that 

while on average cases had higher levels of expression of these genes in aggregate, within 

each study the distribution ranged widely and was in some cases bimodal (e.g., GSE67472). 
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Additionally, in some studies there were cases with lower Th2 gene expression than controls 

(e.g., GSE63142).

Effect of Steroids

The lack of data on medication use precluded a systematic analysis of inhaled corticosteroid 

(ICS) effect. Hence, we compared our list of DEGs to previous studies which examined the 

effect ICS on airway epithelia transcriptomes [5, 23], which in aggregate identified 111 

genes. Fifteen asthma DEGs were also a part of this list of ICS-responsive genes, including 

ALOX15B, POSTN, CLCA1, and SERPINB1, and CST1 (Supplementary Table 6).

Pathway Meta-analyses

To examine the effect of differential gene expression at the level of biological pathways, 

which could be reveal additional disease-associated effects that are not apparent at the single 

gene level, we conducted a meta-analysis of pathway enrichment. First, we conducted study-

level pathway analysis using the GSVA method [18] to examine variation in the expression 

of defined gene sets (e.g., KEGG pathways and other pre-defined gene sets) between cases 

and controls in each study. It is important to note that in this analysis, genes that were not 

called DE in either the single study analysis or meta-analysis could still contribute to 

pathway enrichment. Since GSVA works by combining expression scores across a pre-

defined set of genes, modest differences in the expression of genes that would not reach 

statistical significance (for each gene individually) can still cumulatively result in a 

differential expression of a gene set. Following single study analysis, we conducting a meta-

analysis of pathway expression scores across all eight studies to identify consistently altered 

pathways (Figure 6, Supplementary Table 7, Supplementary Table 8). Some of the most 

prominent pathways that were increased in expression in cases were linked to mucin 

synthesis and post-translational modification of mucins, as were pathways related to the 

synthesis of prostaglandins, thromboxanes, and eicosatetraenoic acid derivatives. In controls, 

interferon gamma signaling, tryptophan metabolism, NOTCH and Hedgehog signaling were 

among the more highly expressed pathways. Additionally, this analysis identified TCF12, 

XBP1 and FOSL2 as putative transcriptional regulators of upregulated genes, and 

miR-380-5p as a post-transcriptional regulator of genes that are more highly expressed in 

controls. We also queried three protein interaction databases and identified 335 putative 

protein interaction partners (at FDR q-values < 0.05) of the asthma DEGs (Supplementary 

Table 9), the majority of which have not been linked to asthma previously.

Discussion

Our meta-analyses of eight studies revealed that 1,273 genes, roughly 5% of the protein 

coding genes in the human genome, are consistently dysregulated in the airway epithelium 

of asthmatics, and more than one third of these DEGs had large effect sizes. The robustness 

of our meta-analysis results is largely a function of the similarity of differential gene 

expression across each of the eight studies, and the fact that the eight studies utilized 

different expression measurement platforms makes the results particularly convincing. Part 

of the utility of this analysis lies in the identification of genes that did not stand out in any 

single study, which comprise 34% of the total number of DEGs. PPP1R3B is one such 
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example. This gene was nominally differentially expressed in four out of the eight studies 

but after correction for multiple testing was not called DE in a single study. This gene is 

associated with lipid metabolism [24] and Alzheimer’s disease [25], but has not been linked 

to asthma previously.

The results of our pathway meta-analysis clearly indicate that multiple pathways are 

consistently dysregulated in asthma, though we cannot infer whether these pathways are 

causally related to the development of disease or are a consequence of disease. Genes related 

to Th2-mediated inflammation and MUC5AC production and post-translational modification 

of mucins were consistently and strongly upregulated in asthma cases. The pathway analysis 

also implicated ER stress (IRE1 and XBP1 pathways), which is a known consequence of 

exaggerated mucin production [19, 20]. Interesting, while XBP1 was identified as a putative 

regulator of asthma DEGs, XBP1 gene expression did not differ by case-control status, 

suggesting that activation of XBP1 function may occur independently of XBP1 

transcription. In contrast to heightened mucin gene expression, genes involved in NOTCH 

signaling were more highly expressed in controls. Collectively, these particular pathway 

enrichment results seem to point to both alterations in mucus production and to changes in 

goblet vs. ciliated cell numbers in the airways.

The clear enrichment of genes from the serpin, cystatin and cathepsin gene families in the 

list of DEGs highlights the role of protease-antiprotease imbalance and the consequences 

thereof, perhaps most prominently extracellular matrix remodeling. Previous findings 

suggest that some of the protease expression is likely derived from recruited white blood 

cells, such as mast cell tryptase and carboxypeptidase, and neutrophil-derived Cathepsin G 

and elastase. It is worth noting that heightened expression of such proteases has also been 

linked to altered biophysical properties of mucins in the airway potentially leading to mucus 

plugging [26]. The upregulation of cystatins, which are protease inhibitors, may also be 

indicative of a compensatory response to exposure to protease containing allergens such as 

house dust mite, as has been suggested in the case of eosinophilic chronic rhinosinusitis 

[27]. However, we did not find strong evidence in support of a barrier defect in the asthmatic 

airway epithelium, as one would expect based on the known effect of proteases on epithelial 

integrity [3]. Nor did we find evidence of a pervasive effect of steroids on DEGs, but this 

result was based on a limited analysis of previous data and therefore a more robust analysis 

is merited.

One of our key findings was that dysregulated gene expression in asthma is reflected in the 

nasal epithelium in a magnitude that is highly similar to the bronchial epithelium. This result 

corroborates earlier findings of similarities in gene expression [28] and DNA methylation [8] 

based on comparisons of matched samples. Because our results are based on comparisons 

across studies, we conclude that this commonality of expression patterns is generalizable to 

multiple study populations. Notably, this commonality of differential expression includes 

genes that likely represent leukocyte infiltration, namely CCL26, CLC, TPSAB1, CPA3, 

MS4A2 and HDC). Heightened expression of CLC and HDC has also been observed in 

allergic rhinitis [29] and eosinophilic esophagitis [30] (see Supplement for more details), 

suggesting this is a common feature of eosinophilic inflammation across tissues.
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Seventeen genes implicated by GWAS were found to be DE in the airway epithelium of 

asthmatics. Caution must be exerted in the interpretation of this result because the 

assignment of a gene from an association signal (in the GWAS) based on physical proximity 

is not proof positive of causality. For IL1RL1 and CHI3L1, however, there is ample evidence 

from other studies that these two genes are causally related to asthma. Interestingly, for these 

two genes, there is an apparent discrepancy between the directionality of gene expression 

and case status indicated by our meta-analysis and how genetic variants at these loci affect 

gene expression in relation to disease risk. For IL1RL1, expression is upregulated in asthma, 

yet the risk variants associated with asthma (as well as serum IgE and peripheral blood 

eosinophil counts) [31] are associated with lower gene expression [32]. This suggests that 

asthma status may cause an increase in IL1RL1 gene expression in airway epithelia and/or 

that recruited white blood cells present in the asthmatic airway epithelium express IL1RL1. 

For CHI3L1, which encodes YKL-40, genetic variants associated with increased risk of 

asthma are strongly associated with higher levels of serum YKL-40 [21] and gene 

expression in whole lung tissue [33], and YKL-40 is expressed in the bronchial epithelium, 

macrophages and neutrophils of severe asthmatics [34]. Yet, our results show that the gene 

expressed at lower levels in cases versus controls overall. It is unclear whether this 

discrepancy is attributable to variation in cell type composition of the airways, disease 

severity, or whether there is a distinction between gene expression in the airway epithelium 

before and after disease onset that may affect this relationship. Lastly, genetic variants 

downstream of ALOX15 have been associated with asthma [35] and this gene was also 

significantly and highly upregulated in asthmatics. This gene encodes Arachidonate 15-

Lipoxygenase, and enzyme that converts arachidonic acid into several eicosatetraenoic acid 

species (which was also identified in the pathway meta-analysis), some of which have been 

shown to affect mucin production by bronchial epithelial cells [36, 37]. Thus, the expression 

and GWAS data contribute to a biologically coherent argument in favor of a role for this 

gene in asthma.

While our results clearly indicate that a sizeable number of genes are DE in asthma, this is 

not to say there are not differences between studies or heterogeneity among asthmatics. 

Indeed some studies identified a comparatively large number of DEGs compared to others, 

and this was not simply a function of sample size. This result suggests that real biological 

differences between study populations led to the observed differences in gene expression 

signals. It seems possible that the presence of different asthma sub-types could lead to either 

increased or decreased power. The presence of Th2 low asthma cases, for example, could act 

to dilute differences between cases and controls for Th2 related genes. Alternatively, Th2-

low cases could provide power to detect non-Th2 related expression differences. Variation in 

three-gene marker of Th2-mediated inflammation (POSTN, CLCA1, and SERPINB1) 

among cases was indeed present. In at least three studies, the distribution of aggregate Th2-

gene expression was bimodal, and some asthmatics had lower expression of these genes than 

any control. Identifying the genetic and clinical correlates of this asthma sub-type is clearly 

an imperative. More broadly, the use of gene expression data to identify biological 

underpinnings of asthma subtypes (or endotypes) is a promising approach [6, 38]. This will 

depend in large part on the availability of study subject data (clinical and/or biomarker) that 

can be used to assess correlations with gene expression. The identification of 1,273 
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consistently dysregulated genes in the airways of asthmatics represents one starting point for 

these analyses in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DEGs identified by meta-analysis.
Genes are color-coded by the number of studies (k, from 2 to 8) in which they were 

evaluated, and those with adjusted p-values < 1x10-5 and pooled effect size > 0.7 are 

labeled.
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Figure 2. Differential gene expression across studies for emblematic genes.
Forest plots for (a) genes related to Th2 mediated inflammation (POSTN, CLCA1, and 

SERPINB1) and mucin production (IL13, MUC5AC, and MUC5B); (b) Protease anti-

protease balance (CST1, CST2, and CTSG); (c) Genes with variants associated with asthma 

(IL1RL1, ADAMTS9, and CHI3L1). White whiskers (for CST1) indicate that confidence 

interval is completely contained within the box representing the point estimate. Additional 

forest plots are provided in Supplementary Figure 4.
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Figure 3. Consistency of differential expression for DEGs with large effect size.
DEGs with adjusted p-values < 0.05 and pooled effect size > 0.5 are shown. Absolute log2 

fold change values > than 2 or < −2 were set to 2 or −2. Missing values are shown in gray. 

450 genes were identified with some degree of missingness across studies. For ease of 

viewing, the 349 genes with the least missingness are shown. A similar heatmap for all 1273 

DEGs is provided in Supplementary Figure 5.
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Figure 4. Similarity of differential expression in bronchial vs. nasal epithelium.
A comparison of pooled effect sizes for the top 450 DEGs is shown, along with best-fit 

linear regression line (red) and the line of identity (blue; i.e., if nasal = bronchial). The 

outlier gene at the top right is CST1.
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Figure 5. Variation in Th2 marker gene expression among studies and samples.
The sum of gene expression for POSTN, CLCA1, and SERPINB2 (in log2 units), are plotted 

as a function of case-control status across each study. Cases are shown in red and controls in 

blue. In these violin plots, white dots denote median, the thick black bars correspond to first 

to third quartiles of the distribution, and the bottom and top whiskers correspond to the first 

quartile − 1.5*IQR and the third quantile + 1.5*IQR, respectively, where IQR = interquartile 

range.
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Figure 6. Consistency of differential pathway expression revealed by meta-analysis.
A heatmap of fold change (log2 scale) for top pathways identified by meta-analysis of 

pathway enrichment across eight studies is shown. In some cases, pathway names have been 

truncated for ease of viewing. The full list of pathway names is provided in Supplementary 

Table 7. In Supplementary Table 8, we provide a cross referencing of DEGs to pathways.
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