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An in‑silico study of cancer cell 
survival and spatial distribution 
within a 3D microenvironment
Marilisa Cortesi1*, Chiara Liverani2, Laura Mercatali2, Toni Ibrahim2 & Emanuele Giordano1,3,4

3D cell cultures are in-vitro models representing a significant improvement with respect to 
traditional monolayers. Their diffusion and applicability, however, are hampered by the complexity 
of 3D systems, that add new physical variables for experimental analyses. In order to account for 
these additional features and improve the study of 3D cultures, we here present SALSA (ScAffoLd 
SimulAtor), a general purpose computational tool that can simulate the behavior of a population 
of cells cultured in a 3D scaffold. This software allows for the complete customization of both the 
polymeric template structure and the cell population behavior and characteristics. In the following 
the technical description of SALSA will be presented, together with its validation and an example of 
how it could be used to optimize the experimental analysis of two breast cancer cell lines cultured in 
collagen scaffolds. This work contributes to the growing field of integrated in-silico/in-vitro analysis 
of biological systems, which have great potential for the study of complex cell population behaviours 
and could lead to improve and facilitate the effectiveness and diffusion of 3D cell culture models.

Cell culture is currently experiencing a fundamental shift from traditional 2D to 3D systems, that are more real-
istic representations of a biological tissue. These novel approaches, that integrate important aspects of cellular 
habitat, such as a non-uniform microenvironment, more complex diffusion processes and cell interactions with 
local physical features of the synthetic extracellular matrix (ECM), are bound to provide fundamental insights 
into cell biology, generating a closer approximation of reality as shown in1–4.

However, in order for 3D systems to become the standard in-vitro cell culturing technique, several issues still 
need to be addressed. In fact, the increased complexity in structural properties is, at the same time, the added 
value of these experimental systems and the limitation in optimising biological assays and protocols originally 
standardised for cells grown on 2D plastic surfaces. This complicates experimental design and data collection. 
While innovative 3D native assays are being developed5,6, computational models can complement the wet-lab 
experimental activity and help to address some of the limitations of 3D culture settings7–9.

The mathematical formalization of complex behaviours, however, is often maintained separate from the 
experimental analysis. As an example there are multiple models describing cancer-related cellular processes10–17 
and the effect of antineoplastic therapies18–24 but most of them are presented as theoretical frameworks that do 
not aim at driving the experimental activity.

To integrate this important functionality we developed a general purpose scaffold simulator named SALSA 
that can be programmed to reproduce the behaviour of a population of arbitrary cells, grown in 3D scaffolds of 
tunable size and material. It relies on a custom hybrid continuous/discrete framework that is particularly ben-
eficial for the representation of complex multicellular systems, and their interactions with the environment25 
and grants more flexibility (highly customizable cell behaviour, interaction with the environment and resources 
utilization) than available agent-based simulators (e.g. NetLogo26, CompuCell3D27. SALSA combines a discrete 
model conceptually similar to Norton et al.28 and a continuous one akin to Cowan et al.29 to describe different 
aspects of the considered system. The former is used to model cells, their status and position within the scaf-
fold, while the latter allows for the accurate simulation of continuous quantities (i.e. oxygen, glucose, Young’s 
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modulus). This choice effectively realizes a simplified finite element / agent based combined model30–32 that 
allows for the representation of the main features of the in-vitro setup while limiting the computational cost.

Additionally SALSA was developed so as to incapsulate all the characteristics of the experimental model 
in configuration files separate from the simulator code. This choice minimizes the programming knowledge 
required to use it, thus making SALSA accessible to a larger user base than other available simulators (Chaste33, 
PhysiCell34, BioFVM35).

The most relevant feature of this system, however is its strong correlation with the experimental analysis. 
Indeed most of the parameters were inferred from in-vitro data and an extensive validation was conducted. As 
such, SALSA could be potentially used to pilot further experimental analyses, that could benefit from the pos-
sibility of testing in-silico a number of distinct configurations to identify the most suited for each application. 
Wet-lab results can conversely be used to improve the accuracy and reliability of the model. This integrated 
approach has been shown to be successful in a wide range of applications, as in36–38 . Moreover, opposite to most 
in-vitro assays, SALSA monitors individual virtual cells, allowing to study their distinct behaviours.

In the following a complete description of SALSA will be provided, together with its validation against in vitro 
experiments. For these assays two populations of human breast cancer cell lines (MCF7 and MDA-MB-231) 
that display different phenotypes, were grown in collagen scaffolds. Luminal subtype MCF7 cells are associated 
with slow growth and low motility while the basal-like MDA-MB-231 cells are connected with invasive disease 
and poor prognosis39.

SALSA was developed to keep track of both the cellular (i.e. position, status and behaviour) and the micro-
environmental (i.e. distribution of glucose and oxygen, mechanical properties of the ECM) relevant features . 
This allows for a more comprehensive analysis of the system of interest and to infer variables difficult to access 
in-vitro, like the spatial distribution of the cells within the 3D environment, the associated local changes in glu-
cose and oxygen concentrations and the interactions among the cells and the ECM. These variables provide a 
much more accurate description of the studied system and offer useful insights for understanding its functioning.

These potentialities will be here exploited to optimize in-silico the initial population cardinality, i.e. the ideal 
number of cells to seed in a scaffold to maintain a uniformly distributed population throughout the experiment.

Results
Validation of SALSA.  The validation of SALSA consisted in comparing, over time, a) the cell density meas-
ured in-vitro to the results obtained with the in-silico simulation, and b) the ability of the virtual cells of induc-
ing a stiffening of the ECM comparable to what observed experimentally. This latter comparison is particularly 
important for the considered experimental system, where the two compared cell lines were shown to behave 
differently39,40. MDA-MB-231, in particular, demonstrated to be able to increase the compressive Young’s modu-
lus of the scaffold by reorganizing its fibers and increasing their density.

As detailed in the methods section, the cell density was defined as the number of living cells with respect to the 
initial population and it was evaluated for the two different breast cancer cell lines over a period of 10 days. Every 
condition was simulated 50 times and the average results are shown in Fig. 1a,b. as square markers, while the 
data obtained in-vitro are shown as circles. A good agreement between the two datasets is observed throughout 
the whole considered time frame. Indeed, the distribution of the mean average percentage error (MAPE, Eq. 1, 
Fig. 1c,d.) was shown to have a median within the experimental variability (22% and 25% for the MDA-MB-231 
and MCF7 cells respectively) despite an initial slightly larger distance among in-silico and in-vitro data, likely 
caused by variability in the efficiency of the in-vitro cell seeding procedure, that was not represented in the model.

The differential behavior of the two cell lines is evident. Epithelial-like MCF7 cells, Fig. 1a, show an initial 
short proliferative period, followed by a rapid decrease in the number of cells that leads, at the end of the 
simulation, to a cellular density that is approximately half the initial one. On the contrary, mesenchymal-like 
MDA-MB-231 cells, in Fig. 1b, proliferate at a nearly constant rate for the first 3 days. Afterwards, the cell den-
sity decreases and reaches at day 10 a value comparable to the initial one. This limited proliferation has been 
observed in other 3D cell culture systems41, where it was associated with the dynamics of diffusion of nutrients 
and oxygen through the matrix.

The differential behavior of the two cell lines is also reflected in their ability of modifying their environment. 
The effect breast cancer cells on the stiffness of collagen scaffolds was previously studied39. Briefly we observed 
that MDA-MB-231 cells can significantly increase its value from 46.9 ± 5.3 to 57.9 ± 7.0 kPa, 10 days after cells 
were put in culture within the scaffolds (Kruskal–Wallis test, p = 10−6). Conversely, MCF-7 cells did not induce 
significant modifications of the scaffold stiffness. This was shown to correlate with the expression of Lysil-Oxydase 
(LOX), an enzyme responsible for collagen cross-linking that is 1,000-fold more expressed in MDA-MB-231 com-
pared with MCF7 cells. Including in SALSA this differential LOX expression leads to the results reported in Fig. 2.

Simulated data are again able to consistently replicate these experimental results (Kruskal–Wallis test 
p = 10−20), the only difference being the variability obtained at day 10 for the scaffolds where MDA-MB-231 cells 
were cultured (Fig. 2b). This higher 95% confidence interval is caused by an inherent difference between the 
two datasets. Indeed in-vitro variability was obtained as the 95% confidence interval of the average stiffness of 
different scaffolds, while in-silico it was computed as the dispersion of the Young’s moduli distribution, obtained 
combining all the available data. Using the former approach to elaborate the in-silico data leads to a 15-fold 
reduction in variability that however does not account for inter-scaffold differences. As such the latter approach, 

(1)MAPE =
|silico− vitro|

vitro
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can be considered to be more accurate, especially for MDA-MB-231 cells that exert a significant activity on their 
environment.

This analysis was completed by the study of how the main parameters of the model influence the results shown 
in Figs. 1 and 2. This was obtained through a global sensitivity analysis, fully detailed in the methods section, 
that allowed to compute the first order and total Sobol indices for each parameter (a, b, c, d, e, UGlu, UO2, UYM, s) 
listed inTable 1 (see also Fig. 3 and Supplementary Figs. 6, 7 and 8) and the associated temporal evolution of the 
standard deviation (Supplementary Fig. 9). First order and total Sobol indices were shown to be approximately 
equal showing that the model’s parameters have minimal interactions. The most relevant change pertains the 
behavioural parameter c, that drives the transition between proliferation and quiescency and its role in the 
determination of the Young’s Modulus. This is likely determined by the central role of proliferant cells in the 
modification of the surrogate matrix properties.

Limiting the analysis to the first order indices, cell density was shown to be mainly determined by a, c, d, and 
s, albeit with different intensities, while the matrix stiffness was shown to be more influenced by a, b, d, e, UYM 
and s. As described in the supplementary material, some of these parameters were determined from experimental 
data (a, e, s, UY M) while others were computationally optimized (b, c, d). This compromise was necessary due to 
the lack of experimental evidences regarding certain aspects of the model, like the transitions between different 
cell states. We assume that overfitting risk is minimized having extensively used literature data for parameter 
estimation. Moreover only part of the experimental data was used for this purpose. The resulting model was 
indeed able to predict the value of the rest of the experimental results.

Stochasticity, on the other hand, was shown (Supplementary Fig. 9) to progressively increase as the simula-
tion proceeds. This is partly due to the uniform starting condition imposed in our simulations, and is manly 
determined by the probabilistic nature of the rules and the procedures used to update cell status. Environmental 
parameters were shown to dominate behavioural ones when considering the Young’s modulus as output, while 
both classes of parameters equivalently determined cell density.

Figure 1.   Time course of the cell density within the scaffold and concordance between in-silico and in-vitro 
data. In (a) MCF7 cells are considered, while in (b) MDA-MB-231 cells are shown. Both the experimental 
(circles) and the simulated (squares) data are reported as average and standard deviation. For graphical clarity 
only one point every 10 h is reported for the in-silico results. Panels (c) and (d) report the distribution of the 
mean average percentage error (MAPE) for MCF7 and MDA-MB-231 cells respectively.
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In the following sections, we will present the use of this computational tool to study important aspects of 3D 
cultures that are difficult to assess experimentally, such as the relationship between cell localization and viabil-
ity, the local matrix stiffness and the distribution of oxygen and glucose within the scaffold. Finally an example 
of how SALSA could drive the in-vitro analysis will be shown. The simulation of three alternative initial cell 
densities will be presented and the experimental condition capable of granting sustained growth of the virtual 
population will be identified.

Figure 2.   Effect of the two cell populations over scaffold’s stiffness. (a) MCF7 cells do not modify significantly 
their environment, thus the Young’s modulus is comparable when measured at day 0 and 10. (b) MDA-MB-231 
cells, on the other hand, increase the stiffness of the scaffold. Data are reported as average and 95% confidence 
interval. In this case the error (c and d), computed as in 1 is much lower and coherent with the variability 
measured in-vitro.

Table 1.   Parameters considered for the global sensitivity analysis. See the supplementary material for a more 
extensive explanation.

Parameter Description

a Multiplicative coefficient of the doubling rate of the proliferant cells and of the degradation of the dead cells

b Multiplicative coefficient of the rate of transition between quiescency and proliferation

c Multiplicative coefficient of the rate of cell death

d Multiplicative coefficient of the rate of transition between proliferation and quiescency

e Multiplicative coefficient of the migration rate

UGlu Amount of glucose consumed by each cell in the time unit

UO2 Amount of oxygen consumed by each cell in the time unit

UYM Effect exerted by each cell on the matrix in the time uni

s Scale factor between the oxygen and glucose consumed by quiescent and proliferant cells
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Study of local variables using SALSA.  A fundamental characteristic of 3D cultures, that makes them 
more physiologically representative than their 2D counterpart, is that distinct locations within the scaffold dis-
play differential microenvironments due to the presence of a nutrients gradient from the external layer to the 
inner scaffold core. Measuring these differences in-vitro, however, is particularly challenging due to the lack of 
high resolution quantitative techniques.

Figure 3.   Analysis of the first order Sobol indices on the two considered outputs (cell density, Young’s 
modulus). Behavioural (a–e) and environmental (UGlu, UO2, UYM, s) parameters were analysed separately.
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SALSA can be used to address these limitations as it tracks the location of each cell and the distributions of 
oxygen, glucose and Young’s modulus with spatial and temporal resolutions of 1 mm and 1 h respectively. This 
information can be used to complement the experimental analysis and retrieve valuable information difficult 
to obtain otherwise. This concept is exemplified in Fig. 4, where the results of these simulations are represented 
highlighting the effect of the distance from the center of the scaffold on each variable. For the simulated results 
the Manhattan distance was substituted to the euclidean one, since the cubic lattice used for the simulation is 
not radially symmetric.

When considering cell density, the color scale represents the fraction of living cells normalized with respect to 
the cardinality of the initial population. Although relatively uniform at the beginning of the simulation, this value 
rapidly decreases in the scaffold core (∆ center < 6 mm) while it stabilizes (MCF7) or increases (MDA-MB-231) 
in the most peripherical regions. Albeit coherent with the global results presented in Fig. 1 this prediction points 
at the existence of two radically different micro-environments within the 3D structure, one compatible with cell 
growth and survival and another associated with population collapse. Imaging of a scaffold section with a con-
focal microscope confirmed this result in-vitro40. Indeed the more aggressive MDA-MB-231 cells were capable 
of migrating toward more favourable environments for survival, while MCF7 cells maintained their original 
approximately uniform distribution and were unable to proliferate effectively.

The high mortality rate in the scaffold core seems to be connected with glucose availability, as the initial 
(24–48 h) decrease in the average concentration of this nutrient in the core of the scaffold is synchronized with 
cell density reduction (Fig. 4). Notably, despite a comparable reduction in glucose level, MDA-MB-231 cells in 
the external layers of the scaffold are predicted to be in the proliferative status. Their proximity to nutrient and 
oxygen rich medium is a plausible explanation for this predicted behaviour.

Simulated oxygen levels don’t decrease prominently at the beginning of the simulation. Their lowest concen-
trations were registered for the MDA-MB-231 cell line toward the end of the experiment. This might be connected 
with both the higher diffusivity (more than fourfold) and the lower cell uptake (∼ 104) of this molecule, when 
compared to glucose. The consequential reduced abruptness in the drop of oxygen concentration might reduce 
the impact of this variable on cell behaviour.

Finally the average simulated Young’s modulus displays two different behaviours for MCF7 and MDA-MB-231 
cells. In the former there is no clear difference with respect to the initial condition, while the latter exhibit a 
dependence on the distance from the center of the scaffold similar to cell density distribution. Indeed a 10% 
difference in stiffness between the more rigid external shell and the softer core is predicted for MDA-MB-231 at 
the end of the simulation. This result suggests that these cells might generate an anisotropic material with more 
complex mechanical properties and behaviour than the initial structure.

The increased resolution granted by SALSA simulations was here shown to be potentially instrumental for 
the study of the complex feedback loops that govern the interaction between the cells and their environment, as 
the simplified dynamics and the immediate access to all the variables of interest could aid the optimization of 
the experimental setting and the interpretation of population-level results.

Figure 4.   Evaluation of the influence of the distance from the scaffold center on the simulated variables. The 
color scale in the heatmaps represents the fraction of living cells normalized with respect to the cardinality of the 
initial population (cell density) or the average value of a specific variable (oxygen and glucose concentrations, 
Young’s modulus). A bilinear interpolation has been applied. The red vertical bands visible in the glucose 
concentration panels correspond to media changes and thus to the replenishing of glucose to its original 
concentration in the cell culture media.
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Study of impact of differential initial population cardinality.  The analysis of the SALSA simula-
tions described in the previous section highlights how an initial density of 5 M cells might not be ideal, as it was 
associated with non-viable conditions in the innermost part of the virtual scaffold. To test if a different initial 
population density could increase the uniformity of cell distribution and stiffness we simulated the same experi-
ment considering starting populations of either 625 K, 1.25 M or 2.5 M cells. The results of this in-silico analysis 
are reported in Figs. 5 and 6, for MCF7 and MDA-MB-231 cell lines respectively.

In these simulations, a lower initial cell density importantly reduced the glucose depletion in the core region 
at the beginning of the experiment, especially when considering starting populations of 625 K and 1.25 M cells. 
This was associated with a more pronounced and uniform increase in cell density. A similar distribution was 
also observed in the simulated scaffold stiffness, where starting populations with fewer than 1.25 M cells were 
shown to be associated with a low intrascaffold variability (5% at most).

Figure 5.   MCF7 cells. Analysis of the role of initial population cardinality on the simulated variables as a 
function of the distance from the scaffold center. The color scale are defined as in Fig. 4.

Figure 6.   MDA-MB-231 cells. Analysis of the role of initial population cardinality on the simulated variables as 
a function of the distance from the scaffold center. The color scale are defined as in Fig. 4.
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These predicted features are valuable drivers for the design of in-vitro 3D culture protocols, where more 
homogeneous cell populations are expected to reduce the inter-experimental variability and to increase the sig-
nificance of outcome. To confirm these results, we used confocal microscopy for the imaging of the cell spatial 
distribution within the whole scaffold.

The initial seeding of 5 M MDA-MB-231 cells determined an edge region significantly more populated than 
the core, after 7 days of culture40, while an initial concentration of 1 M cells was associated with a more homoge-
neous cell distribution within the scaffold without statistically-significant differences observed over time between 
core and edge regions (Supplementary Fig. 10).

Additionally, a further analysis of our simulated data revealed that smaller initial cell populations, although 
being unable to generate the cell densities obtained seeding 5 M cells, achieved final cardinalities that were almost 
independent from the initial condition (Fig. 7a,b), that is coherent with the experimental results shown in Bitar 
et al. (2008)42. Room availability within the scaffold appears not to be the reason for this result, that is likely to 
be rather determined by the establishment of an equilibrium between cellular growth and nutrients availability.

Normalizing with respect to the initial population (Fig. 7c,d) highlights how lower population densities are 
associated with a more pronounced growth and generate populations that can be sustained by the system for 
the entire experiment.

The overall results of this section, while mainly qualitative and limited to cell density, show that an initial 
population of 625 K cells could be the best tradeoff between the amount of living cells and a homogeneous distri-
bution within the scaffold at the end of the experiment. This is also supported by other experimental works43–45 
that set the initial population cardinality between 300 K and 1 M cells.

Discussion
In this paper we have presented SALSA, a general purpose computational tool that can be used to simulate sig-
nificant features (e.g. proliferation and survival) of cell populations growing in 3D polymeric scaffolds, together 
with ECM inherent stiffness. The integrated discrete/continuous cellular automaton formalism chosen for this 
computational tool represents an effective compromise between accuracy and computational cost. Indeed, it 
corresponds to a simplified version of an agent-based/ finite element combined model30–32 that, having a lower 

Figure 7.   Analysis of the influence of the initial population cardinality on the number of live cells in the 
scaffold. In (a) the average number of cells (and 95% confidence intervals) obtained for the MCF7 cell line is 
shown, while (b) reports the same data for the MDA-MB-231 population. In panels (c) and (d) the same data in 
(a) and (b), normalized with respect to the initial population are plotted.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12976  | https://doi.org/10.1038/s41598-020-69862-7

www.nature.com/scientificreports/

spatial resolution, allows for the effective representation of the entire scaffold. This is particularly important as 
SALSA was developed to fully integrate with the experimental analysis that often results in global measurements 
across the whole 3D culture. An important limitation of this approach, however, is the need to reduce the size 
of the simulated population by a scale factor, computed to maintain the same initial relative occupancy of the 
scaffold (see methods section). This results in the aggregation of multiple biological cells in a single entity.

Within this work, we have shown how the proposed method makes it possible to study how factors like the 
distance from the center of the scaffold affect macroscopic properties like cell viability. This concept is exemplified 
in Fig. 4 where the analysis of 100 simulations identified the external layer of the scaffold as the most favourable 
environment for cell survival. Additionally the reduced availability of nutrients and oxygen, due to cell consump-
tion together with the finite diffusion velocity of these molecules, were predicted being likely responsible for the 
uneven final cell distribution. Simulated data also point at glucose as a more critical environmental variable in 
determining scaffold core cell depletion.

SALSA can also be used to infer the behaviour of the 3D cell culture in untested conditions. This feature was 
here exploited to evaluate the effect of different initial population cardinalities on the dynamic evolution of cell 
density, with the aim of improving scaffold occupancy and reducing cell death (Fig. 7).

Another important characteristic of this model is the implicit integration of local interactions. Since this 
interplay between cells and ECM has a fundamental role in cell biology46–48, its intrinsic formalisation in cellular 
automata greatly improves the usefulness of the model and its ability of effectively reproduce the behaviour of 
biological systems of interest. This aspect is here exploited to represent the progressive scaffold stiffening caused 
by cell activity (Figs. 2, 4, 5, 6). Indeed this process was modelled as a local operation making proliferant cells 
capable of altering the Young’s modulus of their entire neighbourhood and thus affect the behaviour of other 
cells in their microenvironment.

The direct integration of in-silico and in-vitro results is another fundamental advantage of using cellular 
automata and their accurate representation of spatial environment. Indeed while theoretically less sound than 
other approaches (i.e. partial differential equations), the results obtained with this method are readily interpret-
able and could have a direct repercussion on the experimental analysis. Specific outputs of SALSA were shown 
(Figs. 1, 2) to be coherent with wet-lab generated results, opening to the potential of using this software to com-
plement, and possibly substitute, the experimental study. As an example, the opportunity to efficiently carry out 
multiple simulations in a short time allows to screen a wide range of possible configurations of an experimental 
protocol, helping to define elements such as the time-points at which to carry out specific assays and/or the 
environmental conditions better suited for the biological process to investigate.

This strategy could also be used to identify the most interesting hypotheses to be tested in the lab. This 
integrated in-silico and in-vitro analysis is expected to bring significant advantages both in term of resources 
optimization (time and costs) and scientific impact, since the more efficient planning is likely going to lead to 
meaningful results in a shorter time.

Beside being able to replicate experimental data, SALSA appears able to infer, with high temporal (1 h) and 
spatial (1 mm) resolution, variables not readily available experimentally. In particular, how nutrients and oxygen 
availability affects cells according to their position within the scaffold could be predicted (Figs. 4, 5, 6) without 
the need of time consuming in-vitro analyses. These results were fundamental for hypothesizing the cause of 
cell death in the initial experiment and identify which aspect of the experimental protocol could be changed to 
address this issue. This feature sets SALSA apart from other relevant hybrid models in cancer research15,22 that 
mostly rely on theoretical models that are more difficult to incorporate with experimental analysis.

Lowering the initial cell density effectively reduced inter-scaffold variability although the central layers are 
still less vital, when compared to the external ones. The use of a perfusion bioreactor could potentially offset this 
difference, as dynamic culture conditions could increase oxygen and glucose levels within the scaffold, through 
active diffusion creating more favourable conditions and potentially allowing for cell growth in the inner layers. 
Within this context SALSA could be used to optimise flux velocity and initial population cardinality according 
to the experimental needs.

Additionally the high resolution of this software, that gives access to the distribution of several variables 
within the scaffold (e.g. cell status, nutrients and oxygen concentrations, Young’s Modulus) provides with the 
opportunity of quantifying phenotypic variability with higher accuracy, with respect to widely used in-vitro 
techniques. These generally evaluate only population averages and how these values change among different 
populations. This approach underestimates population diversity, as higher intra- versus inter-scaffold variability 
has to be expected. This concept is exemplified in Fig. 2, where the standard deviation computed from the simu-
lated data is 15-fold higher than the experimentally measured value. Increasing the spatial resolution of in-vitro 
experiments, however, is technically very challenging, as it often requires the use of complex microscopy setups 
and the destruction of the sample (e.g. staining on paraffin-embedded slices). Computational approaches, such 
as the one here presented, could overcome these limitations, coupling standard in-vitro assays with an in-silico 
analysis capable of providing a more complete and exhaustive description of the system.

The results here presented show how combining experimental analysis and computational simulations could 
improve the study of complex 3D culture systems, providing scientists with more complete information and 
with tools for experimental conditions screening and optimization. Being entirely programmable, SALSA is a 
particularly innovative contribution, that could promote the diffusion and application of this integrated approach 
to the study of complex biological systems and could be determinant for the establishment of 3D culture systems 
as a standard, superseding traditional monolayer models. To this aim SALSA is released as a freeware software 
(https​://www.mcben​g.it/en/categ​ory/softw​are.html) and is amenable to several improvements.

Among them a non-random seeding mode would support the simulation of other 3D cell culture models 
(e.g. multicellular aggregates), while specific cell–cell communication mechanisms (i.e. direct interaction among 
neighbours, soluble factors) and cell–environment interactions (e.g. ECM degradation/remodeling, response to 

https://www.mcbeng.it/en/category/software.html
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mechanical stresses) would increase the accuracy and versatility of this tool. The most relevant upgrade, however, 
would be the possibility of using SALSA to simulate pharmacological treatments.

This aspect could be implemented with minimal modifications, as the continuous variables modeling already 
in place could be exploited to simulate the dynamic evolution of drug concentrations and standard pharmacoki-
netic/pharmacodynamic data could inform the parameter selection procedure. This framework well adapts to a 
number of anti-cancer treatments (e.g. chemotherapy, target therapy, combination therapy) that rely on soluble 
factors. Additionally an ad-hoc function could be added to solve the linear Boltzmann transport equations and 
thus introduce the possibility of simulating radiotherapy.

As SALSA is particularly suited for the in-silico optimization of the experimental conditions, this new feature 
has important potential applications both for the development of new pharmacological agents, or their repurpos-
ing, and for the prediction of patient response. These are key aspects of in-silico medicine, a new discipline that 
aims at improving treatment effectiveness and optimizing the drug development process through the extensive 
application of computational models. The framework here described has several advantages in this regard, being 
freely available, programmable and seamlessly integrable with in-vitro analysis.

Methods
SALSA.  SALSA is a computational tool for the simulation of 3D cell cultures in polymeric scaffolds. It uses a 
hybrid discrete/continuous cellular automaton to accurately describe the system, while containing the complex-
ity and the computational cost. A 3D cubic lattice represents the main structure of the model and its size and 
resolution can be adjusted to fit the specific application (see the supplementary material for a sensitivity analysis 
of these parameters). This matrix is filled with integer values to represent the cells, their status and position 
within the scaffold, while real numbers describe the scaffold’s Young’s modulus and the distributions of glucose 
and oxygen. This simplified agent-based/finite element model can be programmed to describe different types 
of cells (e.g. dead, quiescent proliferant) and their interactions with the environment. SALSA rules are the main 
tool to model these aspects. They follow the syntax in Eq. (2) where IDrule is an index univocally identifying each 
rule and brackets delimitate optional terms.

SALSA rules can be divided in behavioural and environmental. While they both follow the same structural 
pattern (Eq. (2)), the former describe changes in cell status and macroscopic behaviours (e.g. duplication, migra-
tion, cell death) while the latter model the interaction with the environment. These differences provide alternative 
meanings for the A, B, C and D terms, as detailed in Table 2.

This information is provided, together with the characteristics of the scaffold (Young’s modulus, the length 
of its side and resolution), the initial condition (total number of cells and the percentage prevalence of each cell 
type) and the experimental specifications (length, volume and frequency of media change) in the configuration 
file that is loaded at the beginning of the simulation (Fig. 8). This organization effectively separates the definition 
of the characteristics of the system from its simulation, thus improving its generality and usability.

(2)IDrule = A → B(+C),D

Table 2.   Definition of each term in Eq. (2) for both the behavioural and environmental rules.

Term Behavioural rule Environmental rule

A ID of the cell type for which that reaction is available ID of the cell type for which that reaction is available

B ID of the cell type resulting from the execution of that rule Result of the interaction, i.e. amount of nutrients/oxygen consumed, change in stiff-
ness

C Optional. Additional ID of the cell type resulting from the execution of that rule. 
Used to model cell doubling and migration Not present

D
Probability of the reaction. This can be a function of any combination of the variables 
reported in Table 3, making it possible to simulate complex dynamics and describe 
realistic cell behaviours

Tag identifying the specific interaction modeled. “environment (Glc)”, “environment 
(O2)” and “environment (YM)” are currently available. Use the variable “U” to set 
glucose and oxygen consumption to reference values (glucose uptake: 16.7 10−12 g/
cell/h49, oxygen uptake: 2.93 10−15 g/cell/h50

Table 3.   Variables that can be used to define the probability of occurrence of each rule.

Variable Note

TIME Current iteration divided by the total simulation length

TD Iteration at which the current cell die

Glc Local glucose level divided by its concentration in the media

O2 Local oxygen level divided by its concentration in the incubator

#C Number of cells of type # divided by the the maximum population cardinalit

AGE Cell age divided by the current iteratio

TLD Number of iterations since the last division of the current cell divided by the current iteration

YM Local Young’s modulus divided by the initial scaffold stiffness
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As shown in Fig. 8, each simulation starts with the setting of the initial conditions (e.g. scaffold properties, 
number of cells and their position). This includes the definition of a scale factor between the experimental and 
simulated population. Indeed, it is generally not possible to simulate the same number of cells used for an in-vitro 
experiment. Thus, the volume of the average eukaryotic cell (4.2 10−6 mm351 together with the initial population 
cardinality and the scaffold dimensions, are used to compute the fraction of scaffold initially occupied by the 
cells in a wet-lab experiment of interest. This number is then multiplied by the total capacity (i.e. resolution) 
of the in-silico matrix to determine the starting number of virtual cells. The ratio between the two populations 
(in-vitro and in-silico) is then used to adjust the nutrients and oxygen consumption in the environmental rules. 
Although not entirely accurate, this strategy maintains realistic glucose and oxygen dynamics while optimizing 
the computational cost. Obviously, if sufficient computational resources are available, increasing scaffold resolu-
tion will result in a larger in-silico population and thus in a reduced gap with the corresponding in-vitro assay 
(see the Supplementary material for a more detailed analysis of the dependence of the computational time on 
the configuration parameters).

Within each iteration 2nd Fick’s law (Eq. 3) is solved to update the distribution of glucose and oxygen (C). 
In this work we set the diffusion coefficients (D) of the molecules to those measured in water52,53, since it was 
showed54 that the scaffold structure does not influence this process.

Culture medium substitution is modelled resetting, in every point of the scaffold, the glucose concentration 
to the starting value.

The status of every cell in the population is then updated, through the execution of all the environmental 
rules and one transition rule, chosen according to its probability. This procedure is repeated for each iteration. 
At the end of the simulation the results are saved in structured text files.

SALSA parameters and simulation.  For this study SALSA was used to simulate the behaviour of two 
human breast cancer cell lines (MCF-7 and MDA-MB-231) grown in collagen scaffolds during 10 days. The same 
cell types (dead, quiescent and proliferant) and rules were used to simulate both systems, while the probabilities 
of specific reactions. i.e. their likelihood of occurrence, were adjusted to account for the differences between the 
two populations.

In particular, all cell types can either maintain their current status, or a) duplicate, migrate, become quiescent 
when proliferant, b) proceed toward another state when quiescent, or c) degrade when dead. The coefficients in 
Table 4, (that multiply the corresponding behavioural rules) were used to differentiate the behaviour of the two 
cell lines. These values were determined combining experimental results obtained for the specific cell model 
considered in this work (difference in proliferation, migration and LOX production between MCF7 and MDA-
MB-231), evidences from the scientific literature55,56 and computational optimization. Overall they favour cell 
duplication, migration and transition toward the proliferative state in the more aggressive MDA-MB-231 cell line.

Additionally a differential expression of the Lysyl oxidase enzyme (LOX) is modelled in the two cell lines. 
This enzyme, that is responsible for collagen cross-linking, was shown in39 to be connected with the ability of 
the cells to remodel their local environment, increasing the stiffness of the surrounding ECM. A more extensive 
description of the rules used in this work, and of the corresponding probability functions and parameters, is 
available in the Supplementary Material.

The system presented in57 was considered to model the characteristics of the scaffolds. In particular the initial 
ECM stiffness, specified through its Young’s modulus, was set to 47 kPa and an initial population equivalent to 

(3)
δC

δt
= D�C

Figure 8.   Flowchart describing the main steps of a SALSA simulation.

Table 4.   Differences between the probability of occurrence of the behaviour rules for the two considered cell 
lines (MCF7 and MDA-MB-231).

MCF 7 MDA-MB-231 References

Duplication–degradation 0.38 0.44 18,55

Transition from quiescent to proliferant state 0.005 0.02 –

Migration 0.008 0.01 56

LOX expression 0.000003 0.003 39
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5 M proliferant cells (see previous section) was simulated during 10 days in DMEM changed every 24 h (time 
resolution 1 h).

Some simplifications were also added. The cylindrical shape of the scaffold was substituted with a cubic one, 
that better adapts to the rectangular grid of the model and allows for an easier definition of important features 
of SALSA (e.g. each cell’s neighbourhood). This choice allows to preserve the generality of the framework, easily 
adapting to different scaffold types and shapes, while maintaining strong ties with the dimensions of the in-vitro 
structure (side length 1 cm, resolution 10 layers).

Global sensitivity analysis.  The polynomial chaos expansion method (as implemented in Uncertainpy58 
was used to conduct a global sensitivity analysis of our model. The reference values for all the parameters were 
set as detailed in the supplementary material and a variation of 40% (uniformly distributed and centered on the 
reference value) was considered. This study allowed to determine both how each parameter (Table 1) influences 
the output variables (cell density and average Young’s modulus) and how stochasticity propagates throughout 
the model. The former consisted in the determination of the first order and total Sobol indices while the latter 
produced a representation of how standard deviation varies with the considered parameters throughout the 
simulation.

Behavioural (a, b, c, d, e) and environmental (UGlu, UO2, UYM, s) parameters were considered separately to 
contain the memory requirements of the analysis. This choice is expected to have limited effect on the results, 
due to the negligible difference between total and first order Sobol indices.

Scaffold preparation.  Collagen scaffolds were synthesised and characterised as described in57 using chem-
icals purchased from Sigma Aldrich. Briefly, bovine type I collagen was suspended in 1% acetate buffer (pH 3.5) 
and adjusted to pH 5.5 with 1 M NaOH. After three washes with deionised water, collagen was cross-linked in 
an aqueous solution of 2.5 mM 1,4-butanediol diglycidyl ether (BDDGE) for 24 h.

Collagen was again washed with deionised water, casted in Teflon moulds (9 mm diameter) and freeze dried. 
An optimised freezing and heating ramp was used to obtain the desired pore size and porosity that were char-
acterised through scanning electron microscopy, water and ethanol infiltration methods. Mechanical testing of 
the scaffolds was performed as previously described in39.

3D cell culture.  The human breast cancer cell lines used in this study were both obtained from the Ameri-
can Type Culture Collection (ATCC) and cultured in DMEM supplemented with 10% fetal bovine serum, 1% 
penicillin–streptomycin and 1% glutamine (PAA) at 37 oC in a 5% CO2 atmosphere. Cells were seeded on top of 
dry sterile scaffolds and left to adhere during 24 h before the beginning of the experiment. Medium was replaced 
every 24 h.

Cell density evaluation.  The number of cells that populated the scaffolds was assessed over time quantify-
ing the total amount of DNA using the PicoGreen dsDNA assay (Invitrogen). Briefly, DNA was extracted from 
the scaffolds using the DNeasy Blood and Tissue Kit (Qiagen) and then 100 μL of DNA mixture were added to 
100 μL of PicoGreen reagent working solution. Fluorescence was measured with a microplate reader (FLUOstar 
OPTIMA BMG LABTECH) with excitation and emission wavelengths at 480 and 520 nm, respectively. The con-
version factor of 7.7 pg DNA/cell was used to determine the total number of cells. A cytometry analysis allowed 
the quantification of the percentage of viable cells. Cells were harvested from the scaffold by enzymatic digestion 
with Collagenase type I (Merck Millipore), and stained with 50 μM calcein AM and 2 mM ethidium homodi-
mer-1 (Invitrogen). The cell suspension was assayed using BD FACSCanto (Beckmann Coulter).

Finally, cell density was calculated as the fraction of living cells within the scaffold normalised with respect 
to the cardinality of the initial population. The same calculation was applied for the in-silico data, considering 
the sum of proliferating and quiescent cells as viable cells.

Confocal microscopy.  Confocal images of the cells were acquired as in40, using an A1 laser confocal 
microscope (Nikon Corporation, Tokyo, Japan) and the NIS Elements software (Nikon Corporation, Tokyo, 
Japan). Samples were fixed with 4% paraformaldehyde at room temperature and stained with 10 μ M/ml DRAQ5 
(ImmunoChemistry Technology, Bloomington, MN, USA).

Statistical analysis.  The concordance between in-silico simulations and in-vitro data was measured com-
puting the mean average percentage error (MAPE) at each available time point (1, 3, 7, 10 days) for each simula-
tion independently. This approach was applied to both the cell density and the stiffness data.

Results are reported as mean and 95% confidence intervals, unless stated otherwise, since most of the pre-
sented data are not normally distributed (Shapiro–Wilk test, p = 0.05). As such, when independence between 
two conditions was evaluated, the Kruskal–Wallis test was used.
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