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A cluster of metabolism‑related 
genes predict prognosis 
and progression of clear cell renal 
cell carcinoma
Mei Liu1,6, Qiufeng Pan2,6, Ruihai Xiao3,6, Yi Yu4, Wenbao Lu5 & Longwang Wang2*

Clear cell renal cell carcinoma (ccRCC) has long been considered as a metabolic disease characterized 
by metabolic reprogramming due to the abnormal accumulation of lipid droplets in the cytoplasm. 
However, the prognostic value of metabolism-related genes in ccRCC remains unclear. In our 
study, we investigated the associations between metabolism-related gene profile and prognosis of 
ccRCC patients in the Cancer Genome Atlas (TCGA) database. Importantly, we first constructed a 
metabolism-related prognostic model based on ten genes (ALDH6A1, FBP1, HAO2, TYMP, PSAT1, 
IL4I1, P4HA3, HK3, CPT1B, and CYP26A1) using Lasso cox regression analysis. The Kaplan–Meier 
analysis revealed that our model efficiently predicts prognosis in TCGA_KIRC Cohort and the clinical 
proteomic tumor analysis consortium (CPTAC_ccRCC) Cohort. Using time-dependent ROC analysis, we 
showed the model has optimal performance in predicting long-term survival. Besides, the multivariate 
Cox regression analysis demonstrated our model is an independent prognostic factor. The risk score 
calculated for each patient was significantly associated with various clinicopathological parameters. 
Notably, the gene set enrichment analysis indicated that fatty acid metabolism was enriched 
considerably in low-risk patients. In contrast, the high-risk patients were more associated with non-
metabolic pathways. In summary, our study provides novel insight into metabolism-related genes’ 
roles in ccRCC.

Clear cell renal cell carcinoma (ccRCC), the most common renal cell carcinoma (RCC) subtype, exhibits global 
health issues due to its growing incidence, extreme heterogeneity among patients and high mortality. It is esti-
mated that 90% of the ccRCC patients died of tumor-specific recurrence and metastasis1. Regarding this, consid-
erable research efforts have focused on developing a model to predict the prognosis of ccRCC patients; however, 
these prognosis tools still require improvements to attain a high degree of accuracy2–4. Therefore, novel and robust 
prognostic models are urgently needed in clinical practice.

Metabolism is fundamental in maintaining all the biological processes necessary for life5. Tumors are typi-
fied by metabolic abnormalities as proliferating cells rewire their mechanism to sustain growth6. Notably, the 
rapidly proliferating cells in malignancies take up abundant glucose and glutamine to generate the proteins, 
lipids, and nucleic acids to support cell growth7. RCC is regarded as a metabolic disease with diabetes, obesity, 
and atherosclerosis considered as the risk factors8,9. CcRCC is a unique RCC subtypes based on the abnormally 
accumulated lipid droplets in the cytoplasm with research evidence implicating the lipid accumulation in dis-
ease progression10,11. Nevertheless, the underlying mechanism and the prognostic role of these metabolic genes 
remain largely unknown.

In the present study, we screened the differentially expressed metabolism-related genes and evaluated their 
clinical value based on the cancer genome atlas (TCGA) kidney renal clear cell carcinoma (KIRC) cohort. Sub-
sequently, we selected a cluster of metabolism-related genes to construct a prognosis prediction signature using 
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the least absolute shrinkage and selection operator (LASSO) regression algorithm. This signature was further 
validated in the clinical proteomic tumor analysis consortium (CPTAC) database. Moreover, our prognosis pre-
diction could serve as an independent prognostic factor. Importantly, we investigated the underlying mechanism 
using the gene set enrichment analysis (GSEA) database and the Metascape database12.

Results
Construction of a risk signature associated with metabolism.  A total of 105 differentially expressed 
metabolism-related genes were found between normal samples and tumor samples in TCGA_KIRC cohort (adj. 
P < 0.05 and |logFC|> 2). Specifically, 61 genes were downregulated, while 44 genes were upregulated (supple-
mentary Table  1); the corresponding heatmap plot and volcano plot are shown in Fig.  1A,B. After that, we 
identified 12 genes (Fig. 1C) that were significantly associated with the patient’s overall survival (P < 0.001) by 
univariate Cox regression analysis; Lasso Cox regression algorithm was then utilized to screen out 10 genes as 
active covariates in evaluating the risk score for the patients (Fig. 1D–F). The ten genes included in the model 
were Fructose-Bisphosphatase 1 (FBP1), Hydroxyacid Oxidase 2 (HAO2), Phosphoserine Aminotransferase 1 
(PSAT1), Aldehyde Dehydrogenase 6 Family Member A1 (ALDH6A1), Thymidine Phosphorylase (TYMP), 
Interleukin 4 Induced 1 (IL4I1), Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), Hexokinase 3 (HK3), and Car-
nitine Palmitoyltransferase 1B (CPT1B), Cytochrome P450 Family 26 Subfamily A Member 1 (CYP26A1). The 
Kaplan–Meier survivor analysis of the ten genes was plotted based on an online database called “ONCOLNC” 
(https​://www.oncol​nc.org) (supplementary figure 1). The risk score for each patient was calculated as follows: 
− 0.03677*Expression of ALDH6A1-0.00467* Expression of FBP1-0.001642* Expression of HAO2 + 0.001219* 
Expression of TYMP + 0.01105* Expression of PSAT1 + 0.018708* Expression of IL4I1 + 0.020459* Expression of 
P4HA3 + 0.023879*Expression of HK3 + 0.092914* Expression of CPT1B + 0.240626* Expression of CYP26A1. 
We separated patients into high- and low-risk groups based on the median risk score. Heatmap plot was depicted 
to reveal the clinicopathological characteristics between the low-risk and high-risk patients (Fig. 1G). The over-
all survival (OS) of the high-risk group was significantly poorer compared with the low-risk group in TCGA_
KIRC Cohort (P < 0.0001; Fig. 2A). Moreover, this model was further validated in the CPTAC_ccRCC Cohort; 
patients in the low-risk group had a better prognosis than in the high-risk group (P < 0.05; Fig. 2B). The clinical 
characteristics of CPTAC_ccRCC Cohort patients are in supplementary table 2. The area under the curve (AUC) 
for 1-, 3-, and 5-year OS of risk score compared with age, grade, TNM stage, T, M and N were 0.708, 0.731, and 
0.780 respectively (Fig. 2C–E, supplementary figure 2); the AUC for 1-, 3-, and 5-year OS of risk score compared 
with ALDH6A1, FBP1, HAO2, TYMP, PSAT1, IL4I1, P4HA3, HK3, CPT1B, and CYP26A1 were 0.739, 0.720, 
and 0.747 respectively (Fig. 2F–H). Altogether, these results indicated that the ten genes form a potential robust 
prognostic model. Finally, we constructed a predictive nomogram by combing the TNM stage, age, grade, T, M, 
N and the prognostic model (supplementary figure 3).

Independence role of the prognostic model.  First, univariate Cox regression analysis indicated that 
age, grade, stage, T, M, N and risk score were correlated with OS (Fig.  3A). Subsequently, multivariate Cox 
regression analysis adjusted for age, grade, stage, T, M, N and risk score revealed that risk score could serve as an 
independent prognostic factor (P < 0.001, Hazard Ratio:1.849–4.14) (Fig. 3B).

Patients with a higher risk score had a poorer clinical outcome.  The Kaplan–Meier survival analy-
sis was applied to determine OS in different subgroups of patients according to the risk score level. The results 
demonstrated that risk score may be a potential prognostic biomarker for patients with the following character-
istics: aged ≤ 60 or > 60 years old (Fig. 4A,B), Female or Male (Fig. 4C,D), G1 + G2 or G3 + G4 (Fig. 4E,F), Stage 
I + II or Stage III + IV (Fig. 4G,H), T1 + T2 or T3 + T4 (Fig. 4I,J), M0 (Fig. 4K) and N0 (Fig. 4L).

The risk score system was associated with various clinicopathological parameters.  We 
explored the correlation between the risk score and different clinicopathological factors. Chi-square test revealed 
that the risk scores were significantly associated with patients’ gender, histological grade, TNM stage, T stage, N 
stage, M stage and Vital status (Table 1). Furthermore, subgroup analysis confirmed that higher risk scores were 
significantly correlated with higher TNM stage, higher tumor T stage, distant metastasis, lymph node metastasis, 
and higher histologic grade (Fig. 5A–F). 

RT‑qPCR and external validation of expression level.  We used online database to validate the 
expression level of the 10 genes constructing our prognostic model. Consistent with our results, ALDH6A1, 
FBP1, HAO2 and PSAT1 were found to be significantly downregulated in tumor samples compared with normal 
samples in both Oncomine and TIMER database (supplementary figure 3A,B); TYMP, HK3, and P4HA3 were 
found to be significantly overexpressed in tumor samples in both Oncomine and TIMER database, while IL4I1 
and CYP26A1 were found over-expressed only in TIMER database (supplementary figure 4A,B). Meanwhile, 
RT-qPCR assays revealed that ALDH6A1, FBP1, HAO2 and PSAT1 were markedly under-expressed in tumor 
tissues in exceeding 60% cases, and that TYMP, HK3, P4HA3, IL4I1, CYP26A1 and CPT1B were over-expressed 
in tumor tissues in exceeding 70% cases (Fig. 6A–J). Furthermore, we retrieved the HPA database and found 
that the protein expression of ALDH6A1, FBP1 and PSAT1 were downregulated in KIRC; the protein expression 
level of TYMP, P4HA3 and IL4I1 were upregulated in KIRC (Fig. 7).

Functional annotation of 10‑gene signature.  To investigate the potentially underlying mechanism 
between the two risk groups, GSEA was performed in TCGA_KIRC cohort and we found 34 significantly 

https://www.oncolnc.org
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Figure 1.   Identification of a metabolism-related signature by Cox proportional hazards model in TCGA 
cohort. (A,B) Heatmap and Volcano plot of 105 differentially expressed metabolism-related genes. (C) Forrest 
plot of results of the univariate Cox regression analysis (P < 0.001). (D,E) Lasso Cox regression algorithm. (F) 
Coefficient value for each of the 10 active covariates genes (red represents upregulated in tumor, while green 
indicates the downregulated), X-axis represents gene name, and Y-axis represents the coefficient value of the 
model. (G) Heatmap of the 10 genes of the signature based on the risk score value.
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enriched pathway. Top 10 enriched KEGG pathway were shown in Fig.  8A. Fatty-acid metabolism, TGF-
βsignaling pathway, Renal cell carcinoma, Propanoate metabolism and Inositol-phosphate metabolism were 
significantly enriched in low risk group patients. Moreover, differentially expressed genes analysis between low 
risk patients and high risk patients revealed that 96 were downregulated and 400 were upregulated in high 
risk patients (adj. P-value < 0.05 and |logFC|> 2); “Metascape” analysis indicated that top 20 enriched clusters of 
downregulated genes and upregulated genes (Fig. 8B,C; supplementary figure 5).

Discussion
Globally, RCC accounts for more than 2% of neoplasms in humans worldwide with the incidence and mortality 
persistently increasing1. Recently, gene signatures based on specific characteristic-related to predict prognosis 
have become a hotspot in cancer research13–15. In the present study, to the best of our knowledge, we constructed 

Figure 2.   Kaplan–Meier analysis and time-dependent ROC analysis for the 10-gene signature in ccRCC. (A) 
Kaplan–Meier curve with Log-rank test in TCGA_KIRC Cohort. (B) Kaplan–Meier curve with Log-rank test 
in CPTAC_ccRCC Cohort. (C–E) ROC curve of model and clinical characteristics predicting 1-, 3- and 5-year 
survival based on TCGA training set. (F–H) ROC curve of model and single gene predicting 1-, 3- and 5-year 
survival based on TCGA training set.
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the first novel metabolism-related risk signature with the potential application of predicting the prognosis and 
progression of ccRCC.

We identified a novel robust 10-gene metabolic prognostic signature based on the TCGA_KIRC dataset and 
further validated it in CPTAC_ccRCC dataset. Our risk score model could efficiently stratify patients’ survival 
with various clinicopathological parameters and be an independent prognostic factor; moreover, the risk scores 
increased with the patients’ increasing malignancy. Besides, the performance of our model in the prediction of 
the 5-year overall survival was superior to other parameters, indicating that it might facilitate the development 
of a long-term follow-up plan; meantime, the prediction ability of 1-, 3- and 5-years overall survival surpassed a 
single gene. Altogether, these results revealed our 10-gene metabolic prognostic signature has a great potential 
in ccRCC. However, in the future, validating our signature in more independent cohorts is still required.

We performed GSEA analysis to investigate the underlying molecular mechanism of the signature. Notably, 
we found out that fatty acid metabolism was significantly enriched in the low-risk patients, while the high-risk 

Figure 3.   Forrest plot of the univariate and multivariate Cox regression analysis in TCGA_KIRC Cohort. (A) 
The univariate Cox proportional regression analysis. (B) The age, grade, stage, T stage, N stage, M stage and risk 
score were adjusted in our multivariate Cox regression model.
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Figure 4.   Kaplan–Meier analysis of subgroup patients based on risk scores. (A–L). The Kaplan–Meier curve 
revealed the survival of patients was significantly poorer in subgroup patients with high risk scores.

Table 1.   Associations between risk model and clinicopathological parameters of patients.

Parameters

TCGA_KIRC cohort

χ2 P-valueLow risk (n = 254) High risk (n = 253)

Age (years)

 ≤ 60 133 127 0.238 0.626

 > 60 121 126

Gender

Female 150 183 9.912 0.002

Male 104 70

Grade

G1 + G2 147 79 36.433 < 0.001

G3 + G4 107 174

T stage

T1 + T2 193 131 32.196 < 0.001

T3 + T4 61 122

N stage

N0 + Nx 252 239 9.342 0.002

N1 2 14

M stage

M0 + Mx 231 198 15.665  < 0.001

M1 23 55

Stage

I + II 188 118 39.698  < 0.001

III + IV 66 135

Status

Dead 207 138 42.341  < 0.001

Alive 47 115
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patients were more associated with the non-metabolic pathways. Research evidence reveals that abnormal accu-
mulation of lipid droplets plays a crucial role in ccRCC progression16. Our study provided insights by suggesting 
that low-risk patients could benefit more from fatty acid metabolism targeted therapy in the future. Moreover, 
the gene annotation and analysis results revealed that overexpressed genes in the high-risk patients are involved 
in incretin synthesis, secretion, and inactivation, and that the down-regulated genes participate in complement 
and coagulation cascades, metabolism of xenobiotics by cytochrome P450, response to glucose. Hua et al.17 
identified an immune-related risk signature for predicting prognosis of ccRCC, they found that tumors from 
high-risk patients had higher relative abundance of T follicular helper cells, regulatory T cells than low-risk 
patients. Moreover, the time-dependent ROC analysis revealed that the AUC was 0.753, 0.686, and 0.637 at 
1, 3, and 5 years. However, in our study, we extracted a cluster of metabolism-related genes and constructed a 
multi-gene signature, the AUC at 3 and 5 years were 0.731 and 0.780 respectively, which exhibit a better predic-
tive performance.

Most of the genes in our signature have previously been shown to be involved in cancers. However, several 
genes’ role in ccRCC remain unclear. The Fructose-Bisphosphatase 1 (FBP1) is a rate-limiting enzyme in glu-
coneogenesis, which is suppressed in kidney tumors and thus feeds ccRCC; FBP1 is associated with impaired 
cell proliferation, glycolysis and the pentose phosphate pathway in ccRCC in a catalytic-activity-independent 
manner via direct interaction with the HIF inhibitory domain18. PSAT1 is up-regulated in many cancers and acts 
as an oncogene that exerts a vital role in cancer progression and metastasis19–21. Interestingly, through mining 
public database and RT-qPCR, we found that PSAT1 in ccRCC patients is down-regulated compared with nor-
mal tissue. In the future, we will further investigate the underlying mechanism. Hydroxyacid oxidase 2 (HAO2) 
encodes peroxisomal proteins with 2-hydroxy acid oxidase activity, which participated in the production of reac-
tive oxygen species and cellular breakdown22; HAO2 has already been shown downregulated in hepatocellular 
carcinoma (HCC) tissues and ccRCC, overexpression of which restrained HCC and RCC cells proliferation by 
eliminating lipid droplet accumulation23,24. ALDH6A1 was found significantly reduced in metastatic prostate 
cancer according to the immunochemistry and western blot results25. Our results also revealed that ALDH6A1 is 
suppressed in ccRCC, which predicts poor prognosis. TYMP is a rate-limiting enzyme in the thymine catabolic 
pathway and contributes to tumor angiogenesis26,27. Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3) is a critical 
enzyme in maintaining the stability of newly synthesized collagen. Song H et al. indicated that P4HA3 is upregu-
lated in gastric cancer and epigenetically activated by slug28. In the present study, we demonstrated that P4HA3 
is upregulated in ccRCC, and that its high expression reflected poor outcome. IL4I1, an immune-associated 
gene, inhibited CD8 + T-cells and thus exerted immunosuppressive functions29. Our results first revealed that 
IL4I1 was upregulated in ccRCC, and that low expression of IL4I1 indicated favorable prognosis. HK3 encodes 
hexokinase 3, upregulation of which is associated with epithelial-mesenchymal transition and may be a metabolic 
adaptation for colorectal cancer progression30. However, the HK3′s role in ccRCC remains unknown. CPT1B 
is the rate-controlling enzyme in the long-chain fatty acid beta-oxidation pathway in mitochondria. In bladder 
cancer, Vantaku et al.31 demonstrated the suppression of CPT1B inhibits cell proliferation, metastasis in vivo. 
However, to the best of our knowledge, the role of CPT1B in ccRCC has not been understood. In our study, 
we showed that CPT1B was significantly upregulated in ccRCC, which was associated with poor prognosis. 
CYP26A1 (cytochrome P450, family 26, subfamily A, polypeptide 1), a retinoic acid-metabolizing enzyme, 
is a crucial regulator of cell proliferation, differentiation and apoptosis that is overexpressed in many types of 
tumors32,33. However, one major limitation of our study is that our research regarding the ten genes constructing 

Figure 5.   Risk score was closely associated with various clinicopathological characteristics. (A) Stage. (B) T 
stage. (C) Grade. (D) M stage. (E) N stage. (F) Status.
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Figure 6.   RT-qPCR verification of the expression level of 10 genes. (A) ALDH6A1, 14 cases with 
downregulated expression compared with corresponding normal tissue. (B) FBP1, 12 cases with downregulated 
expression compared with corresponding normal tissue. (C) HAO2, 10 cases with downregulated expression 
compared with corresponding normal tissue. (D) PSAT1, 11 cases with downregulated expression compared 
with corresponding normal tissue. (E) TYMP, 13 cases with upregulated expression compared with 
corresponding normal tissue. (F) IL4I1, 15 cases with upregulated expression compared with corresponding 
normal tissue. (G) P4HA3, 15 cases with upregulated expression compared with corresponding normal tissue. 
(H) HK3, 12 cases with upregulated expression compared with corresponding normal tissue. (I) CPT1B, 11 
cases with upregulated expression compared with corresponding normal tissue. (J) CYP26A1, 13 cases with 
upregulated expression compared with corresponding normal tissue. Log2T/N: − △△CT.
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Figure 7.   The protein expression of six predictive genes. The representative protein expression of the six gene 
in ccRCC and normal kidney tissue, four genes were not found. Data was retrieved from the Human Protein 
Atlas (https​://www.prote​inatl​as.org). ALDH6A1, FBP1, and PSAT1 were significantly underexpressed in ccRCC. 
While TYMP, P4HA3 and IL4I1 were found significantly overexpressed in ccRCC.

https://www.proteinatlas.org
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Figure 8.   The functional annotation of the 10-gene signature. (A) Ten representative KEGG pathway in 
high-risk and low-risk patients. (B) Functional annotation of the upregulated genes in high-risk patients with 
Metascape database. (C) Functional annotation of the downregulated genes in high-risk patients with Metascape 
database. Balls together with the same color indicates one biological process.
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our signature is insufficient, further intensive studies are required; moreover, despite the robust performance of 
our model in predicting survival, future validation in clinical practice is needed.

In summary, for the first time, we identified a 10-gene risk signature related to metabolism to independently 
predict the prognosis of patients with ccRCC; this signature may provided guidance for targeted therapy and 
potential biomarkers in the future.

Materials and methods
Data acquisition.  The messenger RNA (mRNA) sequencing data and corresponding clinical data of ccRCC 
patients were obtained from TCGA_KIRC Cohort of TCGA database. Similarly, the CPTAC protein expression 
profile of ccRCC and clinical data were downloaded from CPTAC database as validation dataset. The detailed 
characteristics of patients were presented in Table 1. Moreover, metabolism-related gene set was extracted from 
the Molecular Signature Database v5.1 (MSigDB) (https​://www.broad​.mit.edu/gsea/msigd​b). Only those genes 
that were common expressed in these three database were selected for further prognostic analysis.

The prognostic metabolic gene signature construction.  930 annotated metabolic protein-coding 
genes were utilized for the differentially expressed analysis with the “Limma” version-3.6.1 R package34. Then, 
we performed univariate Cox regression analysis and Lasso-cox regression analysis to identify the prognos-
tic-related metabolic genes and construct a metabolic-related gene signature35. A P-value < 0.001 in univari-
ate Cox regression analysis was treated as statistically significant. We then computed the risk score for each 
patients as follows: Risk score = (expression of mRNA1 *Coefficient mRNA1) + (expression of mRNA2 *Coeffi-
cient mRNA2) + (expression of mRNAn *Coefficient mRNAn)36. According to the median risk value, patients in both 
TCGA_KIRC Cohort and CPTAC_ccRCC Cohort were separated into low- and high-risk group; The Log-rank 
test and Kaplan–Meier survival curve were used to assess the prognostic value. Furthermore, we investigated the 
time-dependent prognostic significance of the gene signature by the R package “survivalROC” 37. Meanwhile the 
independence of the prognostic gene signature in TCGA_KIRC cohort was evaluated by multivariate analysis; 
the associations between risk score and various clinicopathological parameters were also assessed. A predictive 
nomogram was built including clinicopathological characteristics and risk score by the R package “rms” 38. A 
detailed flow chart was shown in supplementary figure 6.

Bioinformatics analysis.  To further validate the expression of the prognostic genes constructing the gene 
signature, we retrieved the Oncomine database (https​://www.oncom​ine.org/), Timer database (https​://cistr​ome.
shiya​pps.io/timer​/) and the human protein atlas (HPA) database (https​://www.prote​inatl​as.org/). To explore the 
possible underlying mechanism, we performed differentially expressed gene analysis between low risk patients 
and high risk patients with “edgeR” package39; GSEA analysis were conducted to reveal enriched terms; upregu-
lated genes and downregulated genes were put into the gene annotation and analysis resource “Metascape data-
base” (https​://metas​cape.org/gp/index​.html#/main/step1​) to obtain functional annotation of these genes.

RNA extraction and RT‑qPCR.  15 paired kidney cancer and adjacent normal tissues were collected 
between 2016 and 2018 at the Department of Urology, The First affiliated Hospital of Nanchang University (Nan-
chang, China). The patients whose tissues were used in the present study had never received chemotherapy or 
radiotherapy. The specimens were stored at − 80 °C until use. The study protocol was approved by the ethics 
committee of The First Affiliated Hospital of Nanchang University, and all patients provided written informed 
consent. The study methodologies conformed to the standards set by the Declaration of Helsinki. Total RNA 
was isolated from 15 paired tissues using TRIzol reagent (Thermo Fisher Scientific, Inc.)40. Then, we detected 
the concentration and purity of the RNA solution using a NanoDrop 2000 spectrophotometer (NanoDrop 
Technologies; Thermo Fisher Scientific, Inc.). Before the RT-qPCR, extracted RNA was reverse transcribed into 
cDNA utilizing Superscript II reverse transcription kit (Takara Bio, Inc.). The reaction conditions were set as 
follows: 37 °C for 15 min; 85 °C for 5 s. Finally, the cDNA was subjected to reverse transcription PCR using a 
SYBR-Green master kit (ChamQ; Vazyme, Nanjing, China) on a LightCycler 480 II (Roche Diagnostics); The 
PCR conditions were as follows: Pre-denaturation at 95 °C for 3 min; 40 cycles of denaturation at 95 °C for 3 s; 
annealing and extension at 60 °C for 20 s. The housekeeping gene, GAPDH, was used to normalize the relative 
expression of genes as an endogenous control by the comparative Cq (threshold cycle) method (2−∆∆Cq). All RT-
qPCR reactions were performed in duplicate. The primers used to amplify and GAPDH were chemically synthe-
sized by TSINGKE. The primer sequences were as follows: TYMP: 5′-GCT​CTG​GCT​CAG​CGGAC-3′ (forward) 
and 5′-GGC​GTT​CTG​CGG​GAC​TTC​-3′ (reverse); FBP1: 5′-CAC​AGC​AGT​ACC​CTG​ACC​TG-3′ (forward) and 
5′-TTG​GTT​AGG​GAG​TGC​CAA​GC-3′ (reverse); PSAT1: 5′-CCG​CGT​ATT​TTG​CCT​TTG​CT-3′ (forward) and 
5′-CCT​ACC​CTC​TGT​GCT​GTG​TG-3′ (reverse); ALDH6A1: 5′-CTC​ACC​TGC​TGT​TGT​CAT​GC-3′ (forward) 
and 5′-GCG​GGG​TTA​ATA​GTC​CTG​A-3′ (reverse); and P4HA3: 5′-GCA​GCC​CCC​TCT​ACA​GAA​TG-3′ (for-
ward) and 5′-CAC​GCT​GAG​GTT​GGC​ATA​GA-3′ (reverse); and IL4I1: 5′-AGG​GTG​GCT​TTG​TGG​TAC​AG-3′ 
(forward) and 5′CTG​TTG​ATC​TTG​ATG​GCG​GC–3′ (reverse); and HK3: 5′-CCT​CAC​TGC​GTG​TTT​TGT​
GG-3′ (forward) and 5′-GGG​CAG​CAA​AGT​CAA​AGA​GC-3′ (reverse); and CPT1B: 5′-TGG​GTT​CCT​CCT​TCT​
GCA​AC-3′ (forward) and 5′-CGG​AAG​AAG​AAG​ATG​CCC​GT-3′ (reverse); and CYP26A1: 5′-TGC​ATC​CAG​
GTT​CAG​CTT​CA-3′ (forward) and 5′-CAG​GAT​ACA​CGG​TGG​GAC​TG-3′ (reverse); and HAO2: 5′-CTG​AGG​
TGG​ACA​CCA​GAA​CC-3′ (forward) and 5′-TGC​TGT​GCT​CAT​TTC​CCC​AT-3′ (reverse); GAPDH: 5′-AAA​
AGC​ATC​ACC​CGG​AGG​AGAA-3′ (forward) and 5′-AAG​GAA​ATG​AAT​GGG​CAG​CCG-3′ (reverse).

Statistical analysis.  Chi-square test was conducted to detect the difference between two groups of patients 
with regard to clinicopathological features; differences in risk score between various cllinicopathological param-

https://www.broad.mit.edu/gsea/msigdb
https://www.oncomine.org/
https://cistrome.shiyapps.io/timer/
https://cistrome.shiyapps.io/timer/
https://www.proteinatlas.org/
https://metascape.org/gp/index.html#/main/step1
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eters were tested by Student’s t test. All statistical analysis were performed using GraphPad Prism7.0, SPSS ver-
sion 16.0 software (SPSS Inc., Chicago, IL, USA); all data for bioinformatic analysis in the study were processed 
by Software R (version 3.6.1, https​://www.r-proje​ct.org/). Data are presented as the mean ± SEM. If not specified 
above, P < 0.05 was regarded as statistically significant.

 Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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