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ABSTRACT
NAMD is a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-
based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores,
as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel
objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms
to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolec-
ular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics
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simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for
handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging
massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail
the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchem-
ical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development
of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that
have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and
easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014475., s

I. INTRODUCTION
Grasping the function of very large biological objects, such

as those of the cell machinery, necessitates at its very core not
only the structural knowledge of these organized systems but also
their dynamical signature. However, despite formidable advances
on the experimental front, the intrinsic limitations of conventional
approaches have often thwarted access to the missing microscopic
detail of these complex, dynamic molecular constructs, restricting
their observation to static pictures. The so-called computer revo-
lution, which began over 40 years ago, considerably modified the
perspectives, paving the road to structural biology investigations by
means of numerical simulations from first principles. Such simula-
tions form the central idea of the computational microscope,1,2 an
emerging instrument for cell biology at atomic resolution, which the
molecular dynamics (MD) program NAMD embodies.

A. The NAMD philosophy
The goal of NAMD development since its beginning has been to

enable practical supercomputing for biomedical research. This goal
of practicality is reflected first by the pursuit of affordable hardware
such as workstation clusters in the 1990s, Linux clusters in the 2000s,
and GPU acceleration in the 2010s—viewed as another computer
revolution. Practicality is more deeply and enduringly reflected by
the attitude of the NAMD development community that the target
user of the program is the experimentalist or their collaborator, not
the programmer or computer expert, or even the method developer.

In pursuit of this goal, NAMD has been designed to be a single
program available across all platforms, preserving the knowledge of
the users as their science grows from reproducing tutorials and case
studies on a laptop, to production science on departmental com-
modity clusters, to large and multi-copy simulations on leadership-
class supercomputers. NAMD is distributed free of charge for both
academic and private-sector use as both the source code and pre-
compiled binaries for most platforms. As cutting-edge biomolecular
simulations are never truly routine, user extensions that are portable
without recompilation across both platforms and NAMD releases
are supported via the Tcl and Python scripting languages.

NAMD development relies on symbiotic relationships with
multiple stakeholders. The oldest longstanding relationship is with
the computer scientist developers of the Charm++ parallel program-
ming system (see Sec. II), with which the NAMD developers have
shared both a 2002 Gordon Bell Prize and a 2012 IEEE Fernbach
Award. As the most popular Charm++ application, NAMD provides

the Charm++ developers with real-world feedback from a broad
community of users and drives access and support for Charm++ on
leadership platforms. In return, Charm++ supplies enhancements
that address performance, usability, and programmability issues
faced by both NAMD users and developers.

The second indispensable relationship is between the NAMD
and Charm++ developers and the high-performance computing
technology providers, such as Intel, NVIDIA, AMD, IBM, Cray, and
Mellanox. These corporations provide critical insights into current
and upcoming technology, as well as software engineering expertise
and code contributions to improve the performance of both NAMD
algorithms and Charm++ high-speed network communication.

The third relationship that drives NAMD development is with
computing resource providers, at both the various National Sci-
ence Foundation (NSF) centers and Department of Energy (DOE)
national laboratories that lead the United States exascale pro-
gram. Early development and science access to leadership platforms
ensures NAMD users of a smooth transition to new technologies and
biomolecular applications of a generous share of high-performance
computing resources, which could be readily consumed by other
fields of science with less potential impact on human health and well-
being. In return, the centers can promote the early scientific impacts
of their machines, such as the all-atom model of the HIV-1 virus cap-
sid3 solved during the early science period of the National Center for
Supercomputing Applications (NCSA) Blue Waters machine.

The final symbiotic relationship driving NAMD is with the
broad community of computational scientists who are ever expand-
ing and furthering the scope of simulation methods. The NAMD
core developers in Urbana together with other NAMD contribu-
tors scattered across the world maintain a strong intellectual con-
nection with this community. The team of core developers and
contributors meet yearly to coordinate ongoing efforts, discuss
new methodological advances, and plan future changes to the pro-
gram. In recent years, these joint efforts have facilitated the imple-
mentation of important advanced techniques, including integration
algorithms,4 polarizable force fields,5 free-energy calculations, and
enhanced-sampling strategies.6,7 Nevertheless, some tensions are to
be expected between performance and innovation—NAMD was
never designed to serve as a virtual laboratory platform for method
development, and hence, sacrifices in modularity and modifiabil-
ity have been made in the interest of scalability and performance.
Regardless, NAMD offers today a mature and complete set of sim-
ulation capabilities, incorporating many features that have proven
of general utility and continue to be extended and improved in
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response to both feedback from the NAMD user community and
innovation by the method developers, who appear as co-authors on
this new reference paper.

B. Perspective
To this date, NAMD has been downloaded by over 110 000

registered users, over 30 000 of whom have downloaded multiple
releases. The 2005 NAMD reference paper8 has been cited over
13 000 times, and the NAMD user email list has over 1000 sub-
scribers. NAMD is also typically reported as one of, if not the most
utilized program at the NSF supercomputing centers. For a code
developed for over two decades to enable leading-edge simulations
on emerging platforms, NAMD serves a surprisingly large commu-
nity of researchers. This can be attributed to the leadership of the late
Klaus Schulten, who sought to share not only his scientific achieve-
ments with the world but also the tools with which they were accom-
plished and gathered a team of software and method developers that
shared this vision.

Most users obtain NAMD by downloading a pre-compiled
binary from www.ks.uiuc.edu. Current and multiple previous
NAMD releases are available for download, along with the most
recent nightly build. The download process requires creating an
account by completing a brief registration form, which provides
the NAMD developers with user statistics to justify future fund-
ing. The download process also asks the user to agree to a license
that prohibits redistribution and requires attribution and citation
of NAMD in publications resulting from its use. The standard
license allows NAMD to be employed by both academic and private-
sector researchers but prohibits commercialization of the program.
Derived work may utilize up to 10% of the NAMD source code with-
out restriction when combined with an equal amount of original
code, allowing for substantial reuse by the biomolecular simulation
community. All releases include the source code for both NAMD
and the specific version of the Charm++ parallel runtime with which
it was built. The NAMD and the Charm++ source code are also
available via separate public Git repositories, and binaries for both
releases and recent builds are maintained publicly on several NSF
and DOE supercomputers. Official NAMD releases occur approxi-
mately annually and are each preceded by a series of beta releases
to aid in bug discovery. The NAMD source code is intended to
be of production quality at all times, and hence, bug fixes imple-
mented after the beta period are not back-ported to the previous
release.

The size of the NAMD user community both necessitates and
enables a community support model. Basic training in MD sim-
ulation concepts and their application in NAMD is provided in
a series of hands-on workshops, which can be attended in per-
son or streamed at any time, and the pedagogical material, i.e.,
tutorials and case studies, used in the workshops is available for
download. The tutorials require only a laptop, allowing them to
be done without access to external resources, and possibly contin-
ued after the workshop. The pedagogical team of the workshops is
formed of faculty members and teaching assistants, who are expe-
rienced NAMD users. Questions regarding the use of the program
are directed to the public NAMD mailing list both because the col-
lective experience of the user community will generally produce
more useful and varied responses than the developers could and

to provide a publicly searchable record of previous questions and
answers. End-users are encouraged to search the mailing list archives
along with the manual and other training materials before ask-
ing their questions on the mailing list. Reports of suspected bugs
along with logs and ideally a reproducing input set for the lat-
est NAMD release are regularly sent to the developer mailing list.
Furthermore, high-level personal support is provided for selected
driving projects that are testing or co-developing new NAMD
capabilities.

NAMD software engineering practices are based on two
decades of experience in ensuring correctness with minimal over-
head. Both NAMD and Charm++ use Git for revision control,
with Charm++ also employing formal issue tracking due to its
larger numbers of both active developers and minor enhancement
requests. NAMD has a smaller number of developers, with more dif-
ferentiated expertise and goals, and this separation of responsibilities
makes formal centralized issue tracking less beneficial. Moreover,
due to the dynamic nature of development and changing priori-
ties, schedules of planned enhancements are not reliable and are not
advertised. It is better that the user make progress with the currently
available version of the code than delay work based on the promise of
an unproven feature. Separate developer documentation is avoided
with the intent that the source code itself be legible and discoverable
on its own.

NAMD development is guided by a small set of driving projects,
which are scientifically important and require enhanced NAMD
capability. While the driving project provides the essential eager
end-user to test and provide feedback on the implementation of the
new capability, it is important to note that no single-user or single-
project features are implemented in NAMD itself. Instead, the goal
of the development process is either to extend an existing capabil-
ity to enable the driving project or, if necessary, to implement some
new general-purpose and scalable feature that will enable both the
specific driving project and a larger class of related simulations. Nec-
essary project-specific code may be segregated outside of the NAMD
code base through a Tcl scripting interface. Capabilities enabled via
scripting in NAMD include top-level protocols such as equilibra-
tion, annealing, and replica-exchange or multiple-copy strategies, as
well as application of long-range steering forces onto small num-
bers of atoms and application of independent boundary forces to
each atom in the molecular system. While an optional Python script-
ing interface is available, Tcl remains the recommended choice due
to its stable interface, compact and embeddable interpreter, sim-
ple and flexible syntax, and shell-like appearance, which appeals to
non-programmers.

NAMD quality assurance practices are adapted to the unique
challenges of feature-rich scientific software running at scale on
a wide variety of platforms. All-platform builds and installs are
automated, and record both default and optional modules loaded
during compilation, as well as the specific version of Charm++
utilized. Extensive testing of each build on different platforms is
prohibitively complex to manage and expensive in terms of com-
puter time. Still, the most likely sources of observed defects in
reviewed and merged code are compiler bugs and rare unantici-
pated edge cases in new end-user input sets. For this reason, NAMD
contains multiple internal consistency checks, which are active at
all times, including in production runs. The goal of consistency
checks is not so much to prevent crashes, which are often easily
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diagnosed and relatively harmless, but to avoid silently generating
flawed simulation outputs, which would waste both computer and
human time and leave bad science in their wake. Consistency-
check failures raise fatal errors, both in order to halt the pro-
gram without wasting future cycles and because, in our experience,
end-users ignore warning messages—and often barely read error
messages.

C. Key features
NAMD supports classical MD simulations, most commonly of

full atomistic nature, in explicit solvent, with periodic boundary con-
ditions and full particle mesh Ewald (PME) electrostatics (see Sec. V)
in a variety of thermodynamic ensembles (see Sec. IV), including
constant–pH (see Sec. XI), although coarse-grained models, implicit
solvent, and non-periodic or semi-periodic boundary conditions can
also be employed. CHARMM9 and similar academic force fields, e.g.,
AMBER,10 OPLS–AA,11 and GROMOS,12 are supported, including
the CHARMM Drude polarizability model.5,13 A flexible interface
for quantum-mechanical/molecular-mechanical (QM/MM) calcula-
tions connects NAMD to external quantum-chemistry codes (see
Sec. XII), namely, ORCA14 and MOPAC,15 thereby allowing phys-
ical phenomena that are not captured by classical models to be cap-
tured, e.g., chemical reactions involving bond formation and rup-
ture. NAMD also supports alchemical free-energy calculations (see
Sec. IX).16

Built on this foundation are a variety of features to add exter-
nal forces in the simulations, including the Colvars module,6 which
allows the end-user to define collective variables (CVs) as con-
trol parameters for biased MD and free-energy calculations (see
Sec. VI). Flexible fitting17 of structures to electron density maps
from cryo-electron microscopy (cryo-EM) can be performed via grid

potentials18 (see Sec. XIII). Methods for accelerating sampling
include user-customizable multiple-copy algorithms (MCAs) (see
Sec. X) for both parallel-tempering strategies and free-energy cal-
culations of geometrical and alchemical nature.16 The workflow
architecture of a NAMD simulation is summarized in Fig. 1.

Support for setup, analysis, and visualization of NAMD sim-
ulations is implemented in the co-developed program VMD.19 In
VMD, molecular structures can be assembled either with the low-
level psfgen module or via the QwikMD plugin,20 which provides
a graphical interface and guides the user through the stages of the
standard MD workflow (see Sec. XV). A large number of VMD
plugins are available to aid in analysis tasks. Guidance on the use
of NAMD and VMD is provided by a variety of tutorials and case
studies available on the www.ks.uiuc.edu website.

NAMD supports most computational platforms, ranging from
MacOS–and Windows–operated laptops to leadership-class super-
computers. NVIDIA GPU acceleration has been implemented since
2009 (see Sec. III),21 and support for AMD and Intel GPUs is being
developed as part of readiness programs for the Oak Ridge Fron-
tier and Argonne Aurora exascale machines. Simulation sizes of up
to 2 × 109 atoms are possible when the program is compiled in
memory-optimized mode, which is recommended above 2 × 106

atoms.
Most users will have no need to compile NAMD from the

source code. NAMD achieves cross-platform extensibility through
scripting in Tcl, a language familiar to the end-users, notably from
its use in VMD, allowing custom simulation protocols to be imple-
mented without recompiling the program. Pre-compiled binaries are
available for laptops, desktops, and clusters, both with or without
high-speed InfiniBand networks. No MPI library is required, but the
standard mpiexec program may be leveraged to simplify launching
NAMD within the batch environment of the cluster.

FIG. 1. Workflow architecture of a NAMD
simulation. The blue boxes denote the
core physical details of the simulation,
the orange boxes denote the features
that are embedded in the code (written
in C++), and the green boxes denote
the features that are fully implemented
through user scripts (written in Tcl or
Python).
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II. THE PARALLEL, OBJECT-ORIENTED
PROGRAMMING LANGUAGE CHARM++

NAMD is implemented on top of Charm++,22,23 an adap-
tive, asynchronous, distributed, message-driven, task-based parallel
programming model using C++.

A. Underpinnings of Charm++
In Charm++, computations are partitioned into migratable

objects called chares, each with its own data. Chares communi-
cate by sending messages that invoke methods on other objects,
which can be located locally or remotely, on a different node than
the sender. An example of chare layout and messaging is shown
in Fig. 2. Charm++ also features a powerful introspective runtime
system (RTS), which measures and tunes the performance of appli-
cations at runtime. Put together, these properties allow for dynamic
load balancing, in which the runtime relocates chares to different
processors to evenly distribute computational load. These aspects of
Charm++ allow high performance and scalability to be achieved on a
wide variety of applications and large-scale computer architectures.
Charm++ has also been carefully crafted to maximize portability so
that applications can be executed on virtually any hardware, from
laptops to supercomputers.

1. Over-decomposition
Most parallel programming paradigms partition a problem

into the number of processors that are being used to execute the
application. This approach tries to minimize overhead while plac-
ing the onus on the programmer to provide an even distribution
of work to the processors. However, in Charm++, applications are
intended to be over-decomposed or broken into many more pieces
than there are processors in the system. Using this finer decom-
position may increase overhead, but it also provides scope for the
runtime system to perform optimizations outweighing it, especially
for dynamic, irregular applications. One virtue of this approach is
communication-computation overlap. Since there are many small
objects on a processor, as opposed to fewer large objects, the RTS
can schedule the computation of an object while it awaits communi-
cation required by another. In doing so, Charm++ more effectively
uses both the processors and network, thereby reducing starvation
of processors due to network delays.

2. Load balancing
Another key facet of the Charm++ model is dynamic load

balancing.24 Over-decomposition creates many high-granularity

objects, giving the RTS scope to finely control distribution of load
via chare migration. The Charm++ RTS actively measures the per-
object load at runtime, which it then feeds into one of many dif-
ferent, customizable algorithms to determine a new and improved
distribution of chares based on these empirical data. This design
implies that load balancing retains efficacy even for applications with
load properties that are difficult to predict a priori. Native support
for general load balancing in the Charm++ RTS constitutes a dra-
matic improvement over frameworks such as MPI, which require
end-users to write application-specific load-balancing code. In gen-
eral, load balancing is critical to achieve high scalability, as the like-
lihood of significantly overloading some processor grows as more
processors are added to a job.

3. Modern Charm++ features
While currently unused by NAMD, Charm++ has many other

features to tune applications. Remaining within certain power and
temperature budgets has become vital as supercomputers grow
ever denser and larger. Charm++ includes modules that work with
the processor and system controls over these properties while still
retaining high performance.25 For instance, it can leverage the load
balancer to migrate away chares from overheated processors to avoid
slowdowns when the system underclocks them to reduce their tem-
peratures. Charm++ features a checkpoint-restart facility, which
makes applications fault tolerant.26 In the case of system-level hard-
ware or software failures, rather than crashing, potentially wasting
hours of computer time, the RTS can automatically recover and con-
tinue execution using the non-failed parts of the system. Charm++
also has a module to integrate GPU data and task management with
the RTS.27 Programming models that are built on top of Charm++
also exist, such as Adaptive MPI, which allows MPI applications to
execute atop Charm++ and gain several of its advantages,28 as well
as charm4py, a Python interface to Charm++.29

B. Parallel structure of NAMD and its use of Charm++
The various features of Charm++ described previously have

contributed to the success of NAMD in achieving high performance,
scalability, and portability.30–32 NAMD and Charm++ share a long
history, having been synergistically codeveloped since 1994. In fact,
NAMD was the first large, driving application for Charm++, and
many features and design decisions of Charm++ were inspired by
the needs and challenges presented by NAMD. The architecture of
NAMD maps very naturally to Charm++, allowing the structure and
parallelism of the code to be easily and cleanly expressed without
sacrificing speed.

FIG. 2. Overview of a Charm++ applica-
tion on four processor elements (PEs).
The solid line indicates an object on PE
3 sending a message to an object on PE
1, and the dashed line shows how the
message is sent via per-PE schedulers.
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MD simulations involve calculating and applying forces,
bonded and nonbonded, that simulated atoms exert onto each other.
NAMD takes as input a molecular structure, iteratively computes
these bonded and nonbonded forces, and integrates the equations
of motion to update atomic positions and velocities. NAMD imple-
ments this process using a unique hybrid approach, decoupling the
distribution of data from the distribution of computation. The sim-
ulation space is spatially divided into small boxes called “patches”—
objects containing simulation data, while force calculations are done
by objects called “computes,” which operate on data received from
patches. After the force calculation is completed by the computes,
the forces are sent back to patches, which update their constituent
atoms. Hydrogen atoms are stored on the same patch as the heavy
atom they are bonded to, and atoms are reassigned to different
patches as they move in space.

An overview of the parallel structure of NAMD is depicted in
Fig. 3. There are three different kinds of computes, namely, bonded,
nonbonded, and PME, respectively, responsible for bonded forces,
short-range nonbonded forces, and long-range nonbonded electro-
static forces using the PME algorithm (see Sec. V). Naïve com-
putation of all nonbonded forces would result in a computational
complexity in O(N2

), where N stands for the number of particles,
whereas the PME approach of only computing pairwise nonbonded
forces explicitly for atoms within some cutoff radius and inter-
polating the reciprocal-space Ewald sums for more distant atoms
improves the overall complexity to O(N log N).33 Patches are sized
such that only the 26 neighbors of the three-dimensional patch are
involved in the bonded and short-range nonbonded interactions
or, formally, that non-neighboring patches are separated by at least
the cutoff radius. Each nonbonded compute is responsible for cal-
culating the forces between a given pair of neighboring patches,

FIG. 3. NAMD software architecture. “Computes” are objects responsible for force
calculations, operating on data received from “patches,” small boxes generated
by the spatial decomposition of the computational assay. Long-range electrostatic
forces are handled by the PME algorithm.

including self-pairs, and, correspondingly, each patch sends its data
to the twenty-seven non-bonded computes that use its atoms. PME
computes are done using a two-dimensional pencil decomposition
of the charge grid and consist of three different subtypes, x, y, z,
one for each of the three directions of the Cartesian space. This
step involves performing several fast Fourier transforms (FFTs) and
transpositions between the different dimensions, making PME rela-
tively light in terms of computation but heavy in terms of communi-
cation. It is noteworthy that Charm++ supports message priorities,
which are set to high in the case of PME, since communication
is crucial here. Bonded computes are also relatively light compu-
tationally, since they only operate on the bonded components, so
the majority of the computational load comes from the nonbonded
computes.

At runtime, these compute objects in NAMD are distributed
throughout the available processors for the job. Notably, only non-
bonded computes are relocatable as they represent most of the load.
Patches and the other computes are statically assigned to the avail-
able processors at startup. Loads and communication patterns of the
various objects, whether relocatable or not, are empirically measured
and fed to the load balancer, which redistributes the nonbonded
computes to minimize communication and equalize load between
processors.

Generally, the above descriptions are equally valid for the CPU-
based and GPU-based versions of NAMD. However, there are a few
extra considerations in the GPU version, chiefly that of aggregating
data and work requests. GPUs are computationally extremely pow-
erful, but since they are physically separated from the CPUs and,
thus, have high communication latency, performing many small
transfers of data, or starting many small kernels, is relatively expen-
sive. In order to avoid this bottleneck, NAMD aggregates data and
work requests for the GPU, sending the data of several patches or
invoking a kernel corresponding to several computes at once. While
this strategy limits in some way the ability of Charm++ to perform
optimizations, it also allows NAMD to leverage the immense power
of GPUs without inordinate penalties due to latency, making it a
worthwhile trade-off.

III. GPU CAPABILITIES AND PERFORMANCE
Historically, NAMD was designed for optimal performance on

large arrays of computing units interconnected by low-latency, high-
bandwidth networks. As use of GPUs in high-performance comput-
ing gained steam, NAMD has been adapted to novel, GPU-based
architectures. In this section, we first review the performance of the
code on a variety of platforms, prior to describing ongoing efforts
toward more fully utilizing GPU acceleration.

A. NAMD performance
From its inception, NAMD was designed for high-performance

classical simulations of large atomic models of biomolecular sys-
tems, often comprising 100 000 atoms or more. Through pervasive
use of parallel computing technologies, the system size scales and
simulation timescales amenable to NAMD have grown by orders of
magnitude, as the program evolved from being able to handle a few
nanoseconds of simulated time on hundreds of thousands of atoms34

to a hundred nanoseconds for millions of atoms,3 finally arriving at
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where we stand today, namely, being able to simulate hundreds of
nanoseconds on hundred-million atom systems.35

The growth in performance achieved by NAMD can be pri-
marily attributed to its ability to harness the computational power
of tens of thousands to millions of processing elements in par-
allel. Over the past decade, computer architectures have under-
gone a paradigm shift toward hardware designs that favor paral-
lelism as the primary mechanism for improved performance, e.g., by
increasing core counts from one processor generation to the next.
NAMD supports diverse computing hardware architectures, includ-
ing multicore and many-core CPUs with wide single-instruction-
multiple-data (SIMD) vector arithmetic units and heterogeneous
computing platforms containing massively parallel GPU acceler-
ators. NAMD decomposes MD simulation algorithms into very
fine-grained data-parallel operations, which can be executed by
the available pool of computing resources, maximizing the use of
hardware-optimized functions, or so-called “kernels,” on CPU vec-
tor units or GPU accelerators. These kernels parallelize operations
on individual atoms using a hardware-specific approach, thereby
maximizing arithmetic performance and simulation throughput for
the target hardware.

NAMD distributes work to shared memory CPU cores and dis-
tributed memory compute nodes using a three-dimensional decom-
position of interactions among patches (see Sec. II), spatial sub-
volumes sized such that interactions with the 26 nearest neighbor
patches embrace all of the bonded, van der Waals, and short-range
electrostatics force contributions. Decomposition of the simulation
into patch–patch interactions affords a large amount of parallelism
for shared- and distributed-memory parallelism and enables NAMD
to maintain load balance by shifting work from overloaded to under-
loaded cores or nodes over the course of the simulation. Building
on these design points, extensive use of asynchronous message pass-
ing techniques and Charm++ runtime system features have allowed

FIG. 4. NAMD distributed memory parallel scaling benchmarks performed on satel-
lite tobacco mosaic virus (STMV) in water on leadership supercomputers, Summit,
using up to 1024 nodes containing 6144 GPUs (upper panel), and Frontera, using
up to 512 CPU-based nodes (lower panel). Two benchmark systems were con-
structed as a tiled array of a periodic 1.067M-atom system, a 5 × 2 × 2 tiling for
21M atoms (▲), and a 7 × 6 × 5 tiling for 224M atoms (▼).

state-of-the-art NAMD simulations to run at high performance on
petascale supercomputers,36–40 as well as pre-exascale supercomput-
ers.32 Figure 4 summarizes the distributed-memory scaling perfor-
mance of NAMD simulating two benchmark systems, each consist-
ing of a tiled array of a 1 × 106-atom satellite tobacco mosaic virus
(STMV),41 on two contemporary leadership supercomputers with
CPU-based (Frontera) and GPU-accelerated (Summit) hardware
platforms.

B. GPU acceleration
One of the biggest changes to the high-performance comput-

ing ecosystem in the past decade has been the emergence of GPUs as
the dominant type of accelerator for scientific applications, leading
to their rapid adoption and widespread use in computational chem-
istry applications.42 NAMD was the first fully featured MD package
to exploit GPU acceleration,21 and it was also a pioneer in supporting
GPU-accelerated clusters.43,44 NAMD development has evolved to
encompass two main computing approaches, namely, (i) large-scale
distributed memory parallel computing (continuing past NAMD 2.x
approach) and (ii) GPU-resident computing to support new and
emerging platforms that provide dense, tightly coupled GPU accel-
erators, with shared memory among GPUs and hosts (newly added
in NAMD 3.x).

The initial use of GPUs in NAMD accelerated calculation of
the short-range non-bonded forces, the biggest computational work-
load at each time step. The GPU kernels themselves, similar to the
CPU, interpolate force interactions from a table but make use of fast-
texture memory lookup and automatic linear interpolation, which
avoids calculation of square-root and exponential functions required
for the PME algorithm33 (see Sec. V) and eliminates conditionals
needed to support switching functions for van der Waals forces.
Energies are similarly computed with table lookup and only when
required for output. Enhancements were introduced to improve per-
formance by streaming the force calculations back to the patches,
enabling each patch to proceed asynchronously with time stepping
as soon as all of its forces are computed.21 GPU acceleration was next
applied to the PME long-range electrostatics calculation, specifically
to the patch-based calculations involving the spreading of charges
from atoms to grid points and the gathering of forces from grid
points to atoms.45 Parallel scalability is improved by doubling the
PME grid spacing, together with increasing the interpolation order
from 4 to 8 to maintain the same accuracy, thereby reducing the
communication bandwidth by a factor of 8 while increasing the
intensity of arithmetic offloaded to the GPU.

Since then, NAMD has evolved to allow all force terms to be
computed on the GPU. With the 2.12 release, NAMD incorpo-
rated new CUDA kernels for both short-range, nonbonded forces
and long-range electrostatics calculations, which yield better per-
formance and scaling in general. The new short-range non-bonded
kernels compute pairwise interactions between two sets of atoms
subdivided into tiles of 32 × 32, producing tile lists that can be exe-
cuted by any CUDA thread block. To further improve performance,
the kernels also benefit from Newton’s third law, avoiding dupli-
cated calculation between atom pairs and eliminating the need for
synchronization between thread blocks, which allows CUDA warps
to execute independently.46 This new scheme also introduced gener-
alized Born implicit solvent (GBIS) neighbor list calculation kernels
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for existing GPU-accelerated GBIS functions.47 The revised imple-
mentation of PME now offloads the reciprocal-space calculation as
well to GPU and uses the NVIDIA cuFFT library for calculating for-
ward and inverse FFTs,46 although the scalability of this approach
is limited to no more than four nodes. The 2.13 release of NAMD
added new CUDA kernels for calculating the bonded forces and
the correction for excluded interactions.32 The 2.14 release yields
better performance on modern GPU architectures and contains a
more stable pair list generation scheme for large domain decom-
position cycles. NAMD 2.14 performance results reported in this
contribution represent the outcome from runs using the traditional
distributed memory NAMD design.

NAMD 3.0 maintains the traditional large-scale distributed
memory computing paradigm but is the first version to pioneer the
new GPU-resident computing approach. The NAMD 3.0 bench-
marks reported here represent the currently achieved performance
using the new GPU-resident computing scheme, applied to single-
node GPU-accelerated hardware platforms. We note that since
NAMD 3.0 and its new GPU-resident computing approach are still
actively in development at the time of writing this article, we expect
to achieve even higher performance by the time it is finalized.

Based on a Charm++ parallel object paradigm, NAMD over-
decomposes the total work into small, easily migratable tasks at
startup, which are consequently distributed across the available allo-
cated CPU resources for a particular run (see Sec. II). This scheme
is effective on large parallel computers with a myriad of CPU cores
as tasks are small enough to allow for dynamic load balancing at
runtime and better scaling overall. However, fine-grained decom-
positions that are appropriate for large CPU core counts often result
in task sizes that are insufficient to saturate GPU with work, as is
necessary to approach peak GPU performance. Moreover, running
large batches of small tasks typically requires excessive host-device
memory transfers as they have disjoint memory spaces. Thus, for
launching GPU tasks efficiently, NAMD usually performs an aggre-
gation step, whereby patches are gathered together into contiguous
memory spaces, and their corresponding atoms are rearranged in
order to coarsen task grain size to improve GPU utilization and
reduce overhead. It is also possible for the end-user to control which
force terms are offloaded onto the GPU, as force calculations are
scheduled independently, for best combined use of hybrid CPU and
GPU computing resources.

The improvements to existing GPU kernels and more effec-
tive GPU offloading schemes have allowed NAMD to benefit not
only from thousands of CPU cores but also from thousands of

discrete GPUs. Figure 4 depicts NAMD benchmarks occupying up
to a quarter of ORNL Summit, a GPU-dense supercomputer with
4600 compute nodes, each containing two IBM POWER9 CPUs and
six NVIDIA Volta V100 GPUs. Two different tiled replications of
the 1.067× 106 atom, freely distributed, STMV computational assays
were employed as benchmark systems—a 5 × 2 × 2 replication with
21 × 106 atoms and a 7 × 6 × 5 replication with 224 × 106 atoms.
The results demonstrate the fact that NAMD is able to benefit from
the thousands of GPUs available in Summit, delivering approxi-
mately eight times improved performance compared to CPU-only
runs.

The rapid pace of performance gains on state-of-the-art com-
puting architectures has tipped the balance of computing power
even more dramatically in favor of GPUs. The traditional GPU
offloading scheme in NAMD overlaps CPU and GPU work, with
forces being calculated on the GPU and the integration of the New-
ton equations of motion being calculated on the CPU as soon as the
forces are processed by the GPU. However, in-depth NAMD perfor-
mance analysis reveals that current high-end GPUs are idling for a
large fraction of the simulation time, since integration is a critical
step and must be performed before the next launch of GPU force
kernels. Ongoing development efforts have begun to ameliorate this
imbalance, whereby a new GPU-resident computing scheme main-
tains data in-place on the GPU throughout force calculations and
integration of atomic coordinates, with drastically reduced involve-
ment from host CPUs and minimal host-device memory transfers.
Kernels for the Verlet integration (see Sec. IV), rigid bond con-
straints, and Langevin dynamics have been introduced, without any
need for data transfer between the CPU and GPU. Figure 5 depicts a
timeline profile of a simulation of apolipoprotein 1 (ApoA1) in the
microcanonical ensemble, with roughly 92 224 atoms, on a NVIDIA
Titan-V GPU, demonstrating that the standard offloading scheme
is not capable of fully saturating the GPU with work as there are
large gaps between the GPU force calculations with integration tasks
running on the CPU.

The new, GPU-resident computing scheme is able to effectively
saturate the GPU with work, showing almost no gaps between kernel
calls. Figure 6 shows preliminary benchmarks of this GPU-resident
scheme for simulations in the microcanonical ensemble, with a 2-
fs time step and the standard CHARMM force-field parameters,
on a NVIDIA Titan V GPU and an Intel Xeon E5-2650, for four
independent computational assays of increasing size.

The new GPU-resident computing scheme, using only a sin-
gle CPU core, outperforms the original GPU offload scheme by

FIG. 5. Standard GPU offload approach compared against new GPU-resident execution scheme for a single-node NAMD simulation of apolipoprotein 1 (ApoA1) in water,
consisting of 92 224 atoms. The light blue line tracks GPU activity, while the black strip tracks CPU activity. GPU force calculations are labeled “force,” and GPU integration
calculations are labeled “int.”

J. Chem. Phys. 153, 044130 (2020); doi: 10.1063/5.0014475 153, 044130-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. Comparison of NAMD GPU computing schemes for simulations with
increasing atom counts, namely, (i) reductase enzyme (DHFR) with 23 558 atoms,
(ii) apolipoprotein 1 (ApoA1) with 92 224 atoms, (iii) F1-ATPase with 327 506
atoms, and (iv) STMV with 1 066 628 atoms for the GPU-resident scheme in NAMD
3.0 (▲) and for standard GPU offloading scheme in NAMD 2.14 (▼). The sim-
ulations were performed in the microcanonical ensemble, using the CHARMM9

(turquoise line) and AMBER-like10 (magenta line) cutoff schemes: 12 Å and 8 Å,
respectively.

approximately a factor of 2, despite the original offload scheme’s
use of all 16 CPU cores. In addition, since most of the computa-
tional bottlenecks have been removed from the CPU, it is possible to
achieve perfectly linear scaling when running independent replica
simulations on single-node multi-GPU platforms, with one replica
per GPU. This approach can produce aggregate simulation times of
microseconds per day, as shown in Fig. 7.

FIG. 7. NAMD performance compared on two platforms, NVIDIA DGX-2 (upper
panel) and Amazon Web Services (AWS) P3.16xlarge (lower panel), using the
standard GPU offloading scheme in NAMD 2.14 and the GPU-resident scheme in
NAMD 3.0. The DGX-2 and AWS P3.16xlarge platforms consisted, respectively,
of 16× NVIDIA Tesla V100 GPUs and 8× NVIDIA Tesla V100 GPUs associated
with a 48-core CPU. The benchmarks were conducted on replica simulations of
apolipoprotein 1 (ApoA1) in water, representing 92 224 atoms, in the microcanon-
ical ensemble, with one independent replica running on each GPU. The bench-
marks were carried out with the CHARMM9 (turquoise bars) and AMBER-like10

(magenta bars) cutoff schemes: 12 Å and 8 Å, respectively.

IV. PROPAGATORS
One of the features that has made NAMD a widely popular

MD engine is its ability to generate trajectories in apt thermody-
namic ensembles, with minimal approximation and corner-cutting.
This section reviews the numerical schemes implemented in NAMD
to integrate the equations of motion, together with the algorithms
utilized to maintain the temperature and the pressure constant.

A. Numerical integration
It is useful to distinguish the two ways whereby MD simu-

lations might be carried out. For actual dynamics, the dynamical
parameters, e.g., the mass and the thermostat and barostat coupling
parameters, are to be given physically realistic values. For sampling,
however, parameters can be chosen to reduce autocorrelation times,
thereby increasing the number of independent samples. In both
cases, it is, however, normally expected that a numerical integrator
retains the following property of the dynamics: if an ensemble of
trajectories has initial positions and velocities chosen from a given
distribution, e.g., the canonical ensemble, this distribution is pre-
served as the trajectories evolve. This is a useful property even for
sampling, in which only a single, long trajectory is generated.

1. Verlet and symplectic integrators
NAMD provides both deterministic and stochastic equations of

motion. The deterministic model rests upon the Newton equations
of motion, and the basic integrator is provided by the Verlet algo-
rithm.48 This method happens to be symplectic, which ensures that
numerical trajectories possess properties similar to those of the ana-
lytical Hamiltonian dynamics. In particular, Hamiltonian dynamics
preserves volume in phase space and conserves the energy exactly,
which, together, ensure the preservation of any distribution, such
as the Boltzmann distribution, that is a function of the Hamilto-
nian alone. A symplectic integrator also preserves volume in phase
space but conserves a so-called “shadow” energy, which differs from
the actual energy by a modest O(Δt2

). Actually, this is not pre-
cisely correct—there is a “very small” drift in the conservation of the
energy over “very long” timescales.49 The very small error shrinks
dramatically, and the very long timescales expand dramatically as Δt
is reduced. In a plot of the actual energy, the fluctuations indicate the
O(Δt2

) error in the shadow energy, and an insignificant secular drift
indicates a sound integration. In practice, for a symplectic integrator,
it is adequate that the time step be not much smaller than that needed
to avoid drift. For one thing, the greatest error in the shadow Hamil-
tonian occurs in the less important high-frequency modes. Second,
temporal discretization error is typically much smaller than that due
to limited sampling. Of any integrator that employs only full force
evaluations, the Verlet integrator allows the largest stable time step
for a given computational effort.50

2. Multiple time stepping
Attaining larger time steps with a symplectic integrator is pos-

sible if the energy function is partitioned based on timescales and
the forces corresponding to shorter timescales are evaluated more
frequently. This numerical scheme,51 known variously as r-RESPA52

and the impulse method, is implemented in NAMD with up to three
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FIG. 8. NAMD scaling on the Summit supercomputer shows the performance
advantage of using stochastic velocity rescaling (blue line) over the Langevin
damping thermostat (red line), up to 20% faster for the same number of nodes.

levels of multiple time stepping, namely, bonded, short-range non-
bonded, and long-range nonbonded, e.g., 1 fs, 2 fs, and 4 fs. There
is a limit to the largest time step due to possible resonances between
the frequencies of the long-range impulses and natural frequencies
of the bonded interactions.53

3. Constrained dynamics
For constrained dynamics, NAMD uses an extension of Ver-

let known as SHAKE.54 This method is dynamically equivalent
to RATTLE,55 which is symplectic.56 More specifically, RATTLE
performs a post-processing on velocities, which is purely cosmetic,
in the sense that it affects only the output velocities, but has no effect
on the trajectory.57 In the NAMD implementation, only covalent
bonds to hydrogen atoms are allowed to be constrained, thereby
reducing the frequencies of the fastest bonded interactions while
avoiding any additional parallel communication, since each cluster
of atoms to be constrained is in close enough proximity to be kept
together on a single processing element. A consequence of removing
these hard degrees of freedom by means of holonomic constraints is
the possibility to utilize longer time steps to integrate the equations
of motion. Generally, the use of SHAKE requires an iterative process
to satisfy all constraints. To rigidify water molecules, the constrained
equations of motion are solved analytically, employing a formulation
known as SETTLE.58

4. Stochastic dynamics
Commonly used to simulate a heat bath, the Langevin dynam-

ics implementation of NAMD is based on a second-order accu-
rate extension of Verlet, known as the Brooks–Brünger–Karplus
(BBK) scheme.59 A less computationally demanding approach
incorporated in NAMD and referred to as stochastic velocity rescal-
ing60 leans on a stochastic process to infer the rescaling parameter.
NAMD also employs Langevin dynamics to control piston fluctua-
tions for controlling pressure in the context of the Langevin piston
method.61

B. Thermostats and barostats
NAMD provides mechanisms to control temperature and pres-

sure in a way that generates the correct ensemble distribution.

For isothermal simulations, thermostat control is provided by
Langevin dynamics or, alternatively, by stochastic velocity rescal-
ing.60 Langevin dynamics is advantageous for parallel scaling since
no additional communication is required. Moreover, the friction
term that appears in the Langevin equation tends to enhance
dynamic stability. The method also lends itself to a great deal of
flexibility, where different parts of the computational assay, e.g., the
solute and the solvent, can be handled using different coupling coef-
ficients defined on a per-atom basis. However, the computational
cost of the integration is increased with respect to the basic Verlet
implementation due to the need for a Gaussian-distributed random
number for each degree of freedom and at every time step.

NAMD provides a less costly alternative in the form of the
stochastic velocity rescaling method,60 which is an inexpensive
stochastic extension of the weak-coupling Berendsen thermostat,62

requiring just two Gaussian-distributed random numbers for every
rescaling of the velocities. The method has the virtue of being
less disruptive to the underlying dynamics than Langevin dynam-
ics, conserving both holonomic constraints and linear momentum.
However, each rescaling involves a global broadcast of the rescal-
ing parameter. Rescaling should not be done more often than the
largest time step employed in the simulation and can in practice be
done less often, corresponding to the update of the domain decom-
position of the cell, which typically occurs every 20 time steps. The
overall reduction in computational effort results in up to a 20% per-
formance improvement for parallel, GPU-accelerated simulations,
as demonstrated by the parallel scaling benchmarks on the Sum-
mit supercomputer at Oak Ridge National Laboratory depicted in
Fig. 8.

Isothermal–isobaric simulations are handled in NAMD with
an implementation of the Langevin piston algorithm,61 which
combines the Hoover constant-pressure equations of motion63,64

with piston fluctuations controlled by Langevin dynamics.61 (Ref-
erence 64 details the difference between the Hoover formulation
and the original Nosé–Andersen equations.65,66) The resulting equa-
tions of motion were independently proposed in another work,
which proved that the correct ensemble is generated.67 To perform
MD simulations in the isothermal–isobaric ensemble, the Langevin
piston barostat must be used in conjunction with either of the
aforementioned thermostats.

V. ELECTROSTATICS
Evaluation of electrostatic interactions represents a significant

component of the computational effort in MD simulations. In this
section, we review the algorithms implemented in NAMD to handle
electrostatic forces, in particular, their long-range nature.

A. Periodic electrostatics
NAMD supports periodic boundary conditions, or PBCs, with

periodicity in one, two, or three directions, as well as nonperiodic
simulations. Periodicity gives rise to forces resulting from infinite
sums of image charges. For periodicity in two or three directions,
these forces are not well defined, the net force depending on the
ordering of the terms. To have a well defined force, it is necessary
to be more precise about the limiting process. The best such con-
struction envisions a sphere of complete periodic cells and considers
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the limit as its radius goes to infinity. The result is the classic Ewald
model68 plus a dipole term, the coefficient of which depends on the
dielectric constant of the surroundings. Such a term seems inadvis-
able for solvated biomolecules, so a so-called “tin foil” boundary
is assumed to ensure that it is equal to zero. For a system with a
nonzero net charge, the limiting process remains valid—provided
that a neutralizing uniform background charge is introduced, which
has no effect on forces but introduces a constant correction to the
electrostatic energy per periodic cell.69

B. Ewald summation
The energy and forces associated with the Ewald sum represent

a significant part of the computational effort in an MD simulation.
Ewald summation decomposes the Coulomb interaction kernel into
a short-range part plus a long-range part, based on the error function
erf, 1/r = erfc(βr)/r + erf(βr)/r, where erfc is the complemen-
tary error function. The short-ranged first term gives rise to a real-
space summation between nearby pairs of atoms. The long-ranged
and bounded second term gives rise to a summation of interactions
between the charge densities of the unit cell and all of its periodic
images, which converges rapidly in reciprocal space after applying
a Fourier transformation. The parameter β is chosen to minimize
the computational effort, yielding an operation count proportional
to N3/2.70

1. Smoothed particle–mesh Ewald
NAMD reduces the operation count to O(N log N)33 by

employing the smoothed algorithm.71 PME achieves this speedup
by replacing the complex exponential in the reciprocal space sum
with a B-spline interpolant, which yields an approximation on a grid
amenable to the use of the FFT.

2. Implementation of particle–mesh Ewald
To enhance the performance of PME, NAMD tabulates quan-

tities used in the PME energy calculation and interpolates from
these quantities, thereby avoiding the calculation of expensive tran-
scendental functions, erfc and exp, during the simulation. The
exact details, however, depend on the computer. In the CPU ver-
sion of NAMD, cubic Hermite interpolation results in an energy
function with continuous first derivatives, and its gradient is used
to calculate forces. Conversely, the GPU version utilizes a linear
interpolation of the force and an additional linear interpolation of
the energy when needed for output. Having continuous forces is
important for minimization and crucial for dynamics. Furthermore,
having a force that is a gradient is equally crucial for Hamiltonian
dynamics.

3. Performance of particle–mesh Ewald
The FFTs calculated by PME pose a challenge to parallel scal-

ing due to communication requirements. A one-dimensional pen-
cil decomposition of the three-dimensional FFT improves the scal-
ing for larger assemblies of atoms over the two-dimensional slab
decomposition originally supported by earlier versions of NAMD,
where the FFTW library is employed to calculate the constituent
FFTs on CPU cores. GPUs can be used with PME to calculate the
spreading of charge from atoms to grid points and the gathering

of the force from grid points to atoms. This use of GPU accelera-
tion can outperform the CPU version when one doubles the grid
spacing and increases the order of interpolation from 4 to 8, which
maintains the expected accuracy and simultaneously increases the
arithmetic intensity of the GPU while reducing the communica-
tion bandwidth by a factor of 8. There is also a version of PME
for single-node MD simulations, which implements all kernels on
the GPU and employs the NVIDIA cuFFT library for the FFT
calculation. The performance of PME in the context of the adap-
tive, asynchronous programming model Charm++ is discussed in
Sec. II.

4. Conservation of momentum
The best known fast methods for electrostatics are all based on

a gridded approximation72 and, therefore, compute energies that are
not translation-independent. Consequently, the total linear momen-
tum is not expected to be conserved. NAMD, however, provides a
simple device73 that conserves momentum without incurring energy
drift of any significance (comparing to Sec. IV of Ref. 71).

C. Multilevel summation method
For simulations that are not periodic or periodic in only two

directions, the use of FFT is less efficient. Additionally, FFT does
not parallelize very well for very large molecular objects simulated
on a large array of processors. These drawbacks are overcome by
the multilevel summation method (MSM), which generalizes the
basic idea of PME by decomposing the Coulomb interaction kernel
into two or more parts of increasing length scale. The intermediate
parts are approximated on meshes/grids of increasing coarseness,
and these intermediate computations are performed in real space
rather than in reciprocal space, exploiting the finite range of the
intermediate parts of the kernel. The long part, of infinite range, is
on a grid coarse enough for the computation to be carried out effi-
ciently by an FFT or even directly. In practice, instead of erf(βr)/r, a
softened kernel is employed,74 which has the virtue of creating short-
range and intermediate-range kernels that are exactly zero beyond a
given cutoff. NAMD implements MSM based on the use of piecewise
polynomial interpolation having continuous first derivatives.75

D. Treatment of induced polarization
In addition to the simpler, pairwise additive force fields with

fixed electric charges featured in the program, NAMD offers an
extension that models induced electronic polarization using a clas-
sical Drude-oscillator approach.5,13 Potential functions that rep-
resent electrostatic interactions in terms of fixed effective partial
charges are clearly limited by their ability to provide a realistic and
accurate representation of both microscopic and thermodynamic
properties, most notably when induced electronic polarization is
expected to play a significant role. One approach to incorporate
these effects is the classical oscillator model introduced by Drude,76

which addresses induction phenomena by introducing an auxil-
iary charged particle attached to each polarizable atom by means
of a harmonic spring.13 One noteworthy advantage of this model is
that it preserves the simple particle–particle Coulomb electrostatic
interaction employed in pairwise additive force fields, allowing an
implementation that is computationally simple and effective. The
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development and parametrization of the Drude force field over the
last 15 years now includes water, ions, proteins, lipids, nucleic acids,
and carbohydrates.77,78 To avoid the computationally prohibitive
self-consistent field (SCF) procedure, which is normally required
to treat induced polarization, an extended Lagrangian with a dual
Langevin thermostat scheme applied to the Drude-nucleus pairs has
been developed.5,13 This approach enables the efficient generation of
classical trajectories that are near the SCF limit. To achieve SCF-like
dynamics, it is critical that the cold thermostat act on the atom-
Drude oscillator pairs rather than on the Drude particles directly.13

The implementation in NAMD is achieved by separating the dynam-
ics of each atom-Drude pair with coordinates in terms of the global
motion of the center of mass and the relative internal motion of the
oscillator. This implementation has made possible the efficient simu-
lation of very large molecular systems accounting for through-space
induction phenomena.5

E. Generalized Born implicit solvation
NAMD features alternatives to an explicit description of the

environment, chief among which is the generalized Born implicit
solvent (GBIS) model.79 GBIS is a fast, albeit approximate, model
for the calculation of electrostatic interactions within a solvent
described as a dielectric continuum by means of the Poisson–
Boltzmann equation. It allows large molecular objects to be simu-
lated at a fraction of the cost of a model that would include explicit
solvent molecules and is available in both the CPU and GPU versions
of NAMD.47,80

VI. THE COLLECTIVE VARIABLES MODULE
The collective variables module, or Colvars, is a contributed

software library, which supports enhanced-sampling methods in a
space of reduced dimensionality.6 Since its introduction as part of
NAMD version 2.7, Colvars has provided the computational plat-
form for most of the enhanced-sampling methods listed in Sec. VII
and other derived methods.81 It is written primarily in C++ and
included in the official source code as well as precompiled NAMD
builds.

A. Principles of a biased simulation with Colvars
Simulations using methods implemented by Colvars require

the end-user to choose and define two entities, namely, (i) at least
one collective variable (CV) (colvar), which is a function of atomic
coordinates, and (ii) a method that modifies the dynamics of the
CV, i.e., a bias. There can be of course multiple variables or biases
defined simultaneously. The Colvars module offers many choices of
both variables and biasing methods, ranging from massively parallel
compiled code to arbitrary functions chosen by the user at runtime;
both are described hereafter (Fig. 9).

B. Using VMD to prepare or analyze simulations
Setting up Colvars calculations with NAMD is now facili-

tated by the interactive Colvars dashboard in VMD, which provides
helpers for preparing a configuration describing the CVs. The con-
figuration can be saved to a file that is directly readable by NAMD for
biased simulations. The Colvars dashboard also facilitates the anal-
ysis of NAMD simulations, regardless of whether these were carried
out with Colvars. It is distributed with VMD, starting with version
1.9.4.

C. Parallel performance
When NAMD is run in parallel on multiple nodes, only one

instance of the Colvars module is run on the first, master node. This
requires all-to-one communication of selected atomic coordinates,
or their partial contributions to the CVs, and one-to-all commu-
nication of the biasing forces on the atoms. Updating the Colvars
module is executed asynchronously alongside the force calculation
by NAMD, resulting in efficient latency hiding.

Two types of parallelization schemes are implemented in
Colvars/NAMD, addressing, respectively, cases of CPU and commu-
nication bottlenecks. On multicore platforms that support shared-
memory parallelism, calculation of multiple CV components and
biases is distributed over all cores of the first node. This is helpful
when several computationally expensive variables or components
are defined. Separately, when CVs depend on atomic coordinates
only via the centers of mass of groups of atoms, the centers of mass

FIG. 9. Graphical representation of a
Colvars configuration.
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are calculated in parallel using NAMD functions. There, a single
biasing force is computed for each group and is distributed onto
the constituent atoms only within each node that carries them. This
arrangement achieves parallelism without communicating the entire
molecular system over all nodes, preserving the capability of NAMD
to treat very large computational assays. Similarly, biasing forces can
also be applied indirectly to atoms via volumetric maps, as will be
detailed hereafter.

D. Scripting interface
Colvars takes advantage of the NAMD embedded scripting

interpreters to enable custom extensions without the need to write
and compile C++ codes. These custom extensions may take two
forms: (i) directives in the main NAMD script and (ii) callbacks to
user-defined functions. Scripting directives are typically employed
to control simulation workflows based on CVs, forming the basis for
the implementation of numerical schemes such as the string method
with swarms of trajectories82 or the adaptive multilevel splitting
algorithm.83,84 The primary scripting language of Colvars in NAMD
is Tcl. Colvars can also be called from a Python script indirectly
through the Tcl interface. In response to a growing demand from
a broad community of users, Python objects will be made available
in the near future, in conjunction with improved Python support by
recent NAMD builds.

Complementary to workflow control, user-defined functions,
i.e., callbacks, can also be used by the Colvars library. Such scripted
functions provide the framework for the implementation of custom-
tailored CVs and biasing algorithms without the necessity to recom-
pile NAMD. Compared with tclForces and tclBC, Colvars-based
callbacks carry the advantage that custom variables and biases are
typically calculated in low-dimensional spaces. They have, there-
fore, minimal performance overhead because atom-level processing
is done by C++ functions of Colvars and NAMD. A simpler but
slightly less flexible way to define variables as custom mathematical
functions of existing components is provided using the lightweight
expression parsing library Lepton written by Eastman.85 Using Lep-
ton requires no knowledge of programming at all as new variables
can be expressed in conventional mathematical notation. Gradients
of such custom-tailored variables are calculated transparently using
automatic differentiation. The example configuration below defines
a CV based on two components, namely, the scalar distance, d,
between two atom groups and the vector distance, r, between the
same groups. The value of the CV is the unit vector joining the two
groups, the individual scalar components of which are calculated by
three custom functions.

colvar {
name myUnitVectorColvar
# Uses two predefined basis functions,
# scalar and vector distance
distance {

name d
# This quantity is referred to by its
# name ’d’ in custom functions
group1 { atomNumbers 1 2 3 4 }
group2 { atomNumbers 5 6 7 8 }

}

distanceVec {
name r
# Scalar components of the vector r are accessed
# as ′r1′, ′r2′, and ′r3′

group1 { atomNumbers 1 2 3 4 }
group2 { atomNumbers 5 6 7 8 }

}
# Together, the 3 instances of customFunction
# define a 3-vector colvar
customFunction r1 / d
customFunction r2 / d
customFunction r3 / d
}

E. Projecting atomic forces on collective variables
A key feature of Colvars is the projection of total atomic

forces onto specific CVs, forming the basis of the classic thermo-
dynamic integration (TI) free-energy estimator.86 This estimator is
typically used in the adaptive biasing force (ABF) method.87–89 Start-
ing with NAMD 2.13, it can also be used in combination with other
methods, including steered MD (SMD),90 umbrella sampling,91 and
metadynamics92 (see Sec. VII).6

Because the projection of total forces requires the fulfillment
of certain mathematical conditions,88,93 the TI estimator cannot be
used directly in some cases. However, variables can still be coupled
to an extended Lagrangian system, the forces of which approxi-
mate then the true total forces of the variables for estimating the
free energy, as is done, for instance, in the extended-system ABF
algorithm,94 implemented in Colvars.95 The free energy can then
be recovered from unbiased estimators.95,96 In two- and three-
dimensional cases, the free energy is now automatically computed
based on estimates of its gradients. To work around the problem that
the inexact numerical estimate of the gradients is not generally the
gradient of a scalar field,97 the free-energy landscape is obtained as
the solution of a Poisson equation, stating that the Laplacian of the
free energy is equal to the divergence of the gradient estimator, sub-
ject to appropriate boundary conditions (periodic or non-periodic
depending on the CVs in use).

The collection of total forces requires that Colvars computa-
tions are carried out at the end of the force calculation by NAMD,
which would introduce an additional latency. To circumvent this
shortcoming, total forces computed at the previous time step, rather
than the current one, are utilized by Colvars. This approach is
specific to NAMD and is not currently used by Colvars in other
MD engines. The one-step lag is inconsequential for methods that
rely on force averages over many time steps. This detail must,
however, be kept in mind when the time series of total forces is
important.

A second noteworthy detail is that the total forces computed
by NAMD include contributions both from the force field and
any externally applied forces. Colvars automatically subtracts its
own biasing forces under the most typical scenarios, when the TI
free-energy estimator is employed by a single enhanced-sampling
method, e.g., ABF. Otherwise, it should be noted that any external
restraints will be accounted for by the TI free-energy estimator,86,93

thereby potentially introducing a bias.
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FIG. 10. Gradients of the Distance to Bound Configuration (DBC) coordinate for
a phenol molecule bound to T4 lysozyme. The reference pose of phenol heavy
atoms is shown in light cyan. The arrows are proportional to the derivatives of the
CV with respect to atomic Cartesian coordinates. The small gradient contributions
on protein Cα carbons illustrate the purely roto-translational counter-forces exerted
on the receptor when biasing forces are applied to a DBC coordinate.

F. New and notable coordinates
The basis set of coordinates provided by the C++ Colvars

library has been extended with spherical polar coordinates,
employed, for instance,98 in a restraint scheme for standard bind-
ing free-energy calculations,99 dipole-moment magnitude and direc-
tion,100 and geometric path-based variables.101 Independently, path-
collective variables102 are available in Tcl as scripted functions.
The variable that calculates coordination numbers (coordNum) has
quadratic complexity in the number of atoms involved, with a poten-
tially high computational cost. It can now be computed at a tun-
able level of approximation using pair lists, drastically improving its
performance.

Any CV implemented by Colvars can be calculated in a moving
frame of reference tied to a set of atoms in the molecular system. This

way, any external degree of freedom can be turned into an internal
degree of freedom of the relevant subsystem (the reader is referred
to Ref. 6 for further details). This approach facilitates the description
of the relative motion of molecular objects and is the foundation of
the Distance to Bound Configuration (DBC) coordinate for absolute
binding free-energy calculations, which measures the deviation of
translational, rotational, and conformational degrees of freedom of
the ligand (see Fig. 10).81

Certain phenomena, such as protein–solvent interaction or
membrane dynamics, require dynamical selections of the relevant
atoms. Toward this end, volumetric maps (see Sec. XIII) may be
used to define CVs that, for instance, “count” the number of atoms
within an arbitrary region of space. The recently introduced Multi-
Map variable103 utilizes this approach to study the deformation of
lipid membranes over biologically relevant scales, as well as solvent-
density fluctuations in confined cavities (see Fig. 11). This function-
ality will also serve as the basis for new sampling methods based on
electron density maps (see Sec. XIV).

G. New and notable biasing methods
In addition to the biasing methods originally described in the

Colvars reference,6 other notable methods have been introduced
more recently, particularly in the context of introducing experimen-
tal constraints into the simulation. Leveraging tools added to NAMD
for other replica-exchange algorithms (see Sec. X), the multiple-
walker (MW) version of ABF104 has been introduced for free-
energy calculation encumbered by hidden barriers (see Sec. VII).105

Two new methods target directly a certain probability distribu-
tion via harmonic restraints on the probability distribution com-
puted over multiple copies of certain atoms106 or by the more
general ensemble-biased metadynamics method.107 Alternatively,
experimental restraints may be enforced following the maximum-
entropy principle as a constant-force, linear restraint.108 The mag-
nitude of the force can be learned automatically within the simu-
lation, such as in the adaptive linear bias (ALB) method109 and in
the restrained-average dynamics (RAD) method,110 which further
reduces nonequilibrium effects by incorporating the experimental
uncertainty in the biasing forces.

FIG. 11. CVs for solvent reorganiza-
tion based on volumetric maps. Snap-
shot of a hydrophobic cavity containing
a varying number of water molecules
(a). A volumetric map (red transparent
contour) is used to define a continu-
ous variable Nw measuring the number
of molecules in the cavity. Trajectory of
a short SMD simulation on Nw (red),
compared to the number of molecules
counted with VMD (blue) (b). PMF of
Nw , computed over ∼400 ns. The use
of gridForces maps (see Sec. XIII)
in Colvars allows the development of
methods for enhanced sampling of fully
dynamic aggregates, such as water den-
sities and lipid membranes103 (c).
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VII. ENHANCED SAMPLING METHODS

NAMD provides a large set of methods and algorithms to
enhance, boost, and accelerate the natural molecular motions dur-
ing MD simulations. Depending upon the context and implemen-
tation, several of these methods may be used to enhance confor-
mational sampling while remaining consistent with a Boltzmann
equilibrium distribution. A broad set of approaches, referred to as
Hamiltonian tempering,111 aim at enhancing configurational sam-
pling via a modification of the underlying potential energy func-
tion of the system. Those include accelerated MD112,113 (aMD)
and its Gaussian variant114 (GaMD), which, as will be detailed
in Sec. VIII, attempt to parametrically “lift” the energy floor of
the potential function to make the energy wells more shallow yet
without perturbing the energy barriers. Another method is solute
tempering (REST2),115 which aims at enhancing sampling by scal-
ing the solute–environment interaction energy to lower the bar-
riers that separate conformational states. Hamiltonian tempering
methods effectively attempt to smooth the potential energy sur-
face in order to enhance sampling. Hamiltonian tempering meth-
ods can generate Boltzmann-distributed configurations either via
a post-hoc re-weighting analysis or by generating the simula-
tion within a Hamiltonian tempering replica-exchange scheme (see
Sec. X).

Studies of complex conformational transitions occurring on
long timescales often proceed by identifying a geometric transfor-
mation associated with a general-extent parameter,116 ξ(x), often
referred to as the reaction-coordinate model117 and formed by col-
lective variables.88 Several enhanced-sampling algorithms16,118,119

aimed at encouraging the exploration of relevant regions of config-
urational space along such a user-chosen reaction-coordinate model
are available in NAMD. One of the most direct choices to boost
the motion of a system along this reaction-coordinate model con-
sists in applying a time-dependent non-equilibrium perturbation
via SMD.90 In principle, such non-equilibrium SMD trajectories
can be used to determine the equilibrium free energy via post-
hoc analysis based on the Jarzynski identity,120 although reach-
ing convergence may be challenging in practice. By far, the most
widely used approaches to map the free-energy landscape along
the reaction-coordinate model of complex biomolecular systems
rely on configurational sampling in the presence of some biasing
potential, following the general statistical technique of importance
sampling,16,118,119 which seeks to estimate a particular distribution
by sampling from a different distribution. The Colvars module,6

described in Sec. VI, serves as a repository for these importance-
sampling approaches, as well as a toolkit for the implementation of
new numerical schemes. Among the widely used algorithms associ-
ated with geometric transformations that are available in Colvars are
umbrella sampling91,121 (US), metadynamics92,122,123 (MtD), well-
tempered metadynamics124 (WT-MtD), and ABF87,89 and its differ-
ent variants95,96,125,126 (see Fig. 12).

Importance sampling approaches such as US, MtD, and ABF,
which promote configurational exploration by means of a bias along
a chosen direction ξ(x), remain plagued by slow degrees of free-
dom in directions orthogonal to ξ(x).127 For instance, misrepresen-
tation of the true conformational transformation associated with the
molecular transition in terms of a naive reaction-coordinate model,
ξ(x), consisting of a single collective variable, may often result in

FIG. 12. Sampling of a rugged free-
energy landscape. Boltzmann sampling
favors low-energy regions (a). Free-
energy barriers can be overcome by
depositing harmonic potentials, as is
done in US (b); by applying a time-
dependent bias that yields a Hamilto-
nian bereft of an average force along
ξ(x), as is done in ABF, or its extended-
Lagrangian variant, eABF (c); or by
flooding valleys by means of Gaus-
sian potentials, or hills, as is done in
MtD (d). Combination of MtD and eABF,
meta-eABF, concurrently shaves free-
energy barriers and floods valley (e). To
enhance ergodic sampling, a multiple-
walker extension of MtD (f), ABF or eABF
(g), and meta-eABF (h) has been imple-
mented.
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FIG. 13. Potential of mean force
characterizing the permeation of a 1–
palmitoyl–2–oleoyl-phosphatidylcholine:
cholesterol model membrane by 2′,
3′–dideoxyadenosine, obtained using
ABF (red line) and meta-eABF (blue
line) (a). The reaction-coordinate model
is the projection onto the z-axis of the
distance separating the center of mass
of the permeant from that of the lipid
bilayer (b).

severe sampling nonuniformity.118,119 While it is never possible to
formally guarantee a complete ergodic sampling, multiple-walker
(MW) strategies, e.g., MW-MtD128 or MW-ABF,104,105 are available
to address this issue. A common denominator is the combination of
information accrued by the different walkers, namely, the Gaussian-
potential weights and widths in MW-MtD, and the free-energy
gradients in MW-ABF. Those algorithms, directly embedded in
Colvars,6 can be brought to a higher level of sophistication by means
of Tcl scripting. For instance, Darwinian selection rules clone good
walkers that cover large stretches of ξ(x) while eliminating the less
efficient, kinetically trapped ones.105 A number of replica-exchange
strategies built on the powerful multiple-copy algorithm129 (MCA)
infrastructure of NAMD may be used (see Sec. X). These strate-
gies include multi-canonical temperature and Hamiltonian tem-
pering replica-exchange MD111,130–132 (REMD) and bias-exchange
window-swapping umbrella sampling133 (BEUS). Available MCA
sampling algorithms may be extended via the Tcl scripting
interface.

All the sampling methods described above rely on a standard
microscopic isothermal MD propagator to evolve the atomic config-
uration of the system according to the Newton classical equations
of motion. Another type of isothermal propagator, which leans on a
combination of Metropolis–Hastings Monte Carlo (MC), with pro-
posed moves generated by non-equilibrium MD (neMD) switches134

may be employed to further enhance conformational sampling. This
hybrid neMD-MC propagator may be combined with any num-
ber of enhanced sampling functionalities of NAMD, e.g., ABF.135

At the heart of the hybrid propagator is the neMD switch, dur-
ing which the molecular system is evolved under the influence of
a time-dependent Hamiltonian that is perturbed for a brief period
of time. The resulting configuration at the end of the neMD trajec-
tory is then accepted or rejected according to a Metropolis criterion.
A symmetric two-end momentum reversal prescription is used at
the end of the neMD trajectories to guarantee that the algorithm
obeys microscopic detailed balance to yield the proper equilibrium
Boltzmann distribution.134 The hybrid neMD-MC sampling propa-
gator with the Hamiltonian tempering scheme aMD and REST2115 is
available in NAMD in the form of Tcl scripting. Additional variants
of neMD-MC involving the exchange of molecular species—e.g.,
lipid swapping in membrane models, may be implemented through
the alchemical free-energy perturbation (FEP) module and Tcl
scripting.

As an illustration of an enhanced-sampling application with
NAMD, we have simulated the permeation by a drug-like molecule,
2′, 3′–dideoxyadenosine (DDA), of a membrane model consist-
ing of 1–palmitoyl–2–oleoyl-phosphatidylcholine:cholesterol mix-
ture at a 2:1 ratio, employing both the ABF and its recent variant
that combines MtD92,122,123 and the extended-Lagrangian version of
ABF,95,96 coined meta-eABF.7,126 The potential of mean force (PMF)
characterizing the permeation events was obtained by discretizing
the reaction-coordinate model, chosen as the Euclidian distance
between the center of mass of DDA and that of the bilayer pro-
jected onto its normal, z, into bins 0.1 Å wide, wherein samples of
the local force were accrued. To improve the efficiency of the free-
energy calculation, the reaction pathway spanning−45 Å ≤ z ≤ +45 Å
was stratified into nonoverlapping windows. However, whereas nine
windows were utilized with the ABF algorithm, the aggressive sam-
pling of MtD in meta-eABF simulation allows a coarser stratification
scheme to be employed, with only three windows in this particular
instance. Details of the simulations can be found in Refs. 136 and
126. Compared to Ref. 136, sampling has been increased to 4.5 μs to
reduce to less than 0.4 kcal/mol the hysteresis in the PMF between
the upper and the lower leaflets. The meta-eABF free-energy pro-
file was obtained in 1.5 μs, though as early as 0.8 μs, the hysteresis
was equal to kBT. As shown in Fig. 13, the two PMFs almost per-
fectly overlap, differing only by 0.1 kcal/mol at the barrier (z = 0) and
by 0.2 kcal/mol in the humps of the interfacial region (z = ±24 Å).
The virtual absence of difference between the PMFs determined with
ABF and meta-eABF underscores the efficiency of the latter algo-
rithm, being able to map a complex free-energy landscape 3–6 times
faster than the former.7,126 It is also worth noting that this class of
enhanced-sampling methods based on time-dependent biases act-
ing on CVs allows kinetic models to be built, obviating the need for
additional simulations. For further details, the reader is referred to
Refs. 137 and 138.

VIII. IMPLEMENTATION OF ACCELERATED
MD IN NAMD

Accelerated MD (aMD) pertains to the family of enhanced-
sampling methods discussed in Sec. VII and smoothens the
potential energy landscape of a system through adding a boost
potential, Uboost(x), to the original potential, U(x), whenever the
latter falls below a certain threshold E. In the original version of
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aMD,139 Uboost(x) takes the following form when U(x) < E: Uboost(x)
= [E −U(x)]2/[α + E −U(x)], where α is a user-defined accel-
eration factor that fine-tunes the modified potential energy land-
scape, U∗(x). The smaller the α, the more flattened the U∗(x)
becomes, while as α increases, U∗(x) asymptotically approaches
the original potential, U(x). The ensemble average ⟨A ⟩ of an
observable A(x) can be recovered through reweighting: ⟨A ⟩
= ⟨A(x) exp [βUboost(x)]⟩∗/⟨exp [βUboost(x)]⟩∗. Here, β = 1/kBT,
where kB is the Boltzmann constant and T is the temperature,
and ⟨⋯⟩∗ represents the ensemble average with the modified
potential.

Available since the 2.8 release of NAMD,113 the above ver-
sion of aMD has been applied to investigate a range of biological
objects, such as lipid mixtures,140 the maltose binding protein,141

the ubiquitin ligase,142 and the dopamine transporter.143 The over-
head for performing an aMD simulation, relative to a standard MD
run, is only ∼10% on average.113,114 However, a major limitation
has been the convergence of the reweighted ensemble average—the
numerical evaluation of equations like the previous one is known
to be challenging due to the strong non-linearity of the exponential
terms.144,145 Much effort has been invested to address this reweight-
ing problem in aMD.146,147 Starting with version 2.12, the Gaus-
sian accelerated MD (GaMD) method148 has been implemented in
NAMD.114 GaMD differs from the original aMD version in three
main aspects: First, the boost potential in GaMD adopts a harmonic
form when U(x) < E: Uboost(x) = 1/2k [(E −U(x)]2, where k is a
force constant. Second, GaMD employs a second-order cumulant
expansion to perform reweighting, which is more accurate than an
exponential average when Uboost(x) follows a near-Gaussian distri-
bution.146 Third, unlike in the original version of aMD, where the
end-user must provide all parameters, GaMD automatically deter-
mines key parameters based on statistics collected from a series of
short preparative simulations. The user only needs to specify the
length of the preliminary runs and σ0, the upper limit for the stan-
dard deviation of the boost potential. A smaller σ0 tends to enforce a
more stringent requirement on the normality of the boost potential
distribution.

In both the original aMD and GaMD implementations, three
modes for applying the boost potential are available: (i) boosting the
dihedral potential, (ii) boosting the total potential, and (iii) boosting
both, i.e., the so-called “dual-boost,” with separate parameters con-
trolling the boost level for each term. Modes (i) and (iii), in which
the dihedral potential is singled out to enable direct manipulation
of the torsional degrees of freedom, are used most frequently. Over-
all, the dual-boost mode affords the highest boost potential, which
may produce the greatest effect of enhanced sampling, but simulta-
neously poses the biggest challenge for reweighting. With the GaMD
implementation, the dual-boost mode has been applied on molecu-
lar objects ranging from short peptides to G-protein coupled recep-
tors, with normality tests revealing minimal anharmonicity of the
resulting boost potential distributions.148

Unlike many other enhanced sampling methods, aMD does not
require a predefined reaction-coordinate model. This feature con-
fers to it the flexibility to explore the available conformational space
in a somewhat “unrestrained” manner. In particular, it renders the
method suitable for complex objects without knowledge or obvious
choices of collective variables. However, this very feature also means
that the sampling effort in aMD may be less focused along a given

reaction-coordinate model, which, in turn, hampers convergence of
the resulting free-energy profile. In order to address this issue, a
promising and actively pursued direction is the combination of aMD
with other enhanced-sampling methods, which can be applied either
sequentially149,150 or simultaneously.135,151

IX. ALCHEMICAL FREE-ENERGY CALCULATIONS
Alchemical free-energy calculations16,118,119 are aimed at trans-

forming chemical species through a virtual process involving inter-
mediate species that are unphysical. Many types of calculations are
possible and supported by NAMD, depending on the transforma-
tion process linking the end states, altering either the intermolecular
interaction as a whole or the individual force field parameters within
a single-152 or dual-topology153 framework (see Fig. 14). Dual-
topology indicates that the covalent structure of the two alchemi-
cal end states is intact and present at all stages of the calculations,
while single-topology is meant to indicate that a covalent scaffold
common to the two end states is being used. The choice of one
or both of these frameworks can have significant effects on statis-
tical efficiency, and one or the other might intuitively seem better
suited for a particular problem.118 Indeed, for computational effi-
ciency, the transformation is often carried out on a hybrid molecule
formed by a single-topology common scaffold attached to two dis-
tinct dual-topology moieties. Nonetheless, by virtue of free energy
being a state function, both the single- and dual-topology paradigms
are valid approaches. While the single-topology framework gen-
erally seems to imply a lesser perturbation, its setup and imple-
mentation require particular care compared to its dual-topology
counterpart.

NAMD supports a wide variety of methodologies for com-
puting the free-energy difference between alchemical end states.

FIG. 14. Single- and dual-topology frameworks for alchemical transformations in
NAMD. When the reference and the target states are chemically different and their
respective charge distributions are distinct, a minimum common substructure is
sought in the dual-topology paradigm [(a) and (c)]. The two topologies coexist
in a hybrid compound, albeit do not interact, either directly (through nonbonded
contributions) or indirectly (through bonded contributions). Unchanged (black),
incoming (blue), and outgoing (magenta) atoms are defined in three partitions.
In some extreme cases, when the end states are chemically distinct and no com-
mon substructure can be found, the two topologies are introduced independently,
and geometric restraints are enforced to prevent them from drifting apart from
each other. In the single-topology paradigm [(b) and (d)], holonomic constraints are
applied to the common substructure (black), and dummy particles are introduced
to describe the alternate state. As the transformation proceeds, these dummy
particles become real, interacting atoms. To avoid the creation of an unphysical
net force, the alternate state is only partially chemically bonded to the rest of the
molecule.
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The two most conventional approaches are thermodynamic inte-
gration86 (TI) and energy difference methods based on so-called
free-energy perturbation154,155 (FEP). In FEP, the free-energy change
between the reference state, 0, and the target state, 1, writes, ΔA
= −1/β ln⟨exp(−βΔU)⟩0. Here, ΔU is the perturbation, which is
the difference between the potential energy of the reference state
and that of the target perturbed state, and ⟨⋯⟩0 denotes an ensem-
ble average over configurations representative of the reference state.
In practice, even for modest perturbations, the transition between
the end states is stratified into nonphysical intermediates by means
of a transformation parameter λ to reduce the variance of the free-
energy estimate. Convergence of the free-energy calculation is inti-
mately related to the number of intermediates, ensuring suitable
overlap of the underlying configurational ensembles. In TI, the free-
energy change between the end states is expressed as an integral,
ΔA = ∫10 dλ ⟨∂ΔU/∂λ⟩λ, which, in practice, is also determined using
finite increments of the coupling parameter. Here, the number of
points is a trade-off between the accuracy of the numerical inte-
gral and the computational cost. To circumvent singularities arising
from particles appearing in a locus already occupied, for instance,
by solvent molecules, the Lennard-Jones potential is simultaneously
shifted and scaled,156 resulting in a smooth transition between the
chemical states. From a practical standpoint, the alchemical trans-
formation can be carried out in a sequential fashion from 0 to 1, or in
the opposite direction, by means of Tcl scripting, avoiding a restart
of NAMD between intermediate states. Under these premises, the
end-user takes advantage of NAMD performance on parallel archi-
tectures to handle the computational assay at a given value of the
coupling parameter λ.

An alternate view to FEP is to note that ΔU is essentially the
instantaneous work required to carry out particular perturbation

in question.157 Following Jarzynski,120 it is possible instead to define
a protocol such that the perturbation is carried out over a certain
amount of time in a fashion that disrupts the equilibrium. In this
case, the FEP equation154,155 still holds, but ΔU is instead replaced
by the observed work required to carry out the transformation
and the ensemble average represents initial conditions for multiple
perturbations—which is still an equilibrium ensemble. The potential
advantage of this approach is that it eliminates the need for strat-
ified intermediate states. However, the accuracy and efficiency are
highly contingent on the intrinsic timescales needed to carry out the
transformation effectively.

Assuming suitable computational resources, it is also possi-
ble to run the different intermediate states concurrently within the
multiple copy algorithm129 (MCA) infrastructure of NAMD (see
Sec. X). Optimally, each replica is handled by an array of com-
puting cores commensurate with the system size. The data gener-
ated in an alchemical transformation, either sequentially or con-
currently for all strata, are generally post-processed to obtain a
better estimator of the free energy than that of FEP, e.g., Ben-
nett acceptance ratio158 based on bidirectional free-energy calcula-
tions,157 as well as estimates of the associated statistical and sys-
tematic errors. For performance purposes, it might be desirable to
carry out the forward and the backward transformations concomi-
tantly. One possible option provided by NAMD is the interleaved
double-wide sampling algorithm,81 which switches the target value
of lambda on the fly to supply energy differences in both direc-
tions of change, which are necessary to calculate statistically optimal
free-energy estimators, in a single simulation. An interesting char-
acteristic of importance-sampling algorithms such as FEP and TI is
that they can be melded seamlessly with numerical schemes aimed
at improving ergodic sampling.118,119 Running simultaneously the

FIG. 15. Hamiltonian-exchange FEP calculations or FEP/(λ, H )–REMD (see Sec. X). The computational assay is cloned into replicas corresponding to the different strata
of the alchemical transformation whereby the interaction of a small molecule with its environment is progressively turned off. The configurations of adjacent λ-states, i and j,
are swapped periodically, and the proposed move is accepted following a Metropolis–Hastings criterion, p(λi → λj = min{1; e−β{[Uj(x,λj)−Ui(x,λj)]+[Ui(x,λi)−Uj(x,λi)]}}.
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different intermediate states of the alchemical transformation, it is
natural to combine the free-energy method with a replica-exchange
algorithm, e.g., Hamiltonian-exchange,131 temperature-exchange,130

or both.
REMD111,130–132 has proven to improve the convergence of

FEP calculations involving considerable reorganization of the sur-
roundings. The Hamiltonian-exchange or FEP/(λ, H )–REMD algo-
rithm has been introduced, primarily for ligand binding, wherein
replicas along the alchemical thermodynamic coupling axis, λ, are
spawned as a series of Hamiltonian–boosted copies along a sec-
ond axis to form a two-dimensional replica-exchange exchange
map (see Fig. 15).132 Aiming to achieve a similar performance at a
lower computational cost, a modified version of this algorithm has
been implemented, in which only the end states along the alchem-
ical axis are augmented by boosted replicas. The reduced FEP/(λ,
H )–REMD numerical scheme, with a one-dimensional unbiased
alchemical thermodynamic coupling axis, λ, is introduced in the
context of the generic MCA chassis of NAMD (see Sec. X). Differ-
ent Hamiltonian-tempering boosting schemes could be employed
to accelerate the convergence of the free-energy calculation, e.g., a
potential-energy rescaling of a selected subset of the computational
assay with REST2115 and the introduction of biases flattening the
torsional free-energy barriers.

Historically, alchemical transformations in NAMD were intro-
duced through the dual-topology framework,159 but a number of
applications, e.g., in drug discovery and in constant–pH MD,160 have
provided an impetus for the introduction of an alternate scheme,
now available in the free-energy module of the code. An effective
hybrid single-dual topology protocol has been designed for the cal-
culation of relative binding affinities of small ligands to a recep-
tor.161 The protocol has been developed as an expansion of NAMD,
which hitherto exclusively supported a dual-topology framework for
relative alchemical FEP calculations. In this protocol, the alchemi-
cal end states are represented as two separate molecules sharing a
common substructure identified through maximum structural map-
ping. Within the substructure, an atom-to-atom correspondence
is established, and each pair of corresponding atoms is holonomi-
cally constrained to share identical coordinates at all time through-
out the simulation. The forces are projected and combined at each
step for propagation. To enhance sampling of the dual-topology
region, the FEP calculations can be carried out within a REMD
strategy supported by the MCA framework of NAMD (see Sec. X),
with periodic attempted swapping of the thermodynamic coupling
parameter, λ, between neighboring states. This hybrid single-dual
topology scheme combines the conceptual simplicity of the dual-
topology paradigm with the advantageous sampling efficiency of the
single-topology approach.

X. MULTIPLE COPY/REPLICA ALGORITHMS
Numerical schemes that couple the dynamical propagation of

a set of copies of the computational assay of interest, referred here
to as “replicas,” offer powerful and flexible strategies to charac-
terize complex molecular processes. Such MCAs can be employed
to enhance sampling, compute reversible work and free energies,
as well as refine transition pathways. Widely used examples of
MCAs include temperature and Hamiltonian-tempering REMD,

i.e., T–REMD and H–REMD;130,131,133,162 alchemical FEP with
λ–replica-exchange, i.e., FEP/(λ, H )–REMD;132,163 umbrella sam-
pling with Hamiltonian replica exchange, i.e., US/H–REMD;164 and
the string method with swarms of trajectories (SMwST)82 to sample
conformational transition pathways.

In Sec. IX, we have mentioned the use of MCAs in the con-
text of FEP/(λ, H )–REMD calculations with NAMD (see Fig. 15).
Here, we outline how MCAs can be employed for SMwST simu-
lations, whereby a putative transition path between basins of the
conformational free-energy landscape can be refined. This pathway,
or “string,” consists of a set of m discrete conformations or “images.”
A set of CVs is introduced to reduce the dimensionality of the pro-
cess at hand (see Sec. VI). The swarms result from n MD trajecto-
ries started from a single image, combined to yield an average drift
and requiring communication between the n copies of that image.
The average drift for the different images is utilized to update the
string, following a redistribution of these images to remove any drift
tangential to the path. This re-parameterization step also implies
communication between the m images that form the string. The
images are then prepared for the next optimization cycle by perform-
ing restrained simulations with the CVs to their updated values. The
MCA implementation of this method utilizes m × n independent
replicas that intercommunicate once at each iteration.

A robust and general infrastructure has been built upon the
parallel programming system Charm++ upon which NAMD rests
to enable the implementation of a suite of MCAs for MD sim-
ulations (see Fig. 16). Multiple concurrent NAMD instances are
launched with internal partitions of Charm++ and located con-
tinuously within a single-communication world. Messages between
NAMD instances are passed by low-level, point-to-point commu-
nication functions, accessible through the Tcl scripting interface of
NAMD. The communication-enabled Tcl scripting provides a sus-
tainable application interface for the end-users to set up general-
ized MCAs without the explicit need to modify the source code,
thereby conferring to the present implementation both versatility
and massive scalability.

Representative applications of MCAs with fine-grained, inter-
copy communication structure, including global λ–exchange in
FEP/(λ, H )–REMD, window-swapping US/H–REMD in multidi-
mensional order-parameter space, and SMwST simulations, have
been implemented with Tcl scripting on top of Charm++. Once
Charm++ is initialized, each Charm++ processing element can
be logically mapped onto a designated local partition. When
Charm++/NAMD enters the inter-copy communication phase, all
localized processing elements are mapped back to a global state. Fur-
thermore, on leadership supercomputers, such internal partitions
can benefit from performance gains from the low-level machine-
specific communication library, such as the parallel active messag-
ing interface (PAMI) on IBM Blue Gene/Q165 or the user generic
network interface (uGNI) on Cray XK7.166

The Tcl interface of NAMD is intended to offer maximum
flexibility to the end-user for the implementation of MCAs with-
out touching the source code. For instance, through Tcl script-
ing, variables and expressions utilized initially to define options
can be changed dynamically in the course of the simulation. Said
differently, once the user-friendly Tcl communication commands
are built on top of the low-level, point-to-point communica-
tion functions, the end-user can design generic MCAs without
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FIG. 16. Generic implementation of MCA in the Charm++ RTS. Multiple NAMD instances run concurrently, and each of them is executed by an independent Charm++ RTS
(gray vertical lines). Replica exchange/inter-copy communications (red double arrows) are implemented through a Tcl scripting interface. comm_local denotes a local
internal Charm++ partition, dedicated to be the communication layer of a single trajectory run/NAMD instance. comm_cross denotes a global Charm++ communication
layer across all local partitions. A scripting interface of replica exchange is implemented with communication-enabled Tcl functions built on top of comm_cross.

modifying or adding a single line of C++. Within an MCA Tcl
script, inter-copy communications are executed by the Tcl repli-
caSend/Recv/Sendrecv functions on top of the Charm++ commu-
nication layer, and the end-user only needs to designate the com-
munication partners for each copy. A significant advantage of the
present Tcl-based MCA scheme is that the end-user can define vir-
tually any type of MCA through simple Tcl scripting as all the
parameters and biasing energy terms are already registered in the
Tcl-scripting interface of NAMD. For instance, in an absolute free-
energy calculation, the nonbonded scaling parameters for different
atom types can be wrapped into a single-parameter unit, which
will be exchanged along the entire alchemical reaction path. Sim-
ilarly, multiple orthogonal order parameters can be alternatively
exchanged in the context of a multidimensional US Hamiltonian
exchange.

XI. CONSTANT–pH MOLECULAR DYNAMICS
In constant-pH MD simulations, selected ionizable sites are

allowed to spontaneously change their protonation state as a func-
tion of time in response to the environment and the imposed pH.
This is an increasingly popular approach for directly probing dif-
ferent protonation states in biomolecules. Indeed, several methods
and implementations have been reported160,167–172 and employed
to study pH effects on molecular conformation,173 ligand bind-
ing,174,175 as well as enzymatic activity.176 In practice, how these
calculations are carried out and subsequently analyzed can depend
rather significantly on the specific methodology being used. The
implementation in NAMD retains as many characteristics of con-
ventional MD as possible and, with only minor additions, shares all
of the same system preparation tools and output formats. With only
a few exceptions, which will be discussed hereafter, pH-dependent
mechanical observables can be estimated directly from trajectory
averages.

The method implemented in NAMD is based on a hybrid
scheme,177 which consists of carrying out short nonequilibrium MD
(neMD) switching trajectories to generate physically plausible con-
figurations with changed protonation states that are subsequently
accepted or rejected according to a Metropolis Monte Carlo (MC)
criterion.160,172 The constant-pH neMD-MC method is essentially
an elaboration of conventional MD, which is still utilized to sam-
ple new molecular configurations in an explicit solvent model (this
functionality is not currently compatible with implicit solvent mod-
els). By using a symmetric momentum reversal prescription134 and a
generalized Metropolis–Hastings criterion,178 the neMD-MC hybrid
procedure rigorously captures the proper Boltzmann statistics while
allowing the environment, e.g., the solvent, to relax according to
its natural dynamics,179 i.e., the protonation states and configura-
tions are sampled jointly. This combination builds upon the concept
of “stochastic titration”180 and a switching protocol.177 NAMD also
utilizes efficiency improvements in both the switching procedure
and the way MC candidate states are selected.134,160,172 In particu-
lar, sampling can be improved by iteratively updating an estimate
of the pKa of each titratable group, namely, an adjustable parameter
referred to as the “inherent” pKa.160,172 These estimates need not be
exact in practice, and a reference estimate from a single residue in
solution is often suitable to guide sampling away from improbable
protonation-state changes.

The constant-pH MD analog of atomic coordinates is the pro-
tonation site “occupation vector,” a sequence of ones and zeros
indicating which protons are physically coupled to the system and
which are simply modeled as dummy atoms. Usage of dummy atoms
is a purely bookkeeping measure and does not impact the ther-
modynamics of the molecular objects at play in any way.160 By
adding extra placeholder atoms, constant-pH MD trajectories can
be easily visualized and analyzed with the myriad tools available
for fixed particle count simulations, chief among which is VMD.19

The only caveat to this process is that the occupation vector must
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FIG. 17. Sample titration curves com-
puted from a constant-pH MD trajectory
of the BBL miniprotein181,182 reveal a
range of protonation states over a mod-
est pH range. Solid lines represent fits
to a Hill curve, from which pKa val-
ues and Hill coefficients, n, are derived.
The present results were obtained using
the CHARMM36 force field and standard
settings (e.g., rigid bonds with hydro-
gen, PME). An MC step was performed
every ps, and a uniform switch time of
15 ps was used for each move (particular
residues requiring longer/shorter times
can also be specified). About 20 000
moves were attempted at seven pH val-
ues, leading to an aggregate of about
2 μs of MD.

be considered as additional data in each trajectory frame used to
filter out the cases in which a given proton is either interacting or
non-interacting.

The occupation vector can also be utilized to construct simple
and intuitive observables. For instance, the number of simulation
frames in which a proton occupies a site can be directly related to the
protonated fraction of a given state, i.e., the fraction of simulation
time in which that state is occupied. A protonation state of inter-
est can often be composed of the occupations from multiple sites,
possibly on multiple residues. Since these occupations are discrete,
there is no ambiguity in doing so. Ultimately, the protonated frac-
tion or, more generally, the state occupation at multiple pH values
constitutes a titration curve that can be analyzed to yield a pKa value,
usually by fitting to a model like a Hill curve (see Fig. 17). The out-
put from NAMD simulations at multiple pH values is also amenable
to use with reweighting schemes such as the weighted histogram
analysis method.160,183

XII. HYBRID QM/MM MOLECULAR DYNAMICS
SIMULATIONS

Classical MD simulations, which rely on molecular mechanics
(MM) force fields, are well suited for tackling most computational
biophysics problems, from folding184 to the study of large macro-
molecular complexes,185 but fail when the electrons play an impor-
tant role in the investigated phenomena.186 In particular, charge
redistribution and creation or rupture of chemical bonds are two fre-
quent problems that have limited the treatment at the MM level.187

In such cases, quantum mechanical (QM) calculations provide a
much more detailed view of the chemical process at hand.188 The
cost for a more detailed treatment offered by QM methods is a sig-
nificant increment in the computational complexity, even for the

smallest of proteins, making an ns-long full-QM MD simulation still
impractical or outright prohibitive.

Partitioning a biomolecular system in MM and QM regions has
become a common approach to balance precision and efficiency.189

Hybrid QM/MM simulations do just that by focusing the compu-
tational resources on atoms that play a significant role in the pro-
cess of interest.190 In practice, the QM/MM approach augments the
MM force field, restricting the electronic structure calculation at the
QM level to a small part of the system, while the remaining atoms
serve as an environment that can affect the electronic distribution
in the QM region.189,191 The classical MD integrator then combines
the QM potential and the MM force field potential to dictate the
movement of the atoms over time, keeping the dynamics of the
system at the classical mechanics level in the Born–Oppenheimer
approximation.192

For most applications, hybrid QM/MM protocols are well-
established and have been employed broadly to investigate a
variety of biomolecular problems, most notably in enzymatic
activity, including the mechanism of HIV integrases, glutamine
synthetases, glycoside hydrolases, dioxygenases, lipases, dehydroge-
nases, catalases, glycosyltransferases, and nearly every other class
of enzymes with known structure.193–199 The large list of enzymatic
mechanisms that have been explored showcases the significant con-
tribution of QM/MM methods to the development of enzymol-
ogy.200 In addition, polarization effects have also been the focus of
QM/MM simulations.201 By studying both lipids and drugs at the
QM level, QM/MM approaches have been momentous in under-
standing how small drugs interact with lipid membranes, partic-
ularly on how local anesthetics are stabilized by dipalmitoylphos-
phatidylcholine (DPPC) lipids at water/lipid interfaces.202 More
recently, the QM/MM implementation of NAMD was used to inves-
tigate a key step in the translation of the genetic code,203 reveal-
ing details of the aminoacylation mechanism of glutamyl-tRNA
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synthetase (GluRS). In this investigation, two QM regions were sim-
ulated simultaneously over multiple replicas of the same system: one
for the active site of GluRS and the other for its anticodon recog-
nition domain. This combination of biological system and software
infrastructure made possible a unique analysis of the information
transferred between the QM and MM regions, indicating that both
levels of calculation were closely integrated to render a cohesive view
of the biological object.

Despite the increase in interest and widespread applications,
QM/MM simulations remain difficult to set up, most notably when
a combination of methods is needed, e.g., QM/MM plus enhanced
sampling (see Sec. VII). The philosophy behind the development
of the NAMD QM/MM interface was to make hybrid methods

available to all structural biologists while reducing the typical learn-
ing barrier and making this interface flexible and easily adaptable.
The NAMD QM/MM suite includes an interface to multiple QM
codes that can be combined with NAMD, orbital visualization tools
within the program VMD,19 and the user-friendly QwikMD20 mod-
ule (see Sec. XV) for preparing, running, and analyzing QM/MM
simulations.203 The NAMD QM/MM interface also allows a large
number of independent QM regions to be simulated concurrently,
with a full integration of the vast collection of methods featured in
NAMD, including SMD, enhanced-sampling, and free-energy esti-
mation methods (see Sec. VII). Moreover, a reaction-oriented biased
simulation method was introduced, providing a quick start for the
study of reaction mechanisms.203

FIG. 18. Schematic representation of a hybrid QM/MM MD step in NAMD. Two trialanines, each containing one QM region, are simulated through simultaneous and
independent executions of the chosen QM software (ORCA). In a QM/MM simulation, positions and elements of QM atoms are sent by NAMD to the QM software, along
with positions and partial charges representing the local MM environment within a given cutoff (dashed magenta or purple lines, top-left panel). NAMD expects from the QM
software forces, total energy, and partial charges for all QM atoms, and forces acting on MM partial charges due to electrostatic interactions. All atoms are moved based
on the calculated force gradients. Different atoms will have their resulting force gradient computed either by the QM software, by NAMD, or a combination thereof (top-right
panel). If selected, long-range electrostatics can be calculated by NAMD for all atoms using PME, utilizing the updated partial charges calculated by the QM software. For
additional details, the reader is referred to Ref. 203.
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In hybrid QM/MM simulations, NAMD offloads part of its
force and energy calculations to a quantum-chemistry package,
referred here to as “QM software.”203 The QM software receives
positions and elements of all atoms in the QM region and then
returns partial charges, forces, and total energy. Using simple key-
words, a user can direct NAMD to provide the positions and charges
of the classical atoms that surround the QM region, allowing the QM
calculation to be carried out in an electrostatic embedding. In case a
covalent bond connects a QM and an MM atom, a link atom, typi-
cally a hydrogen atom,204 is introduced to cap the QM atom, and the
classical partial charge from the MM atom is distributed over sur-
rounding classical atoms (see Fig. 18). Different keywords control
various aspects of the electrostatic interactions between the MM and
QM regions, as well as the charge redistribution around the QM–
MM bonds. All keywords are used in a regular NAMD configuration
file, essentially expanding the classical MD simulation.

Taking advantage of the advanced state of current quantum-
chemistry packages, NAMD can efficiently carry out a QM/MM MD
simulation using a memory-backed temporary filesystem (“RAM
disk”) to exchange input and output files with the chosen QM soft-
ware. Most QM packages use “state files” to store the results of a
single-point calculation and are optimized to be called sequentially,
quickly loading state files from a previous iteration and using that
information to achieve convergence faster. The underlying assump-
tion is that atoms will move only slightly between two consecutive
MD steps so that the previous result makes a good initial guess
for the current calculation. The choice of using files in memory
to communicate with the QM software has two main advantages:
First, the time spent with file reading and writing is negligible, com-
pared to a single-point calculation in an MD step. Second, it facili-
tates the integration with multiple QM software. To that effect, the
NAMD QM/MM interface was built to communicate natively with
MOPAC205,206 and ORCA207 and to provide a flexible standardized
interface that allows virtually any quantum chemistry package to be
wrapped in a script and used by NAMD.

The QM/MM implementation in NAMD has been extensively
tested for accuracy, stability, and performance. Both MOPAC and
ORCA were used to validate results, and all tests were thoroughly
described in Ref. 203. Energy conservation was observed using a
variety of simulation protocols, and trajectory stability was assessed
by conserving energy in simulations up to 100 ns long. Moreover,
tests with NAMD/ORCA at the PM3, HF, and density functional
theory (DFT) levels of approximation revealed that long-range elec-
trostatics could be safely integrated into the simulation using PME
(see Sec. V) with little impact on energy conservation. As expected,
benchmarks indicated that performance depends heavily on the cho-
sen QM method and the size of the QM region. For very small
systems, i.e., 12 QM atoms, our benchmarks showed a perfor-
mance of up to 10 ns/day of QM/MM simulation when employ-
ing NAMD/MOPAC with the PM7 semi-empirical method208 and
running on a 4.2-GHz Intel Core i7-7700K CPU, with 64 GB of
RAM.

XIII. GRID-BASED POTENTIALS
While most MD simulations operate with particles and

particle-based interactions, there is a world of continuum models

used throughout all branches of basic science and engineering.
The gridForces module of NAMD makes it possible to couple
a particle-based MD simulation to external grid-based potentials,
opening exciting possibilities for multi-scale and multi-physics sim-
ulations of biomolecular objects and offering an extreme flexibility
for user customization of external forces in an MD simulation.

The gridForces module of NAMD was initially developed
to facilitate simulation of single-stranded DNA (ssDNA) passage
through the nanopore of α-hemolysin,18 a water-filled transmem-
brane channel [see Fig. 19(a)]. In experiment,212 ssDNA passage
through the nanopore is driven by a gradient of an electric poten-
tial that varies dramatically at the entrance and within the nanopore
[see Fig. 19(b)]. The ms-timescale of the translocation process rules
out a brute force MD approach, whereas conventional accelerated
dynamics approaches, such as constant force pulling or SMD, fail
to produce realistic translocation events, owing to ssDNA stretch-
ing under the force.18 The solution—referred to as grid-steered
MD (G-SMD)—was to first determine the average distribution of
the electrostatic potential within the nanopore and then use this
distribution as an external potential, magnified by a custom fac-
tor, to guide DNA through the nanopore. Using the G-SMD pro-
tocol, multiple complete translocation events of ssDNA through
α-hemolysin were obtained within just tens of ns while introduc-
ing minimal distortions to the DNA conformations. In this par-
ticular example, the gridForces module was employed to enable
simulations at, effectively, very high transmembrane biases with-
out producing high electric-field artifacts, such as membrane rup-
ture. A step-by-step guide to using G-SMD for nanopore trans-
port simulation can be found in a dedicated tutorial on nanopore
modeling.213,214

Being able to apply position-dependent forces according to
a custom three-dimensional potential in an all-atom MD simu-
lation became a game changer for the field cryogenic electron
microscopy (cryo-EM) reconstruction,215 where crystallography-
resolved all-atom models of proteins or nucleic acids are modified
to match a three-dimensional density determined using cryo-EM
[see Fig. 19(c)]. The molecular dynamics flexible fitting (MDFF)
method,17 which will be detailed in Sec. XIV, uses the experimentally
determined density as an external potential in a G-SMD simula-
tion of a crystallographic structure to obtain the best match between
the atomic coordinates and the electron density. Originally devel-
oped for implicit-solvent docking,216 the MDFF protocol can also
be employed in an explicit solvent simulation, as was the case, for
instance, in the construction of a complete all-atom structure of a
biological microtubule.210

The gridForces module of NAMD offers limitless possibili-
ties with regard to building initial models for all-atom simulations
or coupling an all-atom simulation to external continuum models.
For example, a nanoscale Swarovski sculpture can be built by melt-
ing a silicon dioxide crystal and then annealing the molten atoms
in the presence of a steric repulsive potential that acts as a kind
of a nano-imprint mask.217 Similarly, atomically precise repulsive
potentials can be used to create pockets of vacuum in water218 or a
lipid membrane35 prior to insertion of folded biomolecules, thereby
eliminating steric clashes. Multi-scale modeling is enabled by cou-
pling an MD simulation to external potentials obtained by solving
continuum models, such as the COMSOL Multiphysics® program,

J. Chem. Phys. 153, 044130 (2020); doi: 10.1063/5.0014475 153, 044130-23

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 19. Using grid-based potentials
to steer an MD simulation. (a) A
cut-away view of an all-atom simula-
tion system featuring a single DNA
strand (orange) passing through an α-
hemolysin nanopore (blue) embedded in
a lipid membrane (green). Water and
ions are not shown for clarity. (b) Elec-
trostatic potential contour map in and
around an α-hemolysin nanopore deter-
mined using all-atom MD methods.209

Coupling this potential to atoms of
ssDNA only through the gridForces
module of NAMD dramatically acceler-
ates the simulation of the DNA translo-
cation process.18 (c) The cryo-EM den-
sity (white wireframe surface) is used as
a steering potential for docking the all-
atom structure of an α/β (red/blue) tubu-
lin dimer to build an all-atom model of
a microtubule.210 (d) All-atom MD sim-
ulation of plasmonic trapping. Electric
field-driven translocation of DNA (blue
and orange) through a nanopore in a
solid-state membrane (gray) is halted by
the plasmonic field (semi-transparent red
surface) generated by the gold bowtie
nanostructure (yellow). The arrows illus-
trate the magnitude and direction of
plasmonic forces acting on the DNA
molecules.211 Water and ions are not
shown for clarity.

or any other three-dimensional solver. Examples of such simula-
tions include the study of thermophoretic stretching of ssDNA in
a locally heated solid-state nanopore,219,220 simulations of plasmonic
trapping of DNA molecules [see Fig. 19(d)],211 and coarse-grained
simulations of double-nanopore systems.221

At present, the gridForces module is activated using a set of
standard NAMD keywords. The reader is referred to the NAMD
user’s guide and the user-defined forces tutorial218 for a detailed
description. The information about grid-force potentials is pro-
vided to NAMD in the form of .dx formatted file, the header of
which specifies the dimensions and location of the grid. For each
gridForce potential, which could be multiple, the end-user must
supply a pdb file with a flag on those atoms or particles that will
be subject to the external potential. Optionally, the user can specify
custom factors that couple the potential to individual atoms, as well
as a global coupling factor, which can be set separately for each of
the Cartesian axes. During a NAMD simulation, each of the flagged
atoms will be subject to an external force, the magnitude and direc-
tion of which are determined by (i) the instantaneous coordinates
of the atoms, (ii) the eight values of the potential at the nearby
nodes of the grid, and (iii) additional user-defined scaling factors.
The value of the force is computed as the negative gradient of the
local potential, which in turn is determined using either linear or

cubic interpolation schemes. If the physical dimensions of the grid
do not match the physical dimension of the computational assay,
i.e., the simulation cell, special care must be taken in defining con-
ditions at the boundary of the grid to avoid interpolation artifacts,
such as forces produced by an abrupt change in the potential at the
edge of the grid or the unintended application of the grid potential
over the periodic boundary of the simulation cell. Additional care
should be taken when using cubic interpolation for the computation
of grid forces in the case of rapidly varying (digitized) potentials,
as such an interpolation is prone to produce local attractive poten-
tials. We strongly recommend to examine the shape, the location,
and the profile of the external grid-based potentials, e.g., visually
in VMD or through analysis scripts, prior to running production
simulations.

Among current limitations of the gridForces module is the
static nature of the external potentials, that is, once the potential has
been activated, its spatial location, orientation, and values cannot
be changed. While the framework for modifying external poten-
tials in the course of an MD simulation is in the works, several
workarounds are already available. A trivial one consists in splitting
one continuous NAMD run into several ones, replacing the poten-
tial file between consecutive runs, which is a convenient method to
enable a self-consistent multi-scale simulation. Another possibility

J. Chem. Phys. 153, 044130 (2020); doi: 10.1063/5.0014475 153, 044130-24

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

consists in using multiple grid potentials and changing their global
scaling factors via scripting commands in the NAMD configura-
tion file or via external forces applied by Colvars onto one or
more grid potentials, for example, via the Multi-Map variable.103

The grid-force potentials themselves can be prepared using third-
party software, such as Matlab, COMSOL Multiphysics, or APBS,222

obtained using the VolMap plugin of the visualization program
VMD19 or generated from scratch using custom Tcl, Perl, or Python
scripts.

XIV. MOLECULAR DYNAMICS FLEXIBLE FITTING
While the most widely used method for acquiring biomolec-

ular structures is x-ray crystallography, crystallization of very large
biomolecules, macromolecular complexes, and membrane proteins
is extremely challenging. In response, cryo-EM, which obviates the
difficult crystallization step and makes imaging possible under phys-
iologically relevant conditions, is increasingly becoming a main-
stream approach for structure determination of biomolecular sys-
tems.

Historically, computational methods were required to bridge
the resolution gap between crystallography and cryo-EM to produce
atomic-resolution models of biomolecular objects. One such method
is MDFF,17,215,223,224 which is a feature of NAMD. It has proven to
be an extremely successful refinement method as evidenced by its
numerous applications215,225 ranging from the intricate ribosomal
machinery216,226–228 to a host of non-enveloped viruses.3

A. The original MDFF algorithm
The essence of MDFF is, given an initial all-atom structure and

a corresponding cryo-EM density, to match the structure to the den-
sity by means of an MD simulation (see Fig. 20). Toward this end,
the structure is first docked rigidly into the density. Then, flexible
fitting is performed by applying to the structure an external biasing
potential, in addition to the classical force field. This biasing poten-
tial is derived by inverting the cryo-EM density and bounding the
resultant map from below a threshold to remove noise. Quality of

the fitting procedure is controlled by a user-defined factor, gscale,
which scales the biasing potential relative to the force field.

In practice, the potential energy function used for fitting is
defined on a three-dimensional grid and incorporated into the
MD simulation using the gridForces feature of NAMD8,18 (see
Sec. XIII). Forces are computed from the added potential and
applied, in addition to the intrinsic forces, to each atom as a func-
tion of its position on the grid using an interpolation scheme. The
computed density-derived forces drive the atoms into regions of
high density, producing an atomic-resolution structure in the con-
formation captured in the cryo-EM density. The MD-based nature
of MDFF allows for flexibility and sampling while maintaining a
realistic structural geometry through incorporation of the molecular
mechanical force fields. Restraints imposed during the simulation
help preserve the secondary structure and stereochemical correct-
ness (using the extraBonds feature of NAMD229), as well as any
symmetry230 of the protein investigated. Traditional MDFF is appli-
cable with cryo-EM densities in the resolution range of 5 Å–15
Å. For density maps between 3 Å–5 Å resolution, the refinement
steps get entrapped into biologically irrelevant energy minima, usu-
ally yielding incorrect models. This limitation of MDFF has been
overcome by introducing a density-based simulated annealing pro-
tocol called cascade MDFF and, subsequently, in a more automated
replica-exchange algorithm referred to as ReMDFF.231

B. xMDFF: MDFF for low-resolution x-ray
crystallography

Although originally developed for fitting crystal structures into
cryo-EM densities, MDFF has been extended to refine structures
from x-ray crystallographic diffraction data, leading to an algorithm
coined xMDFF. This methodology employs a real-space refine-
ment scheme, which flexibly fits atomic models into a density map
through an iterative updating. The performance of xMDFF has
been demonstrated for the refinement of protein crystallographic
data at resolutions ranging from 3.6 Å to 7 Å.232 For abiological
macromolecules, xMDFF refinements were performed up to 1.6 Å
resolution.233

FIG. 20. A simple MDFF example of fit-
ting a protein structure into a density
map. (a) The x-ray structure of an adeny-
late kinase protein (PDB:1AKE). (b) The
protein structure rigid body docked to the
density map. (c) The protein structure
inside the density map after running an
MDFF simulation. (d) The overall quality
of fit (cross correlation) during an MDFF
simulation.
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xMDFF uses model-phased density maps, which incorporate
the phases from a search model and the amplitudes from the x-ray
diffraction data. These density maps are created utilizing tools in the
Phenix software suite.234 The density map is used as a potential for
steering the search model into the appropriate locations by means
of MDFF forces. Once the search model is fitted into the density, it
provides new phases to be used with the observed amplitudes of the
x-ray diffraction data to generate an updated density. This model
is then fitted into the new map using MDFF, and the process pro-
ceeds iteratively until a sufficiently low reliability factor for assessing
possible over-modeling of the data, or Rfree-value, is obtained.

Mirroring the strengths of MDFF, xMDFF also benefits from
the equilibrium and enhanced-sampling capabilities of NAMD. This
sampling capability enables the determination of multiple occupan-
cies in biological objects.235 Conventional MD simulations generate
ensembles of atomic structures under constraints, such as constant
pressure, volume, temperature, and number of particles. Generally,
xMDFF is compatible with any such ensemble-generation scheme,
e.g., isobaric–isothermal or canonical, as well as microenvironmen-
tal conditions, such as vacuum or explicit or implicit solvent, all
achievable within typical NAMD simulations.

XV. USABILITY, REPRODUCIBILITY,
AND EXTENSIBILITY

An MD simulation in NAMD is typically configured using one
or multiple files, referred to as configuration files. These files set the
values of many tunable parameters, e.g., temperature and pressure,
and include a series of instructions and manipulations to drive the
simulation following a well-defined workflow. Such a workflow can
be as simple as a temperature ramp, where the temperature increases
every so many steps, or a more sophisticated sequence of runs, anal-
ysis, and manipulations, as would be the case in constant-pH160 sim-
ulations and in a number of replica-exchange strategies.129 Written
either in Tcl or in Python, these configuration files are a resourceful
platform that allows the user to adapt the NAMD wealth of features
to the specificities of each and every molecular object and compu-
tational assay. Since these workflows are written in commonly used
scripting languages, end-users can exploit the scripting interface that
connects NAMD with their favorite analysis and modeling tools to
perform more complex operations guiding the simulation.

Method development at the scripting level, e.g., constant-pH,
requiring minimal or no manipulation at all of the source code, has
many strategic advantages, most notably in terms of code mainte-
nance. Furthermore, as a result of their flexibility and accessibility,
scripting languages such as Tcl and Python enjoy a broad commu-
nity of developers who have developed over the years a vast library of
modules, packages, and scripts, often critical for non-programming
researchers. To formalize the interface as a development platform,
we have expanded the NAMD Tcl (8.5 and above) and Python
(3.7 and above) interpreters to support plugin/module utilization
and distribution. Establishing a formal plugin engine, similar to the
VMD19 plugin system, allows the developers not only to develop
their methods more conveniently but also to distribute them to
a growing community of users. Beyond improving the usability
of NAMD, formalization of the plugin distribution also ensures
reproducibility of the simulations by generalizing the common

functionalities between different modules while confining the end-
user intervention to the manipulation of variables and user-defined
functions, as opposed to the duplication and manipulation of entire
modules.

Irrespective of the architecture where NAMD is executed, the
same configuration file can be used to drive a simulation on a lap-
top, a local workstation, or a supercomputer—differences between
these architectures appearing at the level of execution commands
and the internals of NAMD and Charm++. This commonality has
allowed for the development of a number of tools to set up MD sim-
ulations with NAMD, such as QwikMD,20,203 MDFF graphical user
interface, the binding free-energy estimator (BFEE),236 and Colvars6

dashboard, all distributed in the visualization code VMD,19 as well
as web tools, such as CHARMM-GUI.237

In general, preparation tools for MD simulations manage the
end-user input information on the computational assay, the struc-
tures of the molecular objects at hand, and the simulation param-
eters, and generate the necessary files toward execution of NAMD
on virtually any architecture. When using QwikMD and MDFF-
GUI, the simulation can be performed on the same machine where
the files were prepared, and the end-user can interact with the
simulation as it runs. Interactivity is supported by the interactive
molecular dynamics (IMD) module, implemented in both VMD
and NAMD, and allowing visualization, analysis, and manipulation
of the simulation during its execution. Ability to interact with the
simulation has proven particularly useful in structure refinement
with MDFF-GUI as the user can manually promote structure fit-
ting into regions of the density map and, more generally, in any MD
simulation to detect abnormal events at an early stage. Moreover,
the IMD module is often used for educational purposes to visual-
ize the dynamics of the molecular object in the course of an MD
simulation, a feature largely exploited in QwikMD and its training
material.

QwikMD is an MD toolkit available in VMD, which guides
the end-user through the main steps toward the setup, the exe-
cution, and the analysis of MD simulations. The user-friendly
GUI of QwikMD facilitates the preparation of MD simulations in
a point-and-click fashion, using preset parameters for unbiased,
steered-MD, MDFF, or hybrid QM/MM computations,203 and is
fully integrated with the molecular visualization interface of VMD.
Beyond assisting the end-user at the setup stage, this tool ensures
the reproducibility of the simulations by recording and logging
all parameters and steps taken during the preparation and anal-
ysis process. The results of the simulations are then readily ana-
lyzed in QwikMD, employing a wide variety of tools available in
VMD.19

The development of QwikMD was facilitated by the existence
of other modeling VMD plugins that are utilized in a very well-
defined workflow, chief among which is the protein structure file
(psf) generator, or PSFGEN, the common structure preparation
tool for simulations with NAMD. This tool can either be employed
in a standalone mode or as a VMD plugin to map the input user-
defined structure into the CHARMM force field,9 generating the psf
that describes the identity and topology of the molecular object, e.g.,
atom types and charges, as well as bonds, valence angles, dihedral
angles, and cross terms. PSFGEN was recently expanded to support
the recent developments in both the additive9 and non-additive77

CHARMM36 force fields, being now able to generate and manip-
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ulate Drude particles and lone pairs. Improvements in the per-
formance and implementation of the hydrogen-mass repartition238

now allow the end-user to set up faster and simulate larger molecular
objects with longer time steps.

XVI. CONCLUDING REMARKS AND PERSPECTIVE
Empowered with continuing advances in hardware technology

on both commodity and large supercomputing platforms enabling
faster and larger simulations, with development of more efficient
algorithms allowing for better exploitation of the computing archi-
tectures available to computational scientists (see Secs. II and III)
and with more effective interaction between scientists of differ-
ent disciplines, we can only expect broader and more sophisticated
applications of molecular simulations to more complex biomolecu-
lar objects and processes. As a result, the scope of molecular mod-
eling and simulation will continue to extend into a broader range
of biomolecular phenomena of strong biological and biomedical
relevance.

One particular area that will certainly keep its already fast pace
of progress is that of modeling and simulating cellular-scale phe-
nomena. Both inspired and enabled by advances in structural biol-
ogy on the experimental side, biomolecular modelers will be able to
aim at modeling complex subcellular organelles and cellular behav-
ior.3,35,239 The resulting structural models will provide scientists with
crucial information to start thinking in the context of realistic, con-
crete molecular models and to pose relevant molecular questions
more rationally. Since its inception, NAMD has always regarded
large-scale simulations as a key area in biomolecular modeling and,
thus, continues to invest heavily to allow researchers to model and
simulate realistic cellular systems. Recent modifications of the code
have enabled the program to be benchmarked for the first time on
molecular assemblies of up to 2 × 109 atoms (see Fig. 21).

FIG. 21. Continuous development effort over the years toward simulating with
NAMD realistic biological objects of increasing complexity from a small, solvated
protein, on the thousand-atom size scale, in the early 1990s, to a full protocell, on
the billion-atom size scale, nowadays.

Notably, in the context of cellular-scale molecular modeling
and simulation, a major aspect, prominent in recent studies, has
been the degree to which the modelers make an effort to maximize
the biological realism by including as extensively as possible avail-
able experimental data into the computational model and to match
the simulation conditions with the experimental ones.17,215,223,224

While unavailability of some experimental details may limit the
scope of cellular modeling to some degree, in many areas, com-
putational techniques offer alternative solutions to build biological
models, e.g., construction of reliable models of a biological mem-
brane with heterogeneous lipid composition. In this regard, MD
simulations will continue to provide a powerful tool to build detailed
molecular models of systems of interest. At the same time, there
is a need for new modeling tools streamlining the nontrivial pro-
cess of setting up such complex models (see Sec. XV).20,237 Suc-
cessful projects employing MD simulations will not only benefit
from experimental verification but also be empowered by incorpo-
ration of reliable experimental data into the model, an area in which
biomolecular modelers have made tremendous progress particularly
over the last decade. While we have developed already advanced
methodologies to integrate a broad range of experimental informa-
tion to guide our models and simulations, there is clearly a need to
develop the methodology and the software tools to allow for bet-
ter, more accurate, more comprehensive, and preferably automated
ways of doing so. Such molecular modeling efforts are, therefore,
essential to pave the way toward modeling cell-scale simulations in
meaningful times.

Another major area that has and continues to largely benefit
from advances in molecular simulation, in general, and free-energy
calculations, in particular, is computational drug design.16,240–242

Supported by progress on the hardware front, most prominently,
with the availability of fast GPUs on a variety of platforms, as well
as on the software front, with optimally designed tools (see Secs. IX
and XV),81,99,129,159,161,236 one can now screen large numbers of small
molecules for potential pharmacological effects on specific biolog-
ical targets within timeframes compatible with industrial require-
ments and with meaningful, quantitative free energies, e.g., binding
affinities.243–245 In this regard, development of more accurate force
fields, such as polarizable force fields aimed at capturing induction
phenomena more faithfully, as well as machine-learning protocols
such as the accurate neural network engine for molecular energies
(ANAKIN-ME or ANI for short),246 is a critical advance in order to
provide reliable quantitative scales. Modern MD engines have to be
conscious and aware of such developments and ready to incorpo-
rate them efficiently and in a time-bound fashion. Furthermore, in
cases where more complex electronic effects might be important to
describe ligand–protein interactions, one can resort to more expen-
sive levels of theory, most notably in the form of a QM description
amid a classical representation of the rest of the macromolecular
system—a methodology known as the QM/MM calculation already
successfully implemented in NAMD203 (see Sec. XII).
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