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Abstract
In light of the most challenging public health crisis of modern history, COVID-19 mortality continues to rise at an alarming rate.
Patients with co-morbidities such as hypertension, cardiovascular disease, and diabetes mellitus (DM) seem to be more prone to
severe symptoms and appear to have a higher mortality rate. In this review, we elucidate suggested mechanisms underlying the
increased susceptibility of patients with diabetes to infection with SARS-CoV-2 with a more severe COVID-19 disease. The
worsened prognosis of COVID-19 patients with DM can be attributed to a facilitated viral uptake assisted by the host’s receptor
angiotensin-converting enzyme 2 (ACE2). It can also be associated with a higher basal level of pro-inflammatory cytokines
present in patients with diabetes, which enables a hyperinflammatory “cytokine storm” in response to the virus. This review also
suggests a link between elevated levels of IL-6 and AMPK/mTOR signaling pathway and their role in exacerbating diabetes-
induced complications and insulin resistance. If further studied, these findings could help identify novel therapeutic intervention
strategies for patients with diabetes comorbid with COVID-19.
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1 Introduction

Over the last two decades, severe acute respiratory infection
outbreaks have accompanied a generalized global health con-
cern. Two prominent coronaviruses, severe acute respiratory
syndrome coronavirus (SARS-CoV-1) and the Middle East

respiratory syndrome coronavirus (MERS-CoV), have been
associated with a high pathogenicity and mortality in humans
[1]. SARS-CoV-1, which emerged from 2002 to 2003, caused
over 8000 confirmed cases of infection and about 800 deaths,
while MERS-CoV, which was first reported in 2012, is still
present to date and has infected over 2300 individuals world-
wide [1, 2]. Yet, these two coronaviruses never reached a level
of pandemic.

In December of 2019, a series of pneumonia cases with
unknown etiology were reported in Wuhan, a city in the
Hubei province of China. High-throughput sequencing from
lower respiratory tract samples revealed a novel coronavirus
named 2019 novel coronavirus (2019-nCoV). However, as
suggested by a recent study based on validated satellite imag-
ery data of hospital parking lots and Baidu search queries of
disease related terms, the virus may have already been circu-
lating when the outbreak was declared. This recent evidence
shows an upward trend in hospital traffic and search volume
beginning in late Summer and early Fall 2019 as well as an
increase in searching for the terms ‘cough’ and ‘diarrhea’, the
latter being a more specific symptom for COVID-19 [3]. The
increasing number of cases urged the World Health
Organization (WHO) to declare a Public Health Emergency
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of International Concern on January 30, 2020. The novel virus
was then formally referred to as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and the disease as coro-
navirus disease 2019 (COVID-19). As testing became more
available, the number of new cases increased exponentially,
and on March 11, 2020, the WHO declared the outbreak a
global pandemic [4].

Ever since its discovery in late 2019, SARS-CoV-2
has quickly spread to more than 200 countries around
the world. As of June 28, 2020, more than 10 million
cases of COVID-19 have been reported with a death toll
of 501,469 individuals. Despite the low mortality rate of
COVID-19, patients with co-morbidities such as hyper-
tension, cardiovascular disease, and diabetes mellitus
seem to be prone to more severe symptoms and to a
higher mortality rate than others [5, 6]. Obesity also ap-
pears to worsen the prognosis of patients with COVID-
19, specifically in younger obese individuals who seem
to also be susceptible to a more severe disease [7].
Increasing evidence highlight diabetes mellitus as a dis-
tinct comorbidity associated with acute respiratory dis-
tress syndrome (ARDS) and increased subsequent mor-
tality [6, 8, 9].

In the realm of social distancing imposed by the pan-
demic, the health care management system was found to
be overwhelmed by the rapidly increasing demand on
health facilities. The lack of previous preparedness was
further challenged by fears of an imminent worldwide
economic crisis that accelerated the race to understand
the pathogenesis of SARS-CoV-2 in order to develop
novel therapeutic strategies.

COVID-19 clinical signs are diverse, ranging from an
asymptomatic state to ARDS and multi-organ dysfunc-
tion [10], with respiratory failure from ARDS being the
leading cause of mortality [11]. COVID-19 symptoms
generally manifest after an estimated incubation period
of approximately one week (mean = 7 days, range = 0–
24 days) [6]. The most common clinical features include
fever, cough, and fatigue, while other symptoms include
headache, hemoptysis, diarrhea, dyspnea, and lymphope-
nia [4, 12–15]. In a subset of patients, the disease rapidly
progressed to severe chest pain, pneumonia and ARDS
by the end of the first week [4]. In severe cases, SARS-
CoV-2 virus targets both the upper and lower respiratory
tract, causing irreversible injuries, notably pulmonary fi-
brosis [8, 16, 17]. COVID-19-associated pulmonary com-
plications are exacerbated in patients with co-morbidities
such as hypertension, cardiovascular disease, obesity and
diabetes mellitus [5–7].

In this review, we detail our present understanding of the
pathogenesis of SARS-CoV-2 and elucidate possible mecha-
nisms behind the increased susceptibility of patients with dia-
betes to infection with more serious complications.

2 COVID-19 pathogenesis

2.1 The immune response to SARS-CoV-2

COVID-19 belongs to the coronavirus family, a large family
of single-stranded enveloped RNA viruses that is divided into
four genera: Alpha-, Beta-, Delta- and Gammacoronavirus
[18]. Coronaviruses from the genera Alpha- and
Betacoronavirus are primarily associated with infections in
mammals, while viruses in the genera Gamma- and
Deltacoronavirus mainly infect birds [18]. Both SARS-CoV-
1, the virus responsible for the 2002 outbreak, and SARS-
CoV-2, belong to the β-genus [19]. Many of the symptoms
caused by SARS-CoV-2, such as ARDS, are quite similar to
those resulting from SARS-CoV-1 [15]. These similarities can
be traced back to the structural analogy between the two virus’
envelope-anchored spike (S) protein, which mediates their
entry into the host cells [20]. Extensive studies on SARS-
CoV-1 have identified key interactions between its S protein
receptor-binding domain (RBD) and its host receptor
angiotensin-converting enzyme 2 (ACE2), which control its
cross-species and human-to-human transmissions [20, 21].
SARS-CoV-1 and SARS-CoV-2’s respective S proteins share
a 76% to 78% sequence analogy for the whole protein and a
73% to 76% sequence similarity for the RBD, strongly sug-
gesting that both viruses share the same access door to host
cells: the angiotensin-converting enzyme 2 (ACE2) [19] (Fig.
1).

Besides, SARS-CoV-2 infection leads to an increased
release of pro-inflammatory cytokines and chemokines in-
cluding interleukins IL-1β, IL-4, and IL-10, monocyte
chemoattractant protein 1 (MCP-1), interferon- γ (IFNγ),
and interferon gamma-induced protein 10 (IP-10) [15].
Notably, ICU patients with severe disease had significantly
elevated plasma levels of IL-2, IL-6, IL-7, IL-10,
granulocytes colony stimulating factor (GCSF), IP-10,
MCP-1, macrophage inflammatory protein-1A (MIP-1A),
and tumor necrosis factor-α (TNF-α), suggesting a poten-
tial “cytokine storm” correlated with COVID-19 disease
severity [15, 22]. The release of pro-inflammatory cyto-
kines and chemokines may potentially be attributed to
massive epithelial and endothelial cell apoptosis and to
vascular leakage resulting from rapid viral replication
[23]. Of the released pro-inflammatory cytokines, IL-1β
and IL-6 are of particular interest and appear to be closely
related to the occurrence of severe COVID-19 in adult
patients [24]. This hypercytokinemia seems to play a cru-
cial role in the development of pulmonary fibrosis [25] and
is associated with increased viral load, loss of lung func-
tion, lung injury, and increased mortality [26].

IL-1β was shown to be increased in the bronchoalveolar
lavage fluid and in the plasma of patients with ARDS [27].
Similarly, IL-6 functions as a proinflammatory factor and
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was shown to play an important role in the progression of
lung fibrosis [28]. IL-6 is an important pleiotropic cytokine
that significantly contributes to acute inflammation.
Elevated IL-6 levels were correlated with increased severity
of COVID-19-associated pneumonia. In mild cases, sys-
temic levels of IL-6 were less than 100 pg/mL. However,
in critical cases, IL-6 levels were greater than 100 pg/mL, a
concentration above which we usually witness the emer-
gence of an “inflammatory storm” [29]. Consequently, it
was reported that the inhibition of both IL-1β and IL-6 is
beneficial in many viral infections [24]. A retrospective
study observing the efficacy of tocilizumab (IL-6R
antagonist) in treating COVID-19 suggested that toci-
lizumab might be an effective treatment in patients with
the severe form of the disease [30]. Currently, several clin-
ical trials on the safety and efficacy of tocilizumab in the
treatment of severe COVID-19-associated pneumonia in
adu l t inpa t i en t s have been reg i s t e red [31 , 32] .
Interestingly, IL-6 activation is directly correlated with the
Mechanistic Target of Rapamycin (mTOR) pathway activa-
tion, a pathway involved in cell survival, proliferation, and
growth [33]. In that spirit, cytokine IL-37, which has the
ability to suppress both the innate and the acquired immune
responses and to inhibit inflammation by acting on IL-18Rα
receptor, was also shown to suppress the production of IL-
1β and IL-6 by modulating mTOR pathway and increasing
the adenosine monophosphate kinase (AMPK) [24]. IL-38
is another inhibitory cytokine of IL-1β and other pro-
inflammatory IL-family members [24]. Both IL-38 and IL-
37 were suggested to serve as potential therapeutic cyto-
kines by inhibiting inflammation caused by COVID-19,
providing a novel pertinent approach to treating the disease.

2.2 The protective role of angiotensin-converting en-
zyme 2 against lung injury

The pathophysiology of SARS-CoV-2 infection has not yet
been extensively investigated, but it is speculated that it can
resemble that of SARS-CoV-1 overall. Infection with SARS-
CoV-1 results in an aggressive inflammatory response that
begins with binding to the membrane-bound ACE2 receptor
[19] followed by entry into the cell and subsequent viral rep-
lication [34]. Similarly, a possible mechanism of SARS-CoV-
2-mediated inflammatory responses consists of downregula-
tion and shedding of ACE2, a terminal carboxypeptidase that
degrades angiotensin II to angiotensin (1–7), thus acting as a
negative regulator of the renin-angiotensin system [35]. While
ACE, which converts angiotensin I to angiotensin II, induces
lung edema and promotes lung injury, ACE2 appears to pro-
tect the lungs from acute injury [36] (Fig. 1). In several stud-
ies, loss of pulmonary ACE2 expression resulted in increased
inflammation, enhanced vascular permeability, increased lung
edema, and accumulation of neutrophils, eventually leading to
decreased lung function [35–38]. Previous studies on SARS-
CoV-1 have shown that once bound to ACE2 the virus’ S
protein downregulates ACE2 [39, 40] and leads to the shed-
ding of its ectodomain, an enzymatically active domain
termed soluble ACE2 (sACE2) [41–43]. The biological func-
tion of sACE2 remains poorly investigated. Inflammatory cy-
tokines such as IL-1β and TNF-αwere also shown to increase
ACE2 shedding [41–43]. Thus, for SARS-CoV-2 pathogene-
sis, ACE2 not only serves as a portal entry for the virus but
also plays a protective role against lung injury. These obser-
vations hypothesize that increased ACE2 shedding, which is
correlated with the uncontrolled inflammation in SARS-CoV-

Fig. 1 Schematic diagram representing (a) SARS-CoV-2 entry into the host cell and (b) the role of ACE2 in the renin-angiotensin system
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1 infection, might also be involved in the hyperinflammation
seen with SARS-CoV-2 infection.

After reviewing the epidemiology and pathogenesis of
SARS-CoV-2, it is well recognized that DM increases mor-
bidity and mortality in patients with COVID-19 by aggravat-
ing the pathogenesis of the disease [6, 8, 9, 44, 45]. Herein, we
aim to elucidate the pathological mechanisms in relation to
diabetes and COVID-19 and suggest potential therapeutic
strategies for managing the complications emanating from
the viral infection.

3 Diabetes mellitus: A risk factor
for the progression of COVID-19

Diabetes mellitus is one of the leading causes of morbidity
worldwide, and it is projected to remain on the rise over the
next few decades. A large body of evidence has highlighted an
increased susceptibility of patients with diabetes to infectious
diseases [46–48], which is possibly attributed to a defective
immune system in diabetes [49]. Given the decreased immu-
nity in patients with diabetes, pneumonia has now become a
considerable mortality factor in diabetes [50]. In patients with
SARS, diabetes and plasma glucose levels were both shown to
be independently associated with higher morbidity and mor-
tality [51]. In Hong Kong, the first three deaths from SARS-
CoV-2 infection were patients with diabetes. In a study con-
ducted on a group of 52 ICU patients infected with SARS-
CoV-2, the most common comorbidities between the 32 non-
survivors of the group were diabetes (22%) and cerebrovas-
cular disease (22%) [8]. Recently, The Chinese Center for
Disease Control and Prevention published the largest study
relevant to patients with diabetes in Mainland China which
involved 72,314 cases of COVID-19. While patients who re-
ported no co-morbidities had a case fatality rate of 0.9%, pa-
tients with diabetes had a significantly higher case fatality rate
(7.3%) [52]. Furthermore, a meta-analysis of 76,993 patients
infected with SARS-CoV-2 revealed that hypertension, car-
diovascular disease, history of smoking, and diabetes were the
most common underlying diseases with incidences of
16.37%, 12.11%, 7.63%, and 7.87%, respectively [53]. In
another study conducted on 1099 COVID-19-infected pa-
tients in China, 173 cases (16%) were classified as severe
[6]. Out of these severe cases, 16.2% (28 individuals) had
diabetes, while only 5.7% (81 individuals) of the non-severe
cases had diabetes [6]. Furthermore, a retrospective study in
Wuhan, China conducted on 174 patients with COVID-19
revealed a higher risk of severe pneumonia in patients with
diabetes (n = 24) who did not suffer from any other complica-
tion [54]. These patients also presented with a higher risk of
tissue injury-related enzyme release and an overexpressed un-
controlled inflammation. Dysregulated glycemia also ap-
peared to lead to a hypercoagulable state through the

activat ion of plasmin, thrombin and monocytes-
macrophages and through the secretion of different tissue fac-
tors, a resultant of the inflammatory storm itself [54].
According to the CDC, as of May 30, 2020, in a population
of about 1.3 million individuals infected with SARS-CoV-2 in
the USA, around 30% of those individuals who have under-
lying health conditions (86,737 individuals) have diabetes
mellitus [55]. The different studies presented suggest that pa-
tients with diabetes may not only be prone to a more severe
COVID-19 disease, but also to an increased risk of infection
with SARS-CoV-2. However, several studies have shown
that, despite these latter findings, no increased infectivity
was observed in patients with COVID-19 comorbid with dia-
betes [56]. In fact, the prevalence of diabetes in the patient
population with COVID-19 is not so different from the prev-
alence of diabetes in the general population [56].

4 Elucidating the crosstalk between COVID-19
and diabetes mellitus

Several mechanisms were suggested to explain the increased
susceptibility of patients with DM to severe COVID-19 dis-
ease, including higher-affinity cellular binding, efficient viral
entry, reduced viral clearance, reduced T cell function, en-
hanced susceptibility to hyperinflammation and cytokine
storm, and the presence of cardiovascular diseases [57].
Phagocytosis by neutrophils, monocytes, and macrophages
was shown to be defective in patients with diabetes who hap-
pen to also suffer frommalfunctions in neutrophil chemotaxis,
bactericidal activity, and innate cell-mediated immunity [58].
Interestingly, even short-term hyperglycemia was found to
dampen their innate immune response [59]. In addition to their
defective innate response, patients with diabetes also demon-
strate an impaired adaptive immune response [49].

4.1 Angiotensin-converting enzyme 2 expression in
diabetes mellitus and its role in COVID-19 infectivity

Although plausible hypotheses for the increased risk of
COVID-19 infection in patients with diabetes and other
chronic diseases like hypertension are still under investigation,
ACE2 seems to play a key role in the association between
COVID-19 and DM [60] (Table 1). In fact, both DM and
hypertension are correlated with the activation of the renin-
angiotensin system in different tissues [71], a system that reg-
ulates blood volume and the systemic vascular resistance [72].
Treating type 1 and type 2 diabetes with ACE inhibitors and
angiotensin II type-I receptor blockers (ARBs) was found to
increase the expression of ACE2 in the renal and cardiovas-
cular systems [61, 62]. However, there is no sufficient evi-
dence to support an increase in ACE2 levels in the respiratory
system secondary to the use of ACE/ARBs.
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There is also no sufficient experimental evidence to support
the hypothesis that switching people from ACE inhibitors or
ARBs to other drugs might decrease the risk of infection and
the severity of COVID-19. A more favorable SARS-CoV-2
binding was demonstrated with increased ACE2 expression in
alveolar AT2 cells, as well as in the myocardium, kidneys, and
pancreas in humans [63–65]. In rodents with DM, an in-
creased expression of ACE2 was also reported in the lungs,
kidneys, heart, and pancreas [66, 67], thus possibly favoring
SARS-CoV-2 entry. Hypoglycemic agents such as
thiazolidinediones (TZDs; pioglitazone) and glucagon-like
peptide–1 (GLP-1) agonists (liraglutide), statins and ibuprofen
were all also found to increase ACE2 expression [73–76].
This explains why concerns were initially raised regarding
the use of non-steroidal anti-inflammatory drugs (NSAIDs)
such as ibuprofen in patients with COVID-19. TheWHO later
denied this assumption, stating that no severe adverse effects
were observed with the use of NSAIDs in patients with
COVID-19 [77]. Until recently, the association between DM

and ACE2 expression levels in human lungs remained poorly
investigated. A phenome-wide Mendelian randomization
analysis carried out by Rao et al. suggested that higher
ACE2 expression in the lungs increased susceptibility to
SARS-CoV-2 infection with more severe complications and
was causally correlated with diabetes [68]. The genome-wide
association study (GWAS) on patients with type 2 diabetes
(N = 898,130) revealed that type 2 diabetes is causally linked
to increased ACE2 expression. Another study showed that
patients with diabetes have increased levels of furin [78], a
cellular protease that cleaves the S1 and S2 domains of SARS-
CoV-2’s spike protein [79], possibly facilitating viral entry.

The role of ACE2 in the crosstalk between COVID-19 and
DM is still a matter of debate. Some studies recognized de-
creased levels of ACE2 in diabetes, perhaps secondary to gly-
cosylation [80]. In kidney biopsies of patients with diabetes
presenting with nephropathy, glomerular expression of ACE2
was also found to be reduced [69]. Therefore, by adopting the
hypothesis that increased ACE2 expression leads to higher

Table 1 Angiotensin Converting Enzyme 2 expression in different experimental models

Reference Study Type Results

(Ferrario et al., [61]) - Animal Model - Selective blockade of either Ang II synthesis or activity upregulates
cardiac ACE2 gene expression and cardiac
ACE2 activity

- The combination of losartan and lisinopril was associated with
increased cardiac ACE2 activity but not cardiac ACE2 mRNA

(Ishiyama et al., [62]) - Animal Model - Blockade of Ang II receptors upregulates cardiac ACE2

(Liu et al., [63]) - Public Database
- Study Cohort

- Expression of ACE2 is higher in the pancreas than in the lung of
control subjects favoring SARS-CoV-2 binding

- Single-cell RNA sequencing data shows that ACE2 is expressed in
both exocrine glands and islets of the pancreas

- Pancreatic injury is noted in some COVID-19 patients, mainly in
patients with severe illness.

(Lukassen et al., [64]) - Transcriptome data on single cell level of
healthy human lung tissues, including
surgical lung specimen and subsegmental
bronchial branches

- ACE 2 is predominantly expressed in a transient secretory cell type
in lung tissue

(Zou et al., [65]) - Genetic Study (Single-cell RNA- sequencing
(scRNA-seq) datasets derived from
major human physiological systems)

- Single-cell RNA-seq data analyses on the receptor ACE2
expression reveals the organs at risk, such as lung, heart,
esophagus, kidney, bladder, and ileum, and located specific
cell types which are vulnerable to 2019-nCoV infection.

(Wysocki et al., [66]) - Animal Model - ACE2 expression is increased at the posttranscriptional level in
renal cortex of the db/db STZ-induced diabetic mice.

(Roca-Ho, Riera, Palau, Pascual,
& Soler, [67])

- Animal Model - Diabetes up-regulates ACE2 mainly in serum, liver, and pancreas
of non-obese diabetic (NOD) mice model

(Rao, Lau, & So, [68]) - A phenome-wide Mendelian
Randomization study

- Diabetes and related traits may upregulate ACE2 expression, which
may influence susceptibility to SARS-CoV-2 infection

(Reich, Oudit, Penninger,
Scholey, & Herzenberg, [69])

- Renal biopsies from diabetic and
control subjects

- Kidney disease of patients with type 2 diabetes is associated
with a reduction in ACE2 gene and protein expression

(Monteil et al., [70]) - Cell lines
- Engineered human blood vessel

organoids and human kidney organoids

- Clinical-grade human recombinant soluble ACE2 (hrsACE2)
significantly inhibited viral growth in the monkey kidney cell line

- hrsACE2 prevented SARS-CoV-2 infection in engineered human
blood vessel organoids and human kidney organoids at the early
stage of infection
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viral infectivity, it would be reasonable to infer that diabe-
tes, with its diminished ACE2 expression, is associated
with a lower risk of infection with SARS-CoV-2.
However, as previously mentioned, diabetes was shown
to be associated with a higher risk of severe COVID-19
disease and a poorer prognosis. This highlights the pres-
ence of other factors that explain the positive association
between diabetes and COVID-19. Treatment with ACE
inhibitors, ARBs, TZD or GLP-1, higher levels of furin,
delayed viral clearance, immune dysfunction, comorbidi-
ties, and other confounding factors could all explain the
higher prevalence of COVID-19 in patients with diabetes.

Remarkably, other studies argue that having higher ACE2
expression does not lead to increased infectivity and severity of
COVID-19 disease. On the contrary, some consider that in-
creased ACE2 could play a beneficial role in patients with
COVID-19 [81, 82]. Patients with diabetes treated with ACE
inhibitors or ARBs might thus be at an advantage over non-
treated patients with diabetes [81, 82]. As previously mentioned,
loss of pulmonary ACE2 expression leads to decreased lung
function. This justifies why treatment with ACE inhibitor or
ARBs has been advanced as a possible therapeutic strategy for
COVID-19 [81, 82]. Moreover, it has been lately proposed that
treatment with a soluble form of ACE2, which lacks the mem-
brane anchor, may act as a competitive interceptor of SARS-
CoV-2 by inhibiting the binding of the virus’ S protein to the
surface-bound, full-length ACE2 [83]. A recent study has shown
that treatment with clinical-grade human recombinant soluble
ACE2 (hrsACE2) significantly inhibited viral growth in themon-
key kidney cell line, Vero-E6, by a factor of 1000-5000. It also
prevented SARS-CoV-2 infection in engineered human blood
vessel organoids and human kidney organoids at the early stage
of infection [70]. Collectively, these findings highlight the need
for a better understanding of the underlying pathobiology of
ACE2 in DM and COVID-19.

Based on these studies, the interplay between diabetes and
COVID-19 appears to be bi-directional. Diabetes was shown to
be associated with an increased risk of severe COVID-19. New-
onset diabetes and severe metabolic complications of preexisting
diabetes, such as diabetic ketoacidosis and hyperosmolarity,were
also noted in patientswith COVID-19, whichwas proposed to be
due to the binding of SARS-CoV-2 to ACE2 receptors in key
metabolic organs, possibly resulting in variations in glucose me-
tabolism [84–87]. ACE2 expression is particularly amplified in
key metabolic organs such as the liver, the endocrine pancreas,
adipose tissue, the kidneys and the small intestine, which might
play a role in the emergence of insulin resistance, as well as in the
impaired secretion of insulin [88, 89]. Thus, it could be hypoth-
esized that SARS-CoV-2 infects metabolic organs, leading to
hyperglycemia exacerbation. More importantly, a subclinical in-
flammatory reaction, in particular a combined elevation of IL-1β
and IL-6, has been shown to precede the onset of type 2 diabetes

[90], further suggesting that COVID-19 might increase the risk
of developing new-onset diabetes.

4.2 Diabetes mellitus and COVID-19: In the eye of the
“cytokine storm”

Another potential reason for the increased risk of severe
COVID-19 disease in patients with diabetes might be attrib-
uted to the hyperinflammatory response, referred to as “cyto-
kine storm” (Fig. 2). Patients with diabetes suffer from a con-
tinuous low-grade inflammation facilitating the emergence of
a cytokine storm, which in turn appears to be directly related
to the severity of COVID-19 pneumonia cases and to subse-
quent death [91]. Patients with diabetes appear to have an
impaired adaptive immune response characterized by an initial
delay of Th1 cell-mediated immunity and a late
hyperinflammatory response [49]. In the absence of an
immunostimulant, diabetes is associated with an increased
pro-inflammatory cytokine response marked by increased se-
cretion of IL-1, IL-6, IL-8 and TNF-α [58]. Elevated basal
cytokine levels might also be attributed to advanced glycation
end products (AGEs) [92], which consist of residues of glu-
cose and lysine/arginine [58]. It was noted that extended emer-
gence of AGEs occurred in poorly regulated patients with
diabetes. Separate studies have established an increase in cy-
tokine levels following AGE binding to non-diabetic cells,
without direct stimulation [93–95]. As such, elevated AGE
production in patients with diabetes could be implicated in
raising resting cytokine production [58]. Other studies evalu-
ated the responsiveness of peripheral blood mononuclear cells
(PBMCs) and isolated monocytes in patients with diabetes
after being subjected to stimulation. Interestingly, IL-1 and
IL-6 secretion resulting from exposure to lipopolysaccharide
(LPS) was found to be diminished in patients with diabetes
[58, 96, 97]. One might speculate that the high resting value of
diabetic cells could favor tolerance to direct stimulation, with

Fig. 2 COVID-19, Diabetes Mellitus, cytokine storm: a vicious cycle
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an ensuing decrease in the cytokine secretion response. This
type of event has already been reported in non-diabetic cells
[98]. In short, the mere availability of high glucose causes an
increase in resting cytokine production; yet, subsequent to
stimulation, cytokine production lessens in comparison to a
condition without glucose. This reduction in interleukin pro-
duction upon stimulation might also be attributed to intrinsic
cellular defects in patients with diabetes [58, 99].

Chronic inflammation reported in DM is further amplified
with SARS-CoV-2 infection, resulting in an aggressive inflam-
matory response. A study done on a humanized mouse model of
MERS-CoV infection revealed that the disease was more severe
and prolonged in male diabetic mice and was characterized by
alterations in CD4+ T cell counts and abnormal cytokine re-
sponses [100]. In accordancewith this animal study, other studies
conducted on patients with diabetes comorbid with COVID-19
have observed decreased peripheral CD4+ and CD8+ T cells
counts and increased cytokine levels [6, 8, 9, 45, 101]. A recent
study revealed that patients with diabetes comorbid with
COVID-19, despite having significantly lower absolute lympho-
cyte counts in peripheral blood, had notably higher absolute neu-
trophil counts in comparison to non-diabetic patients [54].
Among the different markers of inflammation found to be ele-
vated in COVID-19 cases with diabetes, IL-6 warrants particular
attention since it has been shown to be associated with lung
injury and poorer prognosis [28, 102]. Interestingly, serum levels
of IL-6 in diabetic patients without COVID-19were significantly
higher compared to those in non-diabetic patients [54]. This
might be correlated with the increased cytokine baseline level
observed in DM, which is further amplified in COVID-19.
These findings indicate that IL-6 might be a good predictor of
disease severity and prognosis. They also further suggest that
patients with both diabetes and COVID-19 are susceptible to a
more aggressive inflammatory storm, ultimately leading to rapid
deterioration.

Taken together, these observations suggest that toci-
lizumab (IL-6R antagonist) may markedly help in the treat-
ment of COVID-19 pneumonia. In fact, tocilizumab is now
being used off-label in some Italian centers in patients with
COVID-19 and is currently being assessed in an ad hoc ran-
domized controlled trial [31]. Moreover, IL-37, which de-
creases the production of IL-1β and IL-6 by modulating the
mTOR pathway and increasing AMPK, was suggested as a
potential treatment for COVID-19 [24]. Of note, it was previ-
ously shown that kinase inhibitors targeting PI3K/AKT/
mTOR pathways also significantly inhibited MERS-CoV rep-
lication in vitro [103]. Interestingly, AMPK/mTOR signaling
pathway is well known to be altered in DM. This not only
provides a plausible explanation for the increased susceptibil-
ity of patients with diabetes to COVID-19, but also alludes to
the possible role of COVID-19 in worsening diabetes and
diabetes-induced complications. Yet, the role of AMPK/

mTOR signaling axis in COVID-19 associated complications
should be further studied.

4.3 The interplay between COVID-19 and AMPK/mTOR
signaling pathway in diabetes mellitus

AMPK is a key physiological energy sensor whose activity is
regulated by glucose. AMPK signaling modulates multiple
biological pathways such as cellular metabolism, growth and
proliferation to maintain cellular energy homeostasis [104]. A
major downstream signaling pathway regulated by AMPK is
the mTOR pathway. mTOR is a serine/threonine protein ki-
nase that exists in 2 complexes, mTOR complex 1 (mTORC1)
and mTOR complex 2 (mTORC2). The two subtypes consist
of distinct sets of protein-binding partners [105]. mTORC1
comprises mTOR, mLST8 and rapamycin-sensitive adaptor
protein of mTOR (Raptor) and is known to mediate many of
its downstream effects including protein synthesis and cell
size through p70S6 kinase (p70S6K)/S6 kinase 1 (S6K1)
and 4E-binding protein 1 (4E-BP1) [106–108]. mTORC2,
with its essential components mTOR, mSIN1, mLST8, and
the rapamycin-insensitive subunit Rictor, mediates its actions
through the phosphorylation of protein kinase B (PKB/Akt) at
Serine 473 [109]. mTORC2 has been implicated in controlling
cell survival and cytoskeletal organization [109]. When cellu-
lar energy levels are low, AMPK is activated to stimulate
glucose uptake in skeletal muscles and fatty acid oxidation
in adipose tissues. It also reduces hepatic glucose production.
A large body of evidence underlines a dysregulation in AMPK
signaling in metabolic syndrome and DM [110–113]. More
importantly, it has been previously shown that AMPK activa-
tion can improve insulin sensitivity by enhancing glucose
transport and uptake and by stimulating fatty acid oxidation
[114]. In 2001, metformin was reported to act as an AMPK
activator and is now a widely used drug for the treatment of
type 2 diabetes [115], and recently for type 1 diabetes [116].
Strong evidence demonstrates that AMPK negatively regu-
lates the mTOR pathway. It inhibits mTORC1 indirectly
through the phosphorylation of Tuberous sclerosis 2 (TSC2),
thus favoring a TSC1-TSC2 association, an upstream inhibitor
complex of mTORC1. Furthermore, AMPK modulates
mTORC1, independently from TSC2 by raptor phosphoryla-
tion and inactivation of mTORC1 [117].

During the progression of DM, AMPK is inactivated
leading to chronic overactivation of mTORC1 [118–120].
Overactivation of mTOR signaling pathway has been as-
sociated with insulin resistance and progression of
diabetes-induced complications. For instance, our group
has previously shown that hyperglycemia was associated
with increased activation of mTORC1/p70 S6Kinase and
Rictor/mTORC2 pathways through the inactivation of
AMPK, eventual ly leading to podocyte in jury .
Intriguingly, inhibition of mTORC1 by rapamycin or of

457Rev Endocr Metab Disord (2020) 21:451–463



mTORC2 by using antisense oligonucleotides that target
Rictor attenuated glomerular injury and prevented
podocyte loss/depletion [110, 112].

Although not well elucidated, the effects of metformin are
thought to be mediated by the regulation of AMPK and
mTOR. Intriguingly, a recent study has shown that B cell
function and influenza vaccine responses attenuated by type
2 diabetes and obesity were improved by metformin [121].
Moreover, metformin decreased B cell intrinsic inflammation
and increased antibody responses when used in vitro to stim-
ulate B cells isolated from patients with recently diagnosed
type 2 diabetes [121]. These findings suggest that metformin
activates AMPK consequently leading to an improvement in
B cell responses and a decrease in B cell intrinsic inflamma-
tion. Therefore, AMPK is proposed as a potential therapeutic
target in viral infections.

Increasing evidence also highlight mTORC1 as a key play-
er in controlling the replication of viruses such as Andes
orthohantavirus and coronavirus [122, 123]. In patients with
H1N1 pneumonia and acute respiratory failure, treatment with
corticosteroids and an mTOR inhibitor effectively blocked
viral protein expression and virion release, attenuated hypoxia

and multiorgan dysfunction and improved patients’ prognosis
significantly [124]. Furthermore, a recent study revealed that
treatment with sirolimus, an mTOR inhibitor, decreased
MERS-CoV infection by more than 60% [103]. It has also
been previously shown that optimal West Nile Virus (WNV)
growth and protein expression are dependent on mTORC1-
mediated activation of downstream signaling pathways, 4E-
BP1 and eukaryotic initiation factor 4F (eIF4F) [125]. More
importantly, a recent study aiming to identify drug combina-
tions that may provide a synergistic effect in potentially
treating SARS-CoV-2 with precise mechanism of action by
network analysis revealed sirolimus plus dactinomycin as a
potential drug combination for SARS-CoV-2 [126].

However, other studies have described an anti-viral role for
mTOR. Recent findings have demonstrated that PI3K/AKT/
mTOR signaling pathway is crucial for cytokine responses in
IL-15 primed natural killer (NK) cells. Moreover, mTOR in-
hibition using rapamycin results in defects in both prolifera-
tion of NK cells and production of IFN-γ and granzyme B,
leading to increased viral burdens upon murine cytomegalo-
virus infection [127]. These findings describe a link between
the metabolic sensor mTOR and NK cell anti-viral responses.

Fig. 3 Proposed crosstalk between COVID-19 and Diabetes Mellitus
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In addition, a recent study has shown that metformin, by up-
regulating the expression of AMPK and inhibiting mTOR-
mediated pathway, decreases IFN-α expression following
seasonal vaccination (SV) with trivalent influenza vaccine
(TIV) and is associated with impaired antibody responses in
patients with type 2 diabetes [128]. mTOR has also been de-
scribed to play a role in suppressing hepatitis C virus (HCV)
RNA replication, proposing that the activation of mTOR by
HCV is an anti-viral response by the cells [129]. Taken to-
gether, these findings suggest that extensive research on the
exact role of mTOR in viral infections is still strongly
warranted.

On another note, the metabolic sensor mTOR is negatively
regulated by Regulated in Development and DNA Damage
Responses 1 (REDD1) [33]. IL-6, which was closely related
to the occurrence of severe COVID-19 in adult patients, was
shown to reduce basal as well as stress-induced REDD1 in a
Signal Transducer and Activator of Transcription 3 (STAT3)
dependent manner, resulting in the activation of mTOR [33].
Remarkably, rapamycin was shown to ameliorate IL-6-
induced insulin resistance in liver cells [130]. Based on these
observations, we suggest that COVID-19 associated cytokine
stormmight worsen the prognosis of DM by dysregulating the
AMPK/mTOR signaling pathway (Fig. 3). Collectively, these
observations suggest that activating AMPK and/or inhibiting
mTOR-mediated signaling pathway could be used as novel
drug targets for therapeutic intervention strategies.

5 Conclusion

In this review, we describe three potential mechanisms under-
lying the increased susceptibility of patients with diabetes to a
more severe COVID-19 disease, leading to higher morbidity
and mortality. Several studies have tried to explain a possible
increased susceptibility to infection with SARS-CoV-2 in pa-
tients with diabetes. However, no data has shown, to date, that
these patients are at higher risk of contracting COVID-19.
SARS-CoV-2 enters the host cell through the ACE2 receptor.
While a consensus has still not been reached on the role of
ACE2 in the crosstalk between diabetes and COVID-19, some
argue that patients with diabetes have an elevated ACE2 ex-
pression, thus facilitating viral entry and subsequent replica-
tion. Others show that patients with diabetes have low levels
of ACE2 and that the observed increase in ACE2 is due to
other factors such as treatment with ACE/ARBs, hypoglyce-
mic agents and statins. Patients with diabetes present with
elevated basal levels of cytokines, such as IL1-β and IL-6,
and with a state of low-grade chronic inflammation that seems
to further intensify the hyperinflammation observed in re-
sponse to SARS-CoV-2. This so-called “cytokine storm”, par-
ticularly with the increase in IL-6, is also suggested to alter
AMPK/mTOR signaling pathway in patients with diabetes,

possibly aggravating insulin resistance and diabetes-induced
complications. Therefore, despite the need for further research
investigation, one can speculate that treatment with human
recombinant soluble ACE2, IL-6 antagonists, AMPK activa-
tors or mTOR inhibitors may be considered as potential ther-
apeutic strategies to alleviate and even halt the complications
associated with COVID-19 disease.
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