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Abstract

In this paper we present a novel method for analyzing the relationship between functional brain 

networks and behavioral phenotypes. Drawing from topological data analysis, we first extract 

topological features using persistent homology from functional brain networks that are derived 

from correlations in resting-state fMRI. Rather than fixing a discrete network topology by 

thresholding the connectivity matrix, these topological features capture the network organization 

across all continuous threshold values. We then propose to use a kernel partial least squares 

(kPLS) regression to statistically quantify the relationship between these topological features and 

behavior measures. The kPLS also provides an elegant way to combine multiple image features by 

using linear combinations of multiple kernels. In our experiments we test the ability of our 

proposed brain network analysis to predict autism severity from rs-fMRI. We show that combining 

correlations with topological features gives better prediction of autism severity than using 

correlations alone.
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1. INTRODUCTION

Understanding the communication network between functional regions of the brain is a vital 

goal towards uncovering the biological mechanisms behind several diseases and 

neuropsychiatric disorders. This is particularly important in autism spectrum disorder 

(ASD), which converging evidence has shown to be characterized by abnormal functional 

and structural connectivity. The development of imaging biomarkers that correlate with 

specific behavioral symptoms would be beneficial for early diagnosis or for tracking 

treatment efficacy. Achieving this requires new methods for extracting relevant network 

representations from neuroimaging and statistical models for regressing this high-

dimensional and non-Euclidean information with behavioral measures.
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Analysis of brain networks begins with a matrix of pairwise associations between brain 

regions, e.g., correlations between time series in resting-state functional MRI (rs-fMRI). 

Such an association matrix is often used directly as the representation of the network in a 

regression analysis, hypothesis test, or classification. Recently, graph-theoretic methods [1] 

have emerged as a powerful means to describe the organization of brain networks. Graph-

theoretic measures (e.g., small worldness, modularity, etc.) have shown promising ability to 

explain impairments in brain networks characteristic of neuropsychiatric disorders such as 

ASD. However, graph-theoretic measures require that the association between nodes be 

thresholded to a binary value (connection or no connection), which loses information about 

the strength or certainty of the association. On the other hand, while the raw association 

matrix retains all information about the association strength between nodes, it does not 

directly capture information about the topology of the network.

To address this, we propose to use persistent homology features because they capture the 

topology of the association network at all levels of thresholding. These topological features 

are recorded in a persistence barcode, which is not a Euclidean vector, making direct use of 

linear statistical models difficult. However, we can define an inner product between two 

persistence barcodes, and use kernel partial least squares (kPLS) for regressing brain 

network topological features against behavioral scores. We apply our proposed methods to 

study how functional brain connectivity in autism is related to severity of the disorder.

2. TOPOLOGY OF BRAIN NETWORKS

Topological data analysis and persistent homology

Topological data analysis (TDA) extends mathematical concepts to the qualitative study of 

data from its point cloud representations; see, e.g., [2] for seminal work on the topic and [3, 

4] for excellent surveys. In particular, the mathematical notion of homology captures the 

topological features of a space in terms of its connectivity, treating its (connected) 

components, tunnels and voids as 0-, 1- and 2-dimensional features; while persistent 
homology [2], a main ingredient in TDA, automatically detects and systematically 

characterizes these topological features at all scales.

To convey the key ideas behind persistent homology, see Fig. 1 for an illustrative example. 

In Fig. 1(a), imaging five tiny infectious cells are born at time t = 0 in the culture and start to 

grow linearly in time. These cells differ by their degrees of infectiousness, where red > pink 

> blue > orange > green. When two cells grow large enough to intersect each other, the more 

infectious cell will kill the less infectious one, and both cells merge to form a highly 

infectious cluster. Using persistent homology, we investigate the topological changes within 

the growing sequence of cells indexed by time (a filtration). In particular, we focus on 

important events when cells merge with one another to form clusters (i.e., components) or 

tunnels. We begin by tracking the birth and death times of each cell (or cluster of cells) as 

well as its lifetime in the filtration. At t = 2.5, the green cell gets infected by the red cell and 

dies; and the two cells merge into one red cluster; therefore the green cell has a lifetime (i.e., 

persistence) of 2.5. At t = 3, the orange cell gets infected by the pink cell and turns pink; 

therefore it dies at t = 3. Similarly, the blue cell dies at t = 3.2 while the pink cluster of cells 

dies at t = 3.7. At time t = 4.2, something interesting happens as the collection of cells forms 
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a tunnel; and the tunnel disappears at t = 5.6. We record and visualize the appearance (birth), 

the disappearance (death), and the persistence of topological features in the filtration via 

persistence diagrams [5], or equivalently, persistence barcodes [4]. A point p = (a, b) in the 

persistent diagram records a topological feature that is born at time a and dies at time b. 

Equivalently in the barcode of Fig. 1(b), such a feature is summarized by a horizontal bar 

that begins at a and ends at b.

On the other hand, from a computational point of view, the above nested sequence of spaces 

formed by cells can be represented by a nested sequence of simplicial complexes with a 

much smaller footprint, as illustrated in Fig. 1(c). Suppose we represent each cell by its 

nucleus, a black point within its center. At a fixed parameter t, if two cells intersect each 

other, we construct an edge (i.e., 1-simplex) connecting their nuclei. Similarly, we construct 

a triangle (i.e., 2-simplex) for every three nuclei and a tetrahedron (i.e., 3-simplex) for every 

four nuclei whose corresponding cells have pairwise intersections. Such a complex is 

referred to as the Rips complex, denoted as R(t). For example, at t = 2.5, an edge is formed 

connecting a pair of nuclei in the red cluster; and at t = 5, a triangle is constructed among a 

set of pairwise intersecting cells. It is clear that for parameters t1 ≤ t2, R(t1) ⊆ R(t2), forming 

a nested sequence. Persistent homology then captures the topological changes of these Rips 

complexes, producing similar barcode as in Fig. 1(b).

Applying persistent homology to brain networks

Persistent homology is becoming an emerging tool in studying complex networks (e.g., [6]), 

in particular, brain networks (e.g., [7, 8]). The key insight is to map a given brain network to 

a point cloud in the metric space (intuitively this corresponds to the set of cells in Fig. 1), 

where network nodes map to points, and the measures of association between pairs of nodes 

map to distances between pairs of points. In this paper for example, the distance d between 

two points u, υ in the metric space is computed using their correlation coefficients in the 

brain network, that is, d(u, v) = 1 − corr(u, v). Subsequently, a nested sequence of simplicial 

(e.g., Rips) complexes could be constructed in the metric space for persistent homology 

computation. See Fig. 2 for an illustration.

To interpret the extracted topological features from the simplicial complexes with respect to 

the brain network, dimension-0 features capture how nodes in the brain networks are groups 

into clusters based on their correlations; while dimension-1 and dimension-2 features encode 

how these nodes are glued together forming tunnels and voids. Low persistence features 

capture high correlation, and possibly microscopic interactions among the network nodes; 

while high persistent features reveal low correlation, and potentially mesoscopic and 

macroscopic interactions. Some initial works [7, 8] have shown that the distributions of the 

topological features with high or low persistence can be indicative of differences among 

network organizations; although few systematic investigations have been carried out so far.

Leveraging topological features for statistical analysis

To interface topological features with the statistical algorithms such as regression or 

classification, we employ a recent technique proposed by Reininghaus et al. [9] that imposes 

a stable, multi-scale topological kernel for persistence barcodes, which connects topological 
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features encoded in the barcodes with popular kernel-based learning techniques such as 

kernel SVM and kernel PCA. In a nutshell, the topological kernel Kσ
TDA(A, B) (parametrized 

by a scale parameter σ) measures similarity between a pair of barcodes A and B obtained 

from two different functional networks. It is defined as,

KσTDA(A, B) = 1
8πσ ∑

p ∈ A, q ∈ B
e− p − q 2

8σ − e− p − q 2
8σ ,

where for every q = (a, b) ∈ B, q: = (b, a).

3. KERNEL PARTIAL LEAST SQUARES

Partial least squares

Partial least squares regression (PLS) [10] is a dimensionality reduction technique that finds 

two sets of latent dimensions from datasets X and Y such that their projections on the latent 

dimensions are maximally covarying. In comparison to principal component regression 

which separately reduces the dimension of regressors, PLS finds relevant latent variables 

that facilitate a better regression fit between datasets X (the predictor/regressor) and Y (the 

predicted response variables). Similar to Singh et al. [11], we consider here the case where 

the X predictors are features from brain imaging, and the Y responses are clinical measures 

of behavior. X is an n × N matrix of zero-mean variables and Y is an n × M matrix of zero-

mean variables. PLS decomposes X and Y into X = TPT + E and Y = UQT + F, where T and 

U are n × p matrices of the p latent variables, the N × p matrix P and the M × p matrix Q are 

orthonormal matrices of loadings, and the n × N matrix E and the n × M matrix F are 

residuals. The first latent dimension in the PLS regression can be computed using the 

iterative NIPALS algorithm [12], which finds loading vectors w and u, such that the data 

projected onto these vectors, t = Xw and u = Y c, has maximal covariance. Subsequent latent 

dimensions are then found by deflating the previous latent dimension from X and Y, then 

repeating the NIPALS procedure.

Kernel partial least squares regression

Rosipal and Trejo [13] derived the kernel partial least squares (kPLS) algorithm which 

assumes that the regressor data X is mapped by some mapping Φ to a higher dimensional 

inner product space ℱ. Let K be the Gram matrix of data X, such that the entries of the 

kernel k(x, x′) between two vectors in ℱ is equal to the inner product Φ(x), Φ x′ ℱ. The 

kernel form of the NIPALS algorithm scales to unit norm vectors t and u instead of the 

vectors w and c. It initializes a random vector u and repeats the following steps until 

convergence:

t = ΦΦTu = Ku (1)

t 1 (2)
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c = Y T t (3)

u = Y c (4)

u 1 (5)

At convergence, K is then deflated by K ← (I − ttT)K(I − ttT) to compute additional latent 

dimensions. Similar to PLS, the regression equation is Y = ΦB = KU T TKU −1T TY .

4. RESULTS

We applied our proposed kPLS regression between brain network topological features and 

behavior in an rs-fMRI study of autism. Our goal was to test the ability to predict autism 

severity, as measured by the Autism Diagnostic Observation Schedule (ADOS), from 

topological features of functional networks. We first tested raw correlations from rs-fMRI as 

the brain network features in the kPLS. Our results below show that augmenting these raw 

correlation features with the proposed topological features improves the predictive power of 

the kPLS model.

Data

We use data from the Autism Brain Imaging Data Exchange (ABIDE), a joint effort across 

multiple international sites aggregating subjects’ rs-fMRI scans and behavioral information 

such as ADOS. To avoid data heterogeneity from site differences, such as different scanner 

models, protocols, etc., we limit our analysis to a single site. There was a total of n = 87 

subjects with both rs-fMRI and ADOS information (30 typically-developing control subjects 

and 57 ASD subjects). The ADOS is an evaluation for autism based on social and 

communication behaviors. Subscores are assigned for both criteria, and at the clinician’s 

discretion, subjects scoring a total > 8 are diagnosed with ASD.

Preprocessing

All fMRI data were preprocessed using the Functional Connectomes-1000 scripts, which 

include skull stripping, motion correcting, registration, segmentation and spatial smoothing. 

Next, the time series for each of 264 regions is extracted based on Power’s regions of 

interest [14]. The Pearson correlation coefficient was then computed between each pair of 

regions, resulting in a 34,716 dimensional feature space for each subject (by vectorizing the 

strictly upper triangular part of the 264 × 264 correlation matrix). These pairwise 

correlations were used to compute the persistence barcodes for the topological features in 

Section 2.

Relating fMRI correlations to ADOS total scores

Using the rs-fMRI correlation values, we defined a linear kernel Kcor by taking the 

Euclidean dot products of the features. We used kPLS to regress the ADOS score Y against 

rs-fMRI correlations. The predictive power of the model was tested using leave-one-out 
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cross-validation (LOOCV), i.e., for each subject, we trained the kPLS regression on the 

other n − 1 subjects and predicted the left out subject’s ADOS score. We evaluated the 

prediction Y  of the true ADOS scores Y using the root mean squared error (RMSE).

Topological kernels

From each subject’s fMRI correlation matrix we computed the persistence barcodes of the 

dimension 0 and dimension 1 topological features using the procedure detailed in Section 2. 

The kernels KTDA0 and KTDA1 obtained from these barcodes were normalized by the 

median of the absolute values of their entries. There are four free parameters in the kPLS 

regression: the kernel parameters σ0 and σ1 for dimension 0 and dimension 1 features, and 

linear weights w0, w1 for combining the kernels to give 

KTDA+cor = w0KTDA0 + w1KTDA1 + 1 − w0 − w1 Kcor. We performed LOOCV over all 

combinations of parameters, with weights w0 and w1 in the range from 0 to 1 by 0.05, and 

log kernel sizes log10(σ0) and log10(σ1) from −8 to 6 by 0.2. We also evaluated KTDA, with 

constrains (1−w0−w1) = 0, such that the combined kernel only uses topological features.

The above methods Kcor, KTDA+cor, and KTDA were compared against a baseline of using 

the mean ADOS value of the other n − 1 subjects for prediction. Our RMSE results show 

that correlation matrices and topological features have promising predictive power over the 

mean prediction baseline (see Table 1). To ensure that these regressions are also better than 

using random signals, we generated n random correlation matrices from i.i.d. N(0, 1) time 

series of the same size as the real fMRI data and computed their linear kernel. Random 

signals performed worse than the ADOS mean prediction baseline, with an RMSE of 

6.47359.

We used permutation tests to determine the p-value significance of our RMSE results. We 

looked at the test statistics RMSEmethod2 - RMSEmethod1 for all pairwise comparisons of the 

three kernel methods plus baseline. In each of 100,000 permutations, we performed random 

pairwise swaps of method2 and method1 predictions for subjects and computed the new 

statistic. The p-value is the percentage of permuted difference statistics that were greater 

than the unpermuted statistic.

From our results, both KTDA (parameters: σ0 = −6.6, σ1 = 1.8, w0 = 0.05, w1 = 0.95) and 

Kcor show evidence of improvement over baseline and noise. Augmenting Kcor with 

topological features, KTDA+cor has the best predictive power, and is the only method that is 

statistically significantly better than baseline. This best result is with the parameters σ0 = 

−7.8, σ1 = 2.8, w0 = 0.10, w1 = 0.40. These results show that topological features derived 

from correlations of rs-fMRI have the potential to explain the connection between function 

brain networks and autism severity. For future work, we will investigate the predictive power 

of persistence barcodes derived from other metrics, e.g., partial correlations.
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Fig. 1. 
Persistent homology computation and barcode.
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Fig. 2. 
Mapping a brain network to the metric space.

Wong et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2020 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wong et al. Page 10

Table 1.

ADOS prediction results. Columns 2 to 4 are p-values for the permutation test of improvement of row method 

over column method.

RMSE ADOS mean KTDA Kcor

ADOS mean 6.4302 - - -

KTDA 6.3553 0.316 - -

Kcor 6.0371 0.055 0.095 -

KTDA+cor 6.0156 0.048 0.075 0.288
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