Skip to main content
. 2020 Jul 22;2020:5047987. doi: 10.1155/2020/5047987

Table 4.

Natural products modulating ROS in chemo-/radiotherapy of HNC.

Category Herb Site Experimental model Effective dose Cotherapy ROS detection Biological effect Mechanisms Reference
Flavonoids Quercetin Larynx In vitro
(Hep2 cell)
40 μM +Cisplatin
(2.5 μg/ml)
Synergistic effects ↓Cu/Zn SOD, ↓p-AKT, ↑p-JNK, ↑c-FOS, ↓Bcl-2, ↓Bcl-xL, ↓survivin, ↑Bax, ↑cytochrome c, ↑caspase-3, ↑caspase-9, ↓NOS, ↓HSP70, ↓Ki-67, ↓telomerase [216]
Naringin Esophagus In vitro
(YM1 cancer stem cell)
In vivo
(YM1 xenograft mouse)
In vitro
(354 μM)
In vivo
(50 mg/kg)
+Doxorubicin Reduce side effect, restore the antioxidant defense system ↑SOD [217]
AIF Esophagus In vitro
(Eca109, KYSE-30 cells)
In vivo
(Eca109 xenograft nude mice)
In vitro
(5 μM)
In vivo
(20 mg/kg/day)
+Radiation
In vitro
(6 Gy)
In vivo
(2 Gy/min on days 10 and 30)
DCFH-DA confocal microscope Synergistic effects: enhance apoptosis G2/M arrest ↑ROS, ↓Nrf2, ↓HO-1, ↓NQO1, γ↑H2AX [218]
Wogonin Larynx In vitro
(HN2, -HN3, -HN4, -HN5, and -HN9; SNU-1041, SNU-1066, and SNU-1076; HN4-cisR and HN9-cisR cells; normal cell: HOK-1, HOF, and HEK)
In vivo
(HN4-cisR or HN9-cisR xenograft nude mice)
50 mg/kg +Cisplatin DCFH-DA flow cytometry Synergistic effects: enhance apoptosis ↑ROS, ↓GSH, ↓Nrf2, ↓GST, ↑p53, ↑p-JNK, ↑c-PARP, ↑PUMA [219]

Polyphenols Curcumin Oral cavity In vitro
(normal cell SGNs and cancer cell PE/CA-PJ15)
In vivo
(male adult Wistar rats)
In vitro
(3.37, 6.75 μM)
In vivo
(200 mg/kg)
+Cisplatin Otoprotective effect: antioxidant activity
Synergistic effects: prooxidant and anti-inflammatory
Protective mechanisms: ↑Nrf2, ↑HO-1, ↓p53, ↓NF-κB
Synergistic mechanisms: ↓Nrf2 (nuclear), ↓NF-κB, ↓pSTAT-3, ↑p53
[223]
Curcumin Pharynx In vitro
(HPV-cells: FaDu, SQ20B, JHU-022, HEK-001, and MSK-Leuk1; HPV+ cells: UPCI-SCC090 and UPCI-SCC154)
In vivo
(FaDu xenograft nude mice)
In vitro
(10 μM)
In vivo
(10 μM)
+Radiation
In vitro
(0, 2, 4, 6 Gy)
In vivo
(0, 2, 4, 6 Gy)
Synergistic effects: inhibition of antioxidant defense system ↓TxnRd1 [145]
FA Oral cavity In vitro
(normal cell SGNs and cancer cell PE/CA-PJ15)
In vivo
(male adult Wistar rats)
In vitro
(100-600 μM)
In vivo
(600 mg/kg)
+Cisplatin Otoprotective effect: antioxidant activity
Synergistic effects: prooxidant at lower concentrations (100-600 μM)
Antagonistic effect: antioxidant at higher concentrations (>600 μM)
Protective mechanisms: ↑Nrf2, ↑HO-1, ↓P53
Synergistic mechanisms: ↓Nrf2 (nuclear), ↓pSTAT-3
Antagonistic mechanisms: ↑Nrf2 (nuclear), ↑pSTAT-3
[223]
DPP-23 Larynx In vitro
(HN3, HN3-cisR, HN4, HN4-cisR, HN9, HN9-cisR, HOK-1 cells)
In vivo
(HN9-cisR xenograft nude mice)
In vitro
(2-40 μM)
In vivo
(10 mg/kg)
+Cisplatin
In vitro
(10 μM)
In vivo
(5 mg/kg)
DCFH-DA flow cytometry Synergistic effects: inhibition of antioxidant defense system and activation of apoptosis ↑ROS, ↓GSH, ↓Nrf2, ↓HO-1, ↑p53, ↑c-PARP, ↑p21 [224]
EGCG Oral cavity In vitro
(normal cell: NHOK; cancer cell: HSC-2)
50-100 μM +Doxorubicin 0.625-5 μM DCFH-DA fluorescence microscope Chemoprotective effect ↓ROS [225]
TA Oral cavity In vitro
(normal cell: NHOK; cancer cell: HSC-2)
12.5-50 μM +Doxorubicin 0.625-5 μM DCFH-DA fluorescence microscope Chemoprotective effect ↓ROS [225]
Epicatechin Oral cavity In vitro
(oral fibroblast cells)
In vivo
(Zebrafish)
In vitro
(50 μM)
In vivo
(200 μM)
+Radiation
In vitro
(20 Gy)
In vivo
(20 Gy)
DCFH-DA flow cytometry Radioprotective effect: reduce apoptosis and restore MMP ↓ROS, ↓p38, ↓p-JNK, ↓CC3 [226]
Epicatechin Oral cavity In vitro
(human keratinocyte HaCaT cell)
In vivo
(Sprague-Dawley rats)
In vitro
(100 μM)
In vivo
(2 mM/day after radiation for 23 days)
+Radiation
In vitro
(20 Gy)
In vivo
(30 Gy)
DCFH-DA flow cytometry Radioprotective effect ↓ROS, ↓p-JNK, ↓p38, ↓CC3, ↓NOX3 [227]

Quinones Plumbagin Tongue In vitro
(CAL27 cell, cisplatin-resistant cell line CAL27/CDDP)
In vivo
(CAL27/CDDP xenograft nude mice)
In vitro
(5 μM)
In vivo
(3 mg/kg every two days)
+Cisplatin
In vitro
(16.7 μM)
In vivo
(4 mg/kg every three days)
DCFH-DA+MitoSOX fluorescence microscope Synergistic effects: enhance apoptosis and autophagy ↑ROS, ↓Bcl-2, ↑Bax, ↑CC3, ↑Beclin-1, ↓p62, ↑LC-II/LC-I, ↓p-AKT, ↓p-mTOR, ↑p-JNK [238]
β-Lapachone Head and neck In vitro
(FaDu, Detroit 562, SqCC/Y1, UMSCC-10A)
In vivo
(SqCC/Y1 xenograft SCID-NOD mice clinical samples)
In vitro
(2.5 μM)
In vivo
(10 mg/kg every other day)
+Radiation
In vitro
(2 Gy)
In vivo
(10 Gy)
DCFH-DA flow cytometry Synergistic effects: enhance apoptosis and NDA damage ↓NQO1, ↑ROS, ↓Bcl-2, ↓ATP, ↑γH2AX [233]

Terpenoids Oridonin Larynx In vitro
(Hep-2 and Tu212 cells)
In vivo
(Hep-2 xenograft nude mice)
In vitro
(12, 24, and 36 μM)
In vivo
(20 mg/kg)
+Cetuximab
In vitro
(10 μg/ml)
In vivo
(1 mg/mice)
DCFH-DA flow cytometry Synergistic effects: enhance apoptosis and G2/M arrest ↑ROS, ↑CC8, ↑CC3, ↑c-PARP, ↑p21, ↑Fas, ↑FADD, ↑FasL, ↓ICAD, ↓cyclin B1, ↑p-cdc2, ↑p-cdc25c, ↓NAC, ↓CAT, ↑p-JNK, ↓p-EGFR [244]

Ginsenosides Ro Esophagus In vitro
(ECA-109, TE-1 cell)
50 μM +5-Fluorouracil 100 μg/ml Synergistic effects: enhance DNA repair and inhibit autophagic flux ↑ESR2, ↑NCF1, ↑ATG-7, ↑CC3, ↑CC9, ↑c-PARP, ↑p62, ↓LC3BII/LC3BI, ↑CHEK1 [248]
KRG Oral cavity In vitro
(normal keratinocyte HaLa cell, cancer SCC25, SCC1484 cell)
In vivo
(zebrafish)
In vitro
(10-100 μg/ml)
In vivo
(30 μg/ml)
+Radiation
In vitro
(8 Gy)
In vivo
(20 Gy)
DCFH-DA flow cytometry Radioprotective effect ↓ROS, ↓ATM, ↓p-p53, ↓p-JNK, ↓p-p38, ↓CC3 [249]

Note. ROS: reactive oxygen species; DCFH-DA: 2′,7′-dichlorofluorescein diacetate; SOD: superoxide dismutase; AKT: protein kinase B; p-AKT: phosphorylated AKT; JNK: c-Jun N-terminal kinase; p-JNK: phosphorylated-JNK; c-FOS: cellular oncogene fos; Bcl-2: B-cell lymphoma-2; Bcl-xL: B-cell lymphoma-extra large; Bax: Bcl-2-associated X protein; NOS: nitric oxide synthase; HSP70: heat shock protein 70; AIF: alpinumisoflavone; Nrf2: nuclear factor (erythroid-derived 2)-like 2 transcription factor; HO-1: heme oxygenase; NQO1: NAD(P)H:quinone oxidoreductase 1; γH2AX: H2A histone family member X; GSH: glutathione; GST: glutathione-S-transferases; p53: protein 53; c-PARP: cleaved poly-ADP ribose polymerase; PUMA: p53 upregulated modulator of apoptosis; NF-κB: nuclear factor kappa-B; STAT: signal transducer and activator of transcription; TxnRd1: thioredoxin reductase 1; FA: ferulic acid; p21: protein 21; EGCG: epigallocatechin gallate; TA: tannic acid; CC3: cleaved caspase 3; NOX3: triphosphopyridine nucleotide oxidase 3; p62: sequestosome-1; LC3-II: light chain 3 II; LC3-I: light chain 3 I; p-mTOR: phosphorylated mammalian target of rapamycin; CC8: cleaved caspase 8; FADD: Fas-associated death domain; FasL: Fas ligand; ICAD: caspase-3-activated DNase inhibitor; p-cdc2: phosphorylated cdc2; p-cdc25c: phosphorylated cdc25c; NAC: N-acetyl cysteine; CAT: catalase; EGFR: epidermal growth factor receptor; p-EGFR: phosphorylated EGFR; Ro: ginsenoside Ro; ESR2: estrogen receptor 2; NCF1: neutrophil cytosolic factor 1; ATG-7: autophagy-related 7; CC9: cleaved caspase 9; CHEK1: checkpoint kinase 1; KRG: Korean red ginseng; p-p53: phosphorylated p53.