Skip to main content
. 2020 Jul 30;8:e9558. doi: 10.7717/peerj.9558

Table 1. Model parameters and error model parameters with initial values and prior distributions. The implementation of the HBV model is based on Heistermann & Kneis (2011).

Parameter name Definition Initial value through deterministic calibration a Prior distribution of parameter b
Model parameters
CFMAX Degree day factor for snow melt [mm/°C/d] 0.324 Beta[3, 5, 0, 10]
TT Temperature threshold below which precipitation falls as snow [°C] 0.387 Beta[3, 2, −3, 3]
FC Field capacity [mm] 106.4 Beta[1, 4, 50, 200]
MINSM Minimum soil moisture for storage [mm] 44.66 Beta[1, 4, 0, 200]
BETA Parameter to control the fraction of rain and snow melt partitioned for groundwater recharge [–] 1.888 Beta[1, 1, 1, 5]
LP Fraction of soil moisture-field capacity-ratio above which actual evapotranspiration equals potential evapotranspiration [–] 0.845 Beta[1, 1, 0, 1]
CET Correction factor for potential evapotranspiration [–] 0.570 Beta[1, 1, 0, 20]
KPERC Percolation coefficient [1/d] 2.670 Beta[1, 1, 0, 5]
K0 Fast storage coefficient of soil upper zone [1/d] 0.498 Beta[1, 1, 0, 0.5]
UZL Threshold above which soil upper zone storage empties at rate computed by storage coefficient K0 [mm] 1.226 Beta[3, 4, 0, 60]
K1 Slow storage coefficient of soil upper zone [1/d] 0.356 Beta[1, 4, 0, 0.5]
K2 Storage coefficient of soil lower zone [1/d] 9.7 × 10−4 Beta[1, 4, 0, 0.1]
MAXBAS Length of (triangular) unit hydrograph [d] 3.887 Beta[1, 4, 0, 6]
etpmean Mean evaporation [mm/d] 4.446 Beta[1, 3, 0, 50]
tmean Mean temperature [°C] 4.549 Beta[4, 4, −20, 30]
n (Real) number of storages in linear storage cascade 1.901 Beta[1, 2, 0, 7.5]
k Decay constant for linear storage cascade 1.481 Beta[1, 2, 0, 5]
Initial state parameters
snow Snow storage [mm] 178 Beta[1, 3, 0, 200]
sm Soil moisture storage [mm] 369 Beta[1, 3, 0, 200]
suz Soil upper zone storage [mm] 117 Beta[1, 3, 0, 200]
slz Soil lower zone storage [mm] 44 Beta[1, 3, 0, 200]
Error model parameters
β1 Coefficient for the AR(1) in Eq. (2) U[0,1]
σδ2 Variance for the AR(1), Eq. (2) U[0,1]
ση2 Measurement error variance, Eq. (1) U[0,1]
z¯ Vector of length T + W for the rainfall parameters Fz¯, see Eq. (7)

Notes.

a

A deterministic calibration is performed prior to the Bayesian calibration. The parameters are optimized with differential evolution. The objective function is the MSE between the predicted and measured discharge.

b

Beta [a,b,c,d] represents a beta distribution in the interval [c,d] with shape parameters a and b. U[a,b] is a uniform distribution over the interval [a, b].