Table 3.
Comparison of the Eight Machine Learning Algorithms Using Different Performance Indicators
| Algorithms | Accuracy | Sensitivity | Specificity | AUC | Precision |
|---|---|---|---|---|---|
| Random forest | 0.87 | 0.88 | 0.85 | 0.96 | 0.89 |
| Support vector machine | 0.86 | 0.92 | 0.78 | 0.89 | 0.84 |
| K-nearest neighbors | 0.73 | 0.61 | 0.88 | 0.73 | 0.88 |
| Logistic regression | 0.81 | 0.84 | 0.77 | 0.89 | 0.84 |
| Linear discriminant analysis | 0.81 | 0.84 | 0.78 | 0.89 | 0.83 |
| Lasso regression | 0.84 | 0.86 | 0.83 | 0.91 | 0.88 |
| Decision tree | 0.80 | 0.82 | 0.78 | 0.81 | 0.82 |
| Multilayer perceptron neural network | 0.52 | 0.80 | 0.20 | 0.51 | 0.44 |
The number in bold indicates the highest value obtained for each performance indicator.