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Background: Machine learning has been an emerging tool for various aspects of infectious diseases including
tuberculosis surveillance and detection. However, the World Health Organization (WHO) provided no recom-
mendations on using computer-aided tuberculosis detection software because of a small number of studies,

;Zzerf;]::ii: methodological limitations, and limited generalizability of the findings.
Chels)t X-Ray 8 Methods: To quantify the generalizability of the machine-learning model, we developed a Deep Convolutional

Neural Network (DCNN) model using a Tuberculosis (TB)-specific chest x-ray (CXR) dataset of one population
(National Library of Medicine Shenzhen No.3 Hospital) and tested it with non-TB-specific CXR dataset of another
population (National Institute of Health Clinical Centers).

Results: In the training and intramural test sets using the Shenzhen hospital database, the DCCN model exhibited
an AUC of 0.9845 and 0.8502 for detecting TB, respectively. However, the AUC of the supervised DCNN model in
the ChestX-ray8 dataset was dramatically dropped to 0.7054. Using the cut points at 0.90, which suggested 72%
sensitivity and 82% specificity in the Shenzhen dataset, the final DCNN model estimated that 36.51% of abnormal
radiographs in the ChestX-ray8 dataset were related to TB.

Conclusion: A supervised deep learning model developed by using the training dataset from one population may
not have the same diagnostic performance in another population. Conclusion: Technical specification of CXR
images, disease severity distribution, dataset distribution shift, and overdiagnosis should be examined before
implementation in other settings.

1. Introduction

Tuberculosis (TB) is a major health problem in many regions of the
world, especially in developing countries. While a majority of patients
have their lungs infected with TB, some individuals might have TB
infection in other body organs. Hence, unlike other infectious diseases,
the diagnosis of TB is relatively more difficult and several tests are usu-
ally needed. Although Chest X-ray (CXR) is one of the primary tools for
TB screening, a suspected individual requires clinical, biological, and
genetic investigations before the actual diagnosis can be made and the
medications are readily prescribed. As part of the World Health
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Organization (WHO) systematic screening strategy to ensure early and
correct diagnosis for all people with TB, CXR is one of the primary tools
for triaging and screening for TB because of its relatively high sensitivity,
depending on how the CXR is interpreted [1]. However, significant intra-
and inter-observer variations in the reading of CXR can lead to over-
diagnosis or underdiagnosis of tuberculosis.

Deep convolutional neural network (DCNN) has emerged as an
attractive technique for TB surveillance and detection. Besides, one study
indicated that this approach can accurately detect TB cases in less than 3
min at minimal expense (https://www.digitalcreed.in/ai-for-tb/). This
‘supervised’ machine learning algorithm learns a mapping from a set of
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covariates to the outcome of interest by using the training data then
applies this mapping to the new test data for identification or prediction
tasks [2]. In a common deep learning model, the covariates are the color
pixel values of the CXR images whereas the outcome is the radiologist's
interpretation and impression of the corresponding CXR.

Recently, the National Institute of Health (NIH) released the ChestX-
ray8 dataset with more than 100,000 anonymized CXR images and their
associated data which compiled from more than 32,000 patients [3].
These data allow researchers to further develop an algorithm for classi-
fying lung abnormalities labelled from the radiological reports using the
National Language Processing technique [4, 5]. Nonetheless, according
to the ChestX-ray8 criteria, a CXR image with minimal lung lesions could
be incorrectly labelled as normal whereas these radiologic labels are not
specific to TB [3].

The Computer-Aided Detection for Tuberculosis (CAD4TB), Seman-
ticMD, and Qure.ai are selected examples of currently available
computer-aided detection (CAD) software. CAD4TB is TB specific and
had demonstrated a good diagnostic performance [6, 7] but still inferior
to that of expert readers [8]. As of 2016, WHO provided no recommen-
dations on using CAD for TB because of the small number of studies,
methodological limitations, and limited generalizability of the findings
[1]. The other two software cover a broader range of clinical conditions
but available only for investigational use in the U.S.

Unlike other diagnostic tests, the technical specification of CXR im-
ages and disease severity distribution could affect the diagnostic per-
formance of a supervised machine learning model. That is, the picture
archive and communication system (PACS) data has more information
but requires more time, storage, and processing power than low bit-depth
formats (.jpg) whereas the supervised deep learning model developed
based on CXR images of hospitalized patients would be smarter at
detecting severe case than another community-based model. To quantify
the extent of dataset specificity that limits the generalizability of CAD for
TB, we developed a DCNN model using a TB-specific CXR dataset of one
population and tested it with non-TB-specific CXR dataset of another
population.

1.00
|

0.75

Sensitivity
0.50
1

0.25
|

0.00

Heliyon 6 (2020) e04614

2. Methods

Two de-identified Health Insurance Portability and Accountability
Act (HIPAA)-compliant datasets, the National Library of Medicine (NLM)
Shenzhen No.3 Hospital X-ray set, and the NIH ChestX-ray8 database
were included in this study. The Shenzhen dataset collected 336 normal
and 326 abnormal CXR of bacteriologically and/or clinically confirmed
TB with various manifestations as part of the standard TB care at
Shenzhen No.3 Hospital in Shenzhen, Guangdong providence, China.
The Shenzhen dataset was provided in PNG format with a resolution of
3000 x 3000 pixels. The ChestX-ray8 comprises of CXR images acquired
as a part of routine care at NIH Clinical Center, Bethesda, Maryland, USA.
The images were directly extracted from the DICOM file and resized as
1024 x 1024 bitmap images without significantly losing the detailed
contents. It comprised of 112,120 frontal-view CXR images (60,360
normal and 51,760 abnormal images) of 30,805 unique de-identified
patients with the text mined eight disease image labels (including
normal, atelectasis, cardiomegaly, effusion, infiltration, mass, nodule,
pneumonia, and pneumothorax), from their corresponding radiological
reports using natural language processing.

Firstly, the Shenzhen dataset was split into training (75%), validation
(15%), and intramural test (10%) sets. Based on the TensorFlow frame-
work, Inception V3, a novel pre-trained DCNN, was augmented with
color-space, crop-flip, rotational methods to classify each image as hav-
ing TB characteristics or as healthy. The learning rate was 0.01, training
and validating batch sizes were both 100 with five EPOCHs (https://gith
ub.com/panasun/dac4tb). The desktop computer was equipped with
Intel i7-7700 CPU @ 3.60GHz, 32G RAM, and NVIDIA GeForce GTX
1080 @ 8GB GPU.

Given no classification of TB within the Chest X-ray8 dataset, we
adopted the WHO guideline on Chest Radiography in Tuberculosis
Detection which described the standard characteristics of CXR associated
with active TB disease by using only 5,000 images of normal CXR and
5,000 images of CXR with active TB associated features according to the
WHO guideline (infiltration, pneumonia, atelectasis, and effusion) (1)
from Chest X-ray8 dataset to create a valid extramural test set to examine
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Figure 1. ROC Curves of DAC4TB in the training Shenzhen No.3 Hospital set.
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Figure 2. ROC Curves of DAC4TB in the intramural Shenzhen No.3 Hospital test set.

the generalizability of the DCNN model to classify normal and other CXR
in addition to test set from intramural (Shenzhen) dataset.

Lastly, the prevalence of TB-associated CXR in the ChestX-ray8
dataset was estimated by using the final DCNN model. Receiver oper-
ating characteristic (ROC) curves and areas under the curve (AUC) were
used to assess model performance and to define the optimal cut point for
TB detection.

3. Results

In the training and intramural test sets using the Shenzhen hospital
database, the DCNN model exhibited an AUC of 0.9845 and 0.8502 for
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detecting TB, respectively (Figures 1 and 2). However, the AUC of the
supervised DCNN model in the ChestX-ray8 dataset was dramatically
dropped to 0.7054 (Figure 3). Using the cut points at 0.90 which sug-
gested 72% sensitivity and 82% specificity in the Shenzhen dataset, the
final DCNN model estimated that 36.51% of abnormal radiographs in the
ChestX-ray8 dataset were related to TB.

4. Discussion
Our findings suggested that the diagnostic performance of a super-

vised machine learning model is dataset specific, because of the varying
technical specification of CXR images and disease severity distribution in
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Figure 3. ROC Curves of DAC4TB in the extramural NIH ChestX-ray8 test set.
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different populations. In this study, the Inception V3 TensorFlow model
maintained the diagnostic accuracy for the training, validation, and
intramural test images in the Shenzhen dataset. This ability to correctly
classified unseen test images within the same dataset is known as
generalization. However, the significant drop in the diagnostic perfor-
mance in the extramural test images reflects poor generalizability.

The falling of performance when the distribution of the data changed
is known as ‘distribution shift’, and still an active area of research in the
machine learning community. One might argue that the distribution shift
becomes more apparent in our study because of insufficient model
preparation and optimization. However, we had augmented our model
with several techniques that have been known to improve generalization
of deep learning in the other area of research including color-space, crop-
flip, and rotational methods. Although, there are other techniques [9,10]
that may help improve our model performance. By far the best, the
discrepancy in CXR readings pattern between the two datasets according
to differences in prevalence, manifestations of common lung abnormal-
ities, as well as health care system in China and the U.S. are unavoidably
having an important role in performance shift in this study. Thus, it is
more likely our findings indicated that dataset distribution shifts in deep
learning in some specific research area is inevitable. Careful imple-
mentation of Al and further researches to examine the problem will
improve the development and adoption of Al in medicine and public
health.

The 36.51% of abnormal CXR in the NIH ChestX-ray8 dataset was
associated with TB might demonstrate the ‘overdiagnosis’ of deep
learning since many CXR abnormalities that are compatible with pul-
monary TB are seen also in several lung pathologies and, therefore, are
indicative not only of TB but also of other pathologies.

Some limitations of this study should be noted. Like other deep
learning studies, the images were resized to a manageable dimension
before being fed into the model as a larger file will increase the training
time and will require more robust central and graphical processing
power. Accuracy may be improved by using higher resolution images,
particularly for subtle findings, and more research is needed in this re-
gard. Secondly, we did not comparatively explore the effect of using
other pre-trained models such as the VGGNet or ResNet as the former is a
very slow pre-trained sequential model and the latter is a relatively less
efficient model than the Inception V3. Lastly, this retrospective study was
conducted using the datasets that were available at the time. Further
investigation on the use of deep learning in a real-world large-scale
screening program for pulmonary TB in prevalent regions is essential.

5. Conclusions

A supervised deep learning model developed by using the training
dataset from one population may not always have the same diagnostic
performance in another population. Technical specification of CXR im-
ages, disease severity distribution, dataset distribution shift, and over-
diagnosis should be examined before implementation in other settings.
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