Table 3.
The Performance of 12-Variable Models for Identification of Severe COVID-19 on Admission
| LDA | Logistic Regression | Random Forest | Decision Tree | SVM | XGBoost | |
|---|---|---|---|---|---|---|
| AUC macro | 0.929 | 0.917 | 0.903 | 0.676 | – | 0.953 |
| F1 weighted | 0.891 | 0.854 | 0.848 | 0.769 | 0.848 | 0.896 |
| Accuracy | 0.892 | 0.862 | 0.862 | 0.800 | 0.862 | 0.892 |
| Sensitivity | 0.692 | 0.538 | 0.462 | 0.231 | 0.462 | 0.846 |
| Specificity | 0.942 | 0.942 | 0.962 | 0.942 | 0.962 | 0.904 |