Table 4.
The Performance of 4-Variable Models for Identification of Severe COVID-19 on Admission
| LDA | Logistic Regression | Random Forest | Decision Tree | SVM | XGBoost | |
|---|---|---|---|---|---|---|
| AUC macro | 0.876 | 0.879 | 0.864 | 0.680 | – | 0.859 |
| F1 weighted | 0.815 | 0.802 | 0.815 | 0.769 | 0.815 | 0.856 |
| Accuracy | 0.831 | 0.815 | 0.831 | 0.800 | 0.831 | 0.846 |
| Sensitivity | 0.385 | 0.385 | 0.385 | 0.231 | 0.385 | 0.846 |
| Specificity | 0.942 | 0.923 | 0.942 | 0.942 | 0.942 | 0.846 |