Skip to main content
letter
. 2020 Aug 3;21(10):1387–1388.e1. doi: 10.1016/j.jamda.2020.07.039

Supplementary Table 1.

Regression Results of Main and Sensitivity Analyses (N = 134)

Model 1 Model 2 Model 3
Time
 Baseline 86.84 79.31 94.36 86.84 78.31 95.36 86.98 79.21 94.75
 Pre CA −0.02 −0.20 0.16 −0.02 −0.22 0.18 −0.03 −0.21 0.16
 (Time at CA) 85.68
 Post CA short term −10.87 (=12.7% of 86.68) −17.21 −4.52 −10.87 −17.48 −4.26 −10.47 −17.44 −3.51
 Post CA long term −0.08 −0.33 0.18 −0.08 −0.34 0.18 −0.08 −0.35 0.20
 (Time at SE) 82.66
 Post SE short term −6.46 (=7.8% of 82.66) −11.13 −1.80 −6.46 −11.28 −1.65 −6.31 −11.30 −1.31
 Post SE long term 0.27 0.06 0.48 0.27 0.06 0.48 0.28 0.05 0.51
 Trend: CA −0.10 −0.28 0.09 −0.10 −0.28 0.09 −0.10 −0.31 0.10
 Trend: SE 0.18 0.07 0.28 0.18 0.06 0.28 0.17 0.06 0.29
F (11,134) = 27.3, P < .000 F (11,134) = 27.4, P < .000 F (11,134) = 24.0, P < .000
R2 = 0.62, d statistic = 1.95
Walking distance
 Baseline 1097.23 1009.39 1185.06 1097.23 1000.11 1194.34 1096.31 1001.97 1190.66
 Pre CA 0.64 −1.38 2.65 0.64 −1.58 2.86 0.65 −1.59 2.89
 Distance at CA 1133.60
 Post CA short term −37.70 (=3.3% of 1133.60) −138.21 62.80 −37.70 −140.87 65.46 −34.00 −146.41 78.41
 Post CA long term −5.37 −10.39 −0.36 −5.37 −10.85 0.10 −5.51 −11.02 −0.01
 Distance at SE 918.63
 Post SE short term −186.79 (=20.3% of 918.63) −333.01 −40.57 −186.79 −348.23 −25.35 −183.69 −341.39 −25.99
 Post SE long term 5.61 0.40 10.82 5.61 0.05 11.18 5.70 −0.08 11.48
 Trend: CA −4.73 −9.34 −0.13 −4.74 −9.78 0.31 −4.86 −9.90 0.17
 Trend: SE 0.87 −1.68 3.43 0.88 −1.61 3.36 0.84 −2.03 3.70
F (11,134) = 38.3, P < .000 F (11,134) = 46.8, P < .000 F (11,134) = 29.6, P < .000
R2 = 0.64, d statistic = 1.97

CA, CCRC announcement; SE, state of emergency.

Confidence intervals in brackets.

Model 1: Regression with Newey-West standard errors without lag indicated (main analyses).

Model 2: Model 1 with 1 day lag indicated.

Model 3: Prais-Winsten autoregressive model. Dummy variables for week are not shown in the tables.

Postintervention linear trend = _b [pre CA] + _b [post CA long term].

Postintervention linear trend = _b [pre CA] +_b [post CA long term] + _b [Post SE long term].

Durbin–Watson d statistic is an indicator of how well the model corrects for first-order autocorrelation; d can take on values between 0 and 4, and under the null hypothesis, d is equal to 2.