Supplementary Table 1.
Regression Results of Main and Sensitivity Analyses (N = 134)
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Time | |||||||||
Baseline | 86.84 | 79.31 | 94.36 | 86.84 | 78.31 | 95.36 | 86.98 | 79.21 | 94.75 |
Pre CA | −0.02 | −0.20 | 0.16 | −0.02 | −0.22 | 0.18 | −0.03 | −0.21 | 0.16 |
(Time at CA) | 85.68 | ||||||||
Post CA short term | −10.87 (=12.7% of 86.68) | −17.21 | −4.52 | −10.87 | −17.48 | −4.26 | −10.47 | −17.44 | −3.51 |
Post CA long term | −0.08 | −0.33 | 0.18 | −0.08 | −0.34 | 0.18 | −0.08 | −0.35 | 0.20 |
(Time at SE) | 82.66 | ||||||||
Post SE short term | −6.46 (=7.8% of 82.66) | −11.13 | −1.80 | −6.46 | −11.28 | −1.65 | −6.31 | −11.30 | −1.31 |
Post SE long term | 0.27 | 0.06 | 0.48 | 0.27 | 0.06 | 0.48 | 0.28 | 0.05 | 0.51 |
Trend: CA | −0.10 | −0.28 | 0.09 | −0.10 | −0.28 | 0.09 | −0.10 | −0.31 | 0.10 |
Trend: SE∗ | 0.18 | 0.07 | 0.28 | 0.18 | 0.06 | 0.28 | 0.17 | 0.06 | 0.29 |
F (11,134) = 27.3, P < .000 | F (11,134) = 27.4, P < .000 | F (11,134) = 24.0, P < .000 R2 = 0.62, d statistic† = 1.95 |
|||||||
Walking distance | |||||||||
Baseline | 1097.23 | 1009.39 | 1185.06 | 1097.23 | 1000.11 | 1194.34 | 1096.31 | 1001.97 | 1190.66 |
Pre CA | 0.64 | −1.38 | 2.65 | 0.64 | −1.58 | 2.86 | 0.65 | −1.59 | 2.89 |
Distance at CA | 1133.60 | ||||||||
Post CA short term | −37.70 (=3.3% of 1133.60) | −138.21 | 62.80 | −37.70 | −140.87 | 65.46 | −34.00 | −146.41 | 78.41 |
Post CA long term | −5.37 | −10.39 | −0.36 | −5.37 | −10.85 | 0.10 | −5.51 | −11.02 | −0.01 |
Distance at SE | 918.63 | ||||||||
Post SE short term | −186.79 (=20.3% of 918.63) | −333.01 | −40.57 | −186.79 | −348.23 | −25.35 | −183.69 | −341.39 | −25.99 |
Post SE long term | 5.61 | 0.40 | 10.82 | 5.61 | 0.05 | 11.18 | 5.70 | −0.08 | 11.48 |
Trend: CA | −4.73 | −9.34 | −0.13 | −4.74 | −9.78 | 0.31 | −4.86 | −9.90 | 0.17 |
Trend: SE∗ | 0.87 | −1.68 | 3.43 | 0.88 | −1.61 | 3.36 | 0.84 | −2.03 | 3.70 |
F (11,134) = 38.3, P < .000 | F (11,134) = 46.8, P < .000 | F (11,134) = 29.6, P < .000 R2 = 0.64, d statistic = 1.97 |
CA, CCRC announcement; SE, state of emergency.
Confidence intervals in brackets.
Model 1: Regression with Newey-West standard errors without lag indicated (main analyses).
Model 2: Model 1 with 1 day lag indicated.
Model 3: Prais-Winsten autoregressive model. Dummy variables for week are not shown in the tables.
Postintervention linear trend = _b [pre CA] + _b [post CA long term].
Postintervention linear trend = _b [pre CA] +_b [post CA long term] + _b [Post SE long term].
Durbin–Watson d statistic is an indicator of how well the model corrects for first-order autocorrelation; d can take on values between 0 and 4, and under the null hypothesis, d is equal to 2.