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Abstract: Gene networks have arisen as a promising tool in the comprehensive modeling and
analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen
mechanisms, and the immune response to these, is considered a major goal for the rational
design of appropriate therapies. For this reason, the use of gene networks may well encourage
therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental
scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed
from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene
Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV).
Through the integration of differential expression analyses and reconstructed networks exploration,
significant differences in the immune response to virus were observed in Ly6E∆HSC compared to
wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to
a progressive impaired immune response in both liver and spleen. Specifically, depletion of the
normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6E∆HSC

mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an
intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E∆HSC mice.
These findings, which require further experimental characterization, could be extrapolated to other
coronaviruses and motivate the efforts towards novel antiviral approaches.

Keywords: gene co-expression network; murine coronavirus; viral infection; immune response;
data mining; systems biology

1. Introduction

The recent SARS-CoV-2 pandemic has exerted an unprecedented pressure on the scientific
community in the quest for novel antiviral approaches. A major concern regarding SARS-CoV-2 is the
capability of the coronaviridae family to cross the species barrier and infect humans [1]. This, along with
the tendency of coronaviruses to mutate and recombine, represents a significant threat to global health,
which ultimately has put interdisciplinary research on the warpath towards the development of a
vaccine or antiviral treatments.

Given the similarities found amongst the members of the coronaviridae family [2,3], analyzing the
global immune response to coronaviruses may shed some light on the natural control of viral infection,
and inspire prospective treatments. This may well be achieved from the perspective of systems biology,
in which the interactions between the biological entities involved in a certain process are represented
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by means of a mathematical system [4]. Within this framework, gene networks (GN) have become
an important tool in the modeling and analysis of biological processes from gene expression data [5].
GNs constitute an abstraction of a given biological reality by means of a graph composed by nodes and
edges. In such a graph, nodes represent the biological elements involved (i.e., genes, proteins or RNAs)
and edges represent the relationships between the nodes. In addition, GNs are also useful to
identify genes of interest in biological processes, as well as to discover relationships among these.
Thus, they provide a comprehensive picture of the studied processes [6,7].

Among the different types of GNs, gene co-expression networks (GCNs) are widely used in the
literature due to their computational simplicity and good performance in order to study biological
processes or diseases [8–10]. GCNs usually compute pairwise co-expression indices for all genes.
Then, the level of interaction between two genes is considered significant if its score is higher than
a certain threshold, which is set ad hoc. Traditionally, statistical-based co-expression indices have
been used to calculate the dependencies between genes [5,7]. Some of the most popular correlation
coefficients are Pearson, Kendall or Spearman [11–13]. Despite their popularity, statistical-based
measures present some limitations [14]. For instance, they are not capable of identifying non-linear
interactions and the dependence on the data distribution in the case of parametric correlation
coefficients. In order to overcome some of these limitations, new approaches, e.g., the use of information
theory-based measures or ensemble approaches, are receiving much attention [15–17].

Gene Co-expression Networks (GCNs) have already been applied to the study of dramatic impact
diseases, such as cancer [18], diabetes [19] or viral infections (e.g., HIV) in order to study the role of
immune response to these illnesses [20,21]. Genetic approaches are expected to be the best strategy to
understand viral infection and the immune response to it, potentially identifying the mechanisms of
infection and assisting the design of strategies to combat infection [22,23]. The current gene expression
profiling platforms, in combination with high-throughput sequencing, can provide time-resolved
transcriptomic data, which can be related to the infection process. The main objective of this approach
is to generate knowledge on the immune functioning upon viral entry into the organism, which means
mean a perturbation to the system.

In the context of viral infection, a first defense line is the innate response mediated by interferons,
a type of cytokines which eventually leads to the activation of several genes of antiviral function [24].
Globally, these genes are termed interferon-stimulated genes (ISGs), and regulate processes like
inflammation, chemotaxis or macrophage activation among others. Furthermore, ISGs are also
involved in the subsequent acquired immune response, specific for the viral pathogen detected [25].
Gene Ly6E (lymphocyte antigen 6 family member e), which has been related to T cell maturation and
tumorogenesis, is amongst the ISGs [26]. This gene is transcriptionally active in a variety of tissues,
including liver, spleen, lung, brain, uterus and ovary. Its role in viral infection has been elusive due to
contradictory findings [27]. For example, in Liu et al. [28], Ly6E was associated with the resistance to
Marek’s disease virus (MDV) in chickens. Moreover, differences in the immune response to mouse
adenovirus type 1 (MAV-1) have been attributed to Ly6E variants [29]. Conversely, Ly6E has also been
related to an enhancement of human immunodeficiency viruses (HIV-1) pathogenesis, by promoting
HIV-1 entry through virus–cell fusion processes [30]. Also in the work by Mar et al. [31], the loss of
function of Ly6E due to gene knockout reduced the infectivity of Influenza A virus (IAV) and yellow
fever virus (YFV). This enhancing effect of Ly6E on viral infection has also been observed in other
enveloped RNA viruses such as in West Nile virus (WNV), dengue virus (DEN), Zika virus (ZIKV),
O’nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) among others [32]. Nevertheless,
the exact mechanisms through which Ly6E modulates viral infection virus-wise, and sometimes even
cell type-dependently, require further characterization.

In this work we present a time-resolved study of the immune response of mice to a coronavirus,
the murine hepatitis virus (MHV), in order to analyze the implications of gene Ly6E. To do so, we have
applied a GCN reconstruction method called EnGNet [33], which is able to perform an ensemble
strategy to combine three different co-expression measures, and a topology optimization of the final



Genes 2020, 11, 831 3 of 33

network. EnGNet has outscored other methods in terms of network precision and reduced network
size, and has been proven useful in the modeling of disease, as in the case of Human post-traumatic
stress disorder.

The rest of the paper is organized as follows. In the next section, we propose a description of
related works. In Section 3, we first describe the dataset used in this paper, and then we introduce
the EnGNet algorithm and the different methods used to infer and analyze the generated networks.
The results obtained are detailed in Section 4, while, in Section 5, we propose a discussion of the results
presented in the previous section. Finally, in Section 6, we draw the main conclusions of our work.

2. Related Works

As already mentioned, gene co-expression networks have been extensively applied in the
literature for the understanding of the mechanisms underlying complex diseases like cancer,
diabetes or Alzheimer [34–36]. Globally, GCN serve as an in silico genetic model of these pathologies,
highlighting the main genes involved in these at the same time [37]. Besides, the identification of
modules in the inferred GCNs, may lead to the discovery of novel biomarkers for the disease under
study, following the ’guilt by association’ principle. Along these lines, GCNs are also considered
suitable for the study of infectious diseases, as those caused by viruses to the matter at hand [38]. To do
so, multiple studies have analyzed the effects of viral infection over the organism, focusing on immune
response or tissue damage [39,40].

For instance, the analysis of gene expression using co-expression networks is shown in the work
by Pedragosa et al. [41], where the infection caused by Lymphocytic Choriomeningitis Virus (LCMV) is
studied over time in mice spleen using GCNs. In Ray et al. [42], GCNs are reconstructed from different
microarray expression data in order to study HIV-1 progression, revealing important changes across
the different infection stages. Similarly, in the work presented by McDermott et al. [43], the over- and
under-stimulation of the innate immune response to severe acute respiratory syndrome coronavirus
(SARS-CoV) infection is studied. Using several network-based approaches on multiple knockout mouse
strains, authors found that ranking genes based on their network topology made accurate predictions
of the pathogenic state, thus solving a classification problem. In [39], co-expression networks were
generated by microarray analysis of pediatric influenza-infected samples. Thanks to this study, genes
involved in the innate immune system and defense to virus were revealed. Finally, in the work by
Pan et al. [44], a co-expression network is constructed based on differentially-expressed microRNAs
and genes identified in liver tissues from patients with hepatitis B virus (HBV). This study provides
new insights on how microRNAs take part in the molecular mechanism underlying HBV-associated
acute liver failure.

The alarm posed by the COVID-19 pandemic has fueled the development of effective prevention
and treatment protocols for 2019-nCoV/SARS-CoV-2 outbreak [45]. Due to the novelty of SARS-CoV-2,
recent research takes similar viruses, such as SARS-CoV and Middle East Respiratory Syndrome
coronavirus (MERS-CoV), as a starting point. Other coronaviruses, like Mouse Hepatitis Virus (MHV),
are also considered appropriate for comparative studies in animal models, as demonstrated in the work
by De Albuquerque et al. [46] and Ding et al. [47]. MHV is a murine coronavirus (M-CoV) that causes
an epidemic illness with high mortality, and has been widely used for experimentation purposes.
Works like the ones by Case et al. [48] and Gorman et al. [49], study the innate immune response
against MHV arbitrated by interferons, and those interferon-stimulated genes with potential antiviral
function. This is the case of gene Ly6E, which has been shown to play an important role in viral
infection, as well as various orthologs of the same gene [50,51]. Mechanistic approaches often involved
the ablation of the gene under study, like in the work by Mar et al. [31], where gene knockout was used
to characterize the implications of Ly6E in Influenza A infection. As it is the case of Giotis et al. [52],
these studies often involve global transcriptome analyses, via RNA-seq or microarrays, together with
computational efforts, which intend to screen the key elements of the immune system that are required
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for the appropriate response. This approach ultimately leads experimental research through predictive
analyses, as in the case of co-expression gene networks [53].

3. Materials and Methods

In the following subsections, the main methods and GCN reconstruction steps are addressed. First,
in Section 3.1, the original dataset used in the present work is described, together with the experimental
design. Then, in Section 4.1, the data preprocessing steps are described. Subsequently in Section 3.3,
key genes controlling the infection progression are extracted through differential expression analyses.
Finally, the inference of GCNs and their analysis are detailed in Sections 3.4 and 3.5, respectively.

3.1. Original Dataset Description

The original experimental design can be described as follows. The progression of the MHV
infection at genetic level was evaluated in two genetic backgrounds: wild type (wt, Ly6Efl/fl) and
Ly6E knockout mutants (ko, Ly6E∆HSC). The ablation of gene Ly6E in all cell types is lethal, hence the
Ly6E∆HSC strain contains a disrupted version of gene Ly6E only in hematopoietic stem cells (HSC),
which give rise to myeloid and lymphoid progenitors of all blood cells. Wild type and Ly6E∆HSC

mice were injected intraperitoneally with 5000 PFU MHV-A59. At 3 and 5 days post-injection (d p.i.),
mice were euthanized and biological samples for RNA-Seq were extracted. The overall effects of MHV
infection in both wt and ko strains was assessed in liver and spleen.

In total 36 samples were analyzed, half of these corresponding to liver and spleen, respectively.
From the 18 organ-specific samples, 6 samples correspond to mock infection (negative control), 6 to
MHV-infected samples at 3 d p.i. and 6 to MHV-infected samples at 5 d p.i. For each sample,
two technical replicates were obtained. Libraries of cDNA generated from the samples were sequenced
using Illumina NovaSeq 6000. Further details on sample preparation can be found in the original
article by Pfaender et al. [54]. For the sake of simplicity, MHV-infected samples at 3 and 5 d p.i. will be
termed ’cases’, whereas mock-infection samples will be termed ’controls’.

The original dataset consists of 72 files, one per sample replicate, obtained upon the mapping
of the transcript reads to the reference genome. Reads were recorded in three different ways,
considering whether these mapped introns, exons or total genes. Then, a count table was retrieved
from these files by selecting only the total gene counts of each sample replicate file.

3.2. Data Pre-Processing

Pre-processing was performed using the EdgeR [55] R package. The original dataset by
Pfaender et al. [54] was retrieved from GEO (accession ID: GSE146074) using the GEOquery [56] package.
Additional files on sample information and treatment were also used to assist the modeling process.

By convention, a sequencing depth per gene below 10 is considered neglectable [57,58].
Genes meeting this criterion are known as low expression genes, and are often removed since they add
noise and computational burden to the following analyses [59]. In order to remove genes showing less
than 10 reads across all conditions, counts per million (CPM) normalization was performed, so possible
differences between library sizes for both replicates would not affect the result.

Afterwards, Principal Components Analyses (PCA) were performed over the data in order to
detect the main sources of variability across samples. PCA were accompanied by unsupervised
k-medoid clustering analyses, in order to identify different groups of samples. In addition,
multidimensional scaling plots (MDS) were applied to further separate samples according to their
features. Last, between-sample similarities were assessed through hierarchical clustering.

3.3. Differential Expression Analyses

The analyses of differential expression served a two-way purpose, (i) the exploration of the
directionality in the gene expression changes upon viral infection, and (ii) the identification of
key regulatory elements for the subsequent network reconstruction. In the present application,
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differentially-expressed genes (DEG) were filtered from the original dataset and proceeded to the
reconstruction process. This approximation enabled the modeling of the genetic relationships that are
considered of relevance in the presented comparison [60–62]. In the present work mice samples were
compared organ-wise depending on whether these corresponded to control, 3 d p.i. and 5 d p.i.

The identification of DEG was performed using the Limma [63] R package, which provides
non-parametric robust estimation of the gene expression variance. This package includes Voom,
a method that incorporates RNA-Seq count data into the Limma workbench, originally designed
for microarrays [64]. In this case, a minimum log2-fold-change (log2FC) of 2 was chosen, which
corresponds to four fold changes in the gene expression level. P-value was adjusted by Benjamini-
Hochberg [65] and the selected adjusted p-value cutoff was 0.05.

3.4. Inference of the Gene Networks: EnGNet

In order to generate gene networks the EnGNet algorithm was used. This technique, presented in
Gómez-Vela et al. [33], is able to compute gene co-expression networks with a competitive performance
compared other approaches from the literature. EnGNet performs a two-step process to infer gene
networks: (a) an ensemble strategy for a reliable co-expression networks generation, and (b) a greedy
algorithm that optimizes both the size and the topological features of the network. These two features of
EnGNet offer a reliable solution for generating gene networks. In fact, EnGNet relies on three statistical
measures in order to obtain networks. In particular, the measures used are the Spearman, Kendall and
normalized mutual information (NMI), which are widely used in the literature for inferring gene
networks. EnGNet uses these measures simultaneously by applying an ensemble strategy based on
major voting, i.e., a relationship will be considered correct if at least 2 of the 3 measures evaluate the
relationship as correct. The evaluation is based on different independent thresholds. In this work,
the different thresholds were set to the values originally used in [33]: 0.9, 0.8 and 0.7 for Spearman,
Kendall and NMI, respectively.

In addition, as mentioned above, EnGNet performs an optimization of the topological structure of
the networks obtained. This reduction is based on two steps: (i) the pruning of the relations considered
of least interest in the initial network, and (ii) the analysis of the hubs present in the network. For this
second step of the final network reconstruction, we have selected the same threshold that was used
in [33], i.e., 0.7. Through this optimization, the final network produced by EnGNet results easier to
analyze computationally, due to its reduced size.

3.5. Networks Analyses

Networks were imported to R for the estimation of topology parameters and the addition
of network features that are of interest for the latter network analysis and interpretation. These
attributes were added to the reconstructed networks to enrich the modeling using the igraph [66]
R package. The networks were then imported into Cytoscape [67] through RCy3 [68] for examination
and analyses purposes. In this case, two kind of analyses were performed: (i) a topological analysis
and (ii) an enrichment analysis.

Regarding the topological analysis, clustering evaluation was performed in order to identify
densely connected nodes, which, according to the literature, are often involved in a same biological
process [69]. The chosen clustering method was community clustering (GLay) [70], implemented
via Cytoscape’s ClusterMaker app [71], which has yielded significant results in the identification of
densely connected modules [72,73]. Among the topology parameters, degree and edge betweenness
were estimated. The degree of a node refers to the number of its linking nodes. On the other
hand, the betweenness of an edge refers to the number of shortest paths which go through that edge.
Both parameters are considered as a measure of the implications of respectively nodes and edges in
a certain network. Particularly, nodes whose degree exceeds the average network node degree, the so
called hubs, are considered key elements of the biological processes modeled by the network. In this
particular case, the distribution of nodes’ degree network was analyzed so those nodes whose degree
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exceeded a threshold were selected as hubs. This threshold is defined as Q3 + 1.5× IQR, where Q3 is
the third quartile and IQR the interquartile range of the degree distribution. This method has been
widely used for the detection of upper outliers in non-parametric distributions [74,75], as it is the case.
However, the outlier definition does not apply to this distribution since those nodes whose degree are
far above the median degree are considered hubs.

On the other hand, Gene Ontology (GO) Enrichment Analysis provides valuable insights on the
biological reality modeled by the reconstructed networks. The Gene Ontology Consortium [76] is a
data base that seeks for a unified nomenclature for biological entities. GO has developed three different
ontologies, which describe gene products in terms of the biological processes, cell components or
molecular functions in which these are involved. Ontologies are built out of GO terms or annotations,
which provide biological information of gene products. In this case, the ClusterProfiler [77] R package,
allowed the identification of the statistically over-represented GO terms in the gene sets of interest.
Additional enrichment analyses were performed using DAVID [78]. For both analyses, the complete
genome of Mus musculus was selected as background. Finally, further details on the interplay of the
genes under study was examined using the STRING database [79].

4. Results

The reconstruction of gene networks that adequately model viral infection involves multiple
steps, which ultimately shape the final outcome. First, in Section 4.1, exploratory analyses and
data preprocessing are detailed, which prompted the modeling rationale. Then, in Section 4.2,
differential expression is evaluated for the samples of interest. Finally, networks reconstruction
and analysis are addressed in Section 4.3. At the end, four networks were generated, both in an organ-
and genotype-wise manner. A schematic representation of the GCN reconstruction approach is shown
in Figure 1.

original dataset

input dataset

exploratory
analyses

DEG
identif ication

analyze each organ
independently

CGN reconstruction
rationale

EnGNet

data
integration

Biological
insights

Network
analysis

topology,
GO enrichmentdata

preprocessing

liver wt

liver ko

spleen wt

spleen ko

inferred networks

Figure 1. General scheme for the reconstruction method. The preprocessed data was subjected
to exploratory and differential expression analyses, which imposed the reconstruction rationale.
Four groups of samples were used to generate four independent networks, respectively modeling the
immune response in the liver, both in the wt and the ko situations; and in the spleen, also in the wt and
the ko scenarios.

4.1. Data Pre-Processing and Exploratory Analyses

In order to remove low expression genes, a sequencing depth of 10 was found to correspond to an
average CPM of 0.5, which was selected as threshold. Hence, genes whose expression was found over
0.5 CPM in at least two samples of the dataset were maintained, ensuring that only genes which are
truly being expressed in the tissue will be studied. The dataset was Log2-normalized with priority to
the following analyses, in accordance to the recommendations posed in Law et al. [64].

The results of both PCA and k-medoid clustering are shown in Figure 2a. Clustering of the
Log2-normalized samples revealed clear differences between liver and spleen samples. Also, for each
organ, three subgroups of analogous samples that cluster together are identified. These groups
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correspond to mock infection, MHV-infected mice at 3 d p.i. and MHV-infected mice at 5 d p.i. (dashed
lines in Figure 2a). Finally, subtle differences were observed in homologous samples of different
genotypes (Figure A1).
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(c)
Figure 2. (a) PCA plot of the Log2-normalized counts for the exploratory analysis of all samples under
study. The metric used for k-medoid partitioning was the Euclidean distance. Both replicates are
included. Two groups, respectively corresponding to liver and spleen samples, are clearly differentiated.
Dashed lines were added for improved visualization of the different groups that are distinguished
within each organ. Organ-specific PCA for (b) liver and (c) spleen samples. Both replicates are included.
PCA suggests the progressive nature of the MHV infection, where groups corresponding to mock
infections, 3 d p.i. and 5 d p.i. are distinguished in varying degrees. Differences between controls and
cases are more evident in liver samples. Figure 2a legend is the same for Figure 2b,c.

Organ-specific PCA revealed major differences between MHV-infected samples for Ly6E∆HSC

and wt genotypes, at both 3 and 5 d p.i. These differences were not observed in the mock infection
(control situation). Organ-wise PCA are shown in Figure 2b,c. The distances between same-genotype
samples illustrate the infection-prompted genetic perturbation from the uninfected status (control)
to 5 d p.i., where clear signs of hepatitis were observed according to the original physiopathology
studies [54]. On the other hand, the differences observed between both genotypes are indicative of the
role of gene Ly6E in the appropriate response to viral infection. These differences are subtle in control
samples, but in case samples, some composition biass is observed depending on whether these are
ko or wt, especially in spleen samples. The comparative analysis of the top 500 most variable genes
confirmed the differences observed in the PCA, as shown in Figure A2. Among the four different
features of the samples under study: organ, genotype, sample type (case or control) and days post
injection; the dissimilarities in terms of genotype were the subtlest.

In the light of these exploratory findings, the network reconstruction approach was performed
as follows. Networks were reconstructed organ-wise, as these exhibit notable differences in gene
expression. Additionally, a main objective of the present work is to evaluate the differences in the
genetic response in the wt situation compared to the Ly6E∆HSC ko background, upon the viral infection
onset in the two mentioned tissues.

For each organ, Log2-normalized samples were coerced to generate time-series-like data,
i.e., for each genotype, 9 samples will be considered as a set, namely 3 control samples, 3 case samples
at 3 d p.i. and 3 case samples at 5 d p.i. Both technical replicates were included. This rational design
seeks for a gene expression span representative of the infection progress. Thereby, control samples
may well be considered as a time zero for the viral infection, followed by the corresponding samples at
3 and 5 d p.i. The proposed rationale is supported by the exploratory findings, which position 3 d p.i.
samples between control and 5 d p.i. samples. At the same time, the reconstruction of gene expression
becomes robuster with increasing number of samples. In this particular case, 18 measuring points are
attained for the reconstruction of each one of the four intended networks, since two technical replicates
were obtained per sample [80].
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4.2. Identification of Differentially-Expressed Genes Between Wild Type and Ly6E∆HSC Samples

The differential expression analyses were performed over the four groups of 9 samples explained
above, with the aim of examining the differences in the immune response between Ly6E∆HSC and wt
samples. Limma - Voom differential expression analyses were performed over the Log2-normalized
counts, in order to evaluate the different genotypes whilst contrasting the three infection stages:
control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. The choice of a
minimum absolute log2FC≥ 2, enabled considering only those genes that truly effect changes between
wt and Ly6E∆HSC samples, whilst maintaining a relatively computer-manageable number of DEG for
network reconstruction. The latter is essential for the yield of accurate network sparseness values,
as this is a main feature of gene networks [5].

For both genotypes and organs, the results of the differential expression analyses reveal that MHV
injection triggers a progressive genetic program from the control situation to the MHV-infected scenario
at 5 d p.i., as shown in Figure 3a. The absolute number of DEG between control vs. cases at 5 d p.i.
was considerably larger than in the comparison between control vs. cases at 3 d p.i. Furthermore, in all
cases, most of the DEG in control vs. cases at 3 d p.i. are also differentially-expressed in the control vs.
cases at 5 d p.i. comparison, as shown in Figure 4.
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Figure 3. (a) Absolute numbers of DEG in the different comparisons (b) Ratio of up- and downregulated
DEG in the different performed comparisons. Three comparisons were performed: control vs.
case samples at 3 d p.i., control vs. case samples at 5 d p.i. and case samples at 3 vs. 5 d p.i. ko refers to
Ly6E∆HSC samples.

Regarding genes fold change, an overall genetic up-regulation is observed upon infection.
Around 70% of DEG are upregulated for all the comparisons performed for wt samples, as shown
in Figure 3b. Nonetheless, a dramatic reduce in this genetic up-regulation is observed, by contrast,
in knockout samples, even limiting upregulated genes to nearly 50% in the control vs. cases at 3 d p.i.
comparison of liver Ly6E∆HSC samples. The largest differences are observed in the comparison of
controls vs. cases at 5 d p.i (Figures A3 and A4). These DEG are of great interest for the understanding
of the immune response of both wt and ko mice to viral infection. These genes were selected to filter
the original dataset for latter network reconstruction.

The commonalities between wt and ko control samples for both organs were also verified through
differential expression analysis following the same criteria (Log2FC > 2, p value < 0.05). The number
of DEG between wt and ko liver control samples (2) and between wt and ko spleen control samples (20)
were not considered significant, so samples were taken as analogous starting points for infection.
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Figure 4. Euler diagrams showing the overlapping of DEG between the three possible contrast
situations: control vs. cases at 3 d p.i. (red), control vs. cases at 5 d p.i. (yellow) and cases at 3 d p.i. vs.
cases at 5 d p.i. (blue) ko refers to Ly6E∆HSC samples. These comparisons were performed both organ
and genotype-wise considering four groups of samples: (a) liver wt, (b) liver Ly6E∆HSC, (c) spleen wt,
(d) spleen Ly6E∆HSC.

4.3. Reconstruction and Analysis of Gene Networks

As stated above, the samples were arranged both organ and genotype-wise in order to generate
networks which would model the progress of the disease in each scenario. GCNs were inferred
from Log2-normalized expression datasets. A count of 1 was added at log2 normalization so the
problem with remaining zero values was avoided. Each network was generated exclusively taking
into consideration their corresponding DEG at control vs. cases at 5 d p.i., where larger differences
were observed. Four networks were then reconstructed from these previously-identified DEG for liver
wt samples (1133 genes), liver ko samples (1153 genes), spleen wt samples (506 genes) and spleen ko
samples (426 genes). This approach results in the modeling of only those relationships that are related
to the viral infection. Each sample set was then fed to EnGNet for the reconstruction of the subsequent
network. Genes that remained unconnected due to weak relationships, which do not overcome the set
threshold, were removed from the networks. Furthermore, the goodness of EnGNet-generated models
outperformed other well-known inference approaches, as detailed in Appendix B.

Topological parameters were estimated and added as node attributes using igraph, together with
Log2FC, prior to Cytoscape import. Specifically, networks were simplified by removing potential loops
and multiple edges. The clustering topological scrutiny of the reconstructed networks revealed neat
modules in all cases, as shown in Figure A5. The number of clusters identified in each network, as well
as the number of genes harbored in the clusters is shown in Table A1.

As already mentioned, according to gene networks theory, nodes contained within the same cluster
are often involved in the same biological process [5,81]. In this context, the GO-based enrichment
analyses over the identified clusters may well provide an idea of the affected functions. Only clusters
containing more than 10 genes were considered, since this is the minimum number of elements
required by the enrichment tool ClusterProfiler. The results of the enrichment analyses revealed that
most GO terms were not shared between wt and ko homologous samples, as shown in Figure 5.

In order to further explore the reconstructed networks, the intersection of ko and wt networks of a
same organ was computed. This refers to the genes and relationships that are shared between both
genotypes for a specific organ. Additionally, the genes and relationships that were exclusively present
at the wt and ko samples were also estimated, as shown in Figure A6. The enrichment analyses over the
nodes, separated using this criterion, would reveal the biological processes that make the difference
between in Ly6E∆HSC mice compared to wt ones. The results of such analyses are shown in Figure A7.

Finally, the exploration of nodes’ degree distribution would reveal those genes that can be
considered hubs. Those nodes comprised within the top genes with highest degree (degree > Q3 + 1.5
× IQ), also known as upper outliers in the nodes distribution, were considered hubs. A representation
of nodes’ degree distribution throughout the four reconstructed networks is shown in Figure 6.
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These distributions are detailed in Figure A8. This method provided four cutoff values for the degree,
24, 39, 21 and 21, respectively for liver wt and ko, spleen wt and ko networks. Above these thresholds,
nodes would be considered as hubs in each network. These hubs are shown in Tables A2–A5.
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Figure 5. Enrichment analyses performed over the main clusters identified in wt and ko networks of
(a) liver and (b) spleen networks. Gene ratio is defined by the number of genes used as input for the
ernichment analyses associated with a particular GO term divided by the total number of input genes.
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Figure 6. Boxplots representative of the degree distributions for each one of the four reconstructed
networks. Identified hubs, according to the Q3+ 1.5× IQR criterion, are highlighted in red. The degree
cutoffs, above which nodes would be considered as hubs, were 24, 39, 21 and 21, respectively for liver
wt, liver ko, spleen wt and spleen ko networks. Note degree is represented in a log scale given that the
reconstructed networks present a scale-free topology.
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5. Discussion

In this work four gene networks were reconstructed to model the genetic response MHV
infection in two tissues, liver and spleen, and in two different genetic backgrounds, wild type and
Ly6E∆HSC. Samples were initially explored in order to design an inference rationale. Not only did the
designed approach reveal major differences between the genetic programs in each organ, but also,
between different subgroups of samples, in a time-series-like manner. Noticeably, disparities between
wt and Ly6E∆HSC samples were observed in both tissues, and differential expression analyses revealed
relevant differences in terms of the immune response generated. Hereby, our results predict the impact
of Ly6E ko on HSC, which resulted in an impaired immune response compared to the wt situation.

5.1. Exploratory Analyses Revealed a Time-Series Llike Behaviour on Raw Data, Assisting Network Reconstruction

Overall, results indicate that the reconstruction rationale, elucidated from exploratory findings,
is suitable for the modeling of the viral progression. Regarding the variance in gene expression
in response to virus, PCA and K-medoid clustering revealed strong differences between samples
corresponding to liver spleen, respectively (Figure 2a). These differences set the starting point for the
modeling approach, in which samples corresponding to each organ were analyzed independently.
This modus operandi is strongly supported by the tropism that viruses exhibit for certain tissues, which
ultimately results in a differential viral incidence and charge depending on the organ [82]. In particular,
the liver is the target organ of MHV, identified as the main disease site [83]. On the other hand,
the role of the spleen in innate and adaptive immunity against MHV has been widely addressed [84,85].
The organization of this organ allows blood filtration for the presentation of antigens to cognate
lymphocytes by the antigen presenting cells (APCs), which mediate the immune response exerted by T
and B cells [86].

As stated before, PCA revealed differences between the three sample groups on each organ: control
and MHV-infected at 3 and 5 d p.i. Interestingly, between-groups differences are specially clear for liver
samples (Figure 2b), whereas spleen samples are displayed in a continuum-like way. This becomes
more evident in organ-wise PCA (Figure 2), and was latter confirmed by the exploration of the top
500 most variable genes and differential expression analyses (Figure A2). Furthermore, clear differences
between wt and Ly6E∆HSC samples are observed in none of these analyses, although the examination
of the differential expression and network reconstruction did exposed divergent immune responses
for both genotypes.

5.2. Differential Expression Analyses Revealed Significant Changes between Wild Type and Knockout Samples

The differential expression analyses revealed the progressive genetic response to virus for both
organs and genotypes (Figures 3a and 4). In a wt genetic background, MHV infection causes an overall
rise in the expression level of certain genes, as most DEG in cases vs. control samples are upregulated.
However, in a Ly6E∆HSC genetic background, this upregulation is not as prominent as in a wt
background, significantly reducing the number of upregulated genes (Figure 3b). Besides, the number
of DEG in each comparison varies from wt to Ly6E∆HSC samples.

Attending at the DEG in the performed comparisons, for both the wt and ko genotypes, liver cases
at 3 d p.i. are more similar to liver cases at 5 d p.i. than to liver controls, since the number of DEG
between the first two measuring points is significantly lower than the number of DEG between control
and case samples at 3 d p.i. (Figure 4a,b). A different situation occurs in the spleen, where wt cases at
3 d p.i. are closer to control samples (Figure 4c), whereas ko cases at 3 d p.i. seem to be more related to
cases at 5 d p.i. (Figure 4d). This was already suggested by hierarchical clustering in the analysis of the
top 500 most variable genes, and could be indicative of a different progression of the infection impact
on both organs, which could be modulated by gene Ly6E, at least for the spleen samples.

Moreover, the results of the DEG analyses indicate that the sole knockout of gene Ly6E in
HSC considerably affects the upregulating genetic program normally triggered by viral infection
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in wild type individuals (in both liver and spleen). Interestingly, there are some genes in each organ
and genotype that are differentially expressed in every comparison between the possible three sample
types, controls, cases at 3 d p.i. and cases at 5 d p.i. These genes, which we termed highly DEG,
could be linked to the progression of the infection, as changes in their expression level occur with days
post injection, according to the data. The rest of the DEG, show an uprise or fall when comparing two
sample types, which does not change significantly in the third sample type. Alternatively, highly DEG,
shown in Table A6, exhibited three different expression patterns: (i) Their expression level, initially
low, rises from control to cases at 3 d p.i. and then rises again in cases at 5 d p.i. (ii) Their expression
level, initially high in control samples, falls at 3 d p.i. and falls even more at 5 d p.i cases. (iii) Their
expression level, initially low, rises from control to cases at 3 d p.i. but then falls at cases at 5 d p.i.,
when it is still higher than the initial expression level. These expression patterns, which are shown
in Figure A9, might be used to keep track of the disease progression, differentiating early from late
infection stages.

In some cases, these genes exhibited inconsistent expression levels, specially at 5 d p.i. cases,
which indicates the need for further experimental designs targeting these genes. Highly DEG
could be correlated with the progression of the disease, as in regulation types (i) and (ii) or by
contrast, be required exclusively at initial stages, as in regulation type (iii). Notably, genes Gm10800
and Gm4756 are predicted genes which, to date, have been poorly described. According to the
STRING database [79], Gm10800 is associated with gene Lst1 (Leukocyte-specific transcript 1 protein),
which has a possible role in modulating immune responses. In fact, Gm10800 is homologous to
human gene PIRO (Progranulin-Induced-Receptor-like gene during Osteoclastogenesis), related to
bone homeostasis [87,88]. Thus, we hypothesize that bone marrow-derived cell lines, including
erythrocytes and leukocytes (immunity effectors), could also be regulated by Gm10800. On the other
hand, Gm4756 is not associated to any other gene according to STRING. Protein Gm4756 is homologous
to Human protein DHRS7 (dehydrogenase/reductase SDR family member 7) isoform 1 precursor.
Nonetheless and to the best of our knowledge, these genes have not been previously related to Ly6E,
and could play a role in the immune processes mediated by this gene.

Finally, highly DEG were not found exclusively present in wt nor ko networks, instead, these
were common nodes of these networks for each organ. This suggests that highly DEG might be
of core relevance upon MHV infection, with a role in those processes independent on Ly6E∆HSC.
Besides, genes Hykk, Ifit3 and Ifit3b; identified as highly DEG throughout liver Ly6E∆HSC samples were
also identified as hubs in the liver ko network. Also gene Saa3, highly DEG across spleen Ly6E∆HSC

samples was considered a hub in the spleen ko network. Nevertheless, these highly DEG require
further experimental validation.

5.3. The Ablation of Ly6E in HSC Results in Impaired Immune Response as Predicted by Enrichment Analyses

The enrichment analyses of the identified clusters at each network revealed that most GO terms
are not shared between the two genotypes (Figure 5), despite the considerable amount of shared
genes between the two genotypes for a same organ. The network reconstructed from liver wt samples
reflects a strong response to viral infection, involving leukocyte migration or cytokine and interferon
signaling among others. These processes, much related to immune processes, are not observed in its ko
counterpart.

The liver wt network presented four clusters (Figure A5a). Its cluster 1 regulates processes related
to leukocyte migration, showing the implication of receptor ligand activity and cytokine signaling,
which possibly mediates the migration of the involved cells. Cluster 2 is related to interferon-gamma
for the response to MHV, whereas cluster 3 is probably involved in the inflammatory response mediated
by pro-inflammatory cytokines. Last, cluster 4 is related to cell extravasation, or the leave of blood
cells from blood vessels, with the participation of gene Nipal1. The positive regulation observed across
all clusters suggests the activation of these processes. Overall, hub genes in this network have been
related to the immune response to viral infection, as the innate immune response to the virus is the
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mediated by interferons. Meanwhile, the liver ko network showed three main clusters (Figure A5b).
Its cluster 1 would also be involved in defense response to virus, but other processes observed in the
liver wt network, like leukocyte migration or cytokine activity, are not observed in this cluster nor the
others. Cluster 2 is then related to the catabolism of small molecules and cluster 3 is involved in acids
biosynthesis. These processes are certainly ambiguous and do not correspond the immune response
observed in the wt situation, which suggests a decrease in the immune response to MHV as a result of
Ly6E ablation in HSC.

On the other hand, spleen wt samples revealed high nuclear activity potentially involving
nucleosome remodeling complexes and changes in DNA accessibility. Histone modification is a type
of epigenetic modulation which regulates gene expression. Taking into account the central role of the
spleen in the development of immune responses, the manifested relevance of chromatin organization
could be accompanied by changes in the accessibility of certain DNA regions with implications in the
spleen-dependent immune response. This is supported by the reduced reaction capacity in the first
days post-infection of Ly6E∆HSC samples compared to wt, as indicated by the number of DEG between
control and cases at 3 d p.i for these genotypes. The spleen wt network displayed three clusters
(Figure A5c). Cluster 1, whose genes were all upregulated in Ly6E∆HSC samples at 5 d p.i. compared to
mock infection, is mostly involved in nucleosome organization and chromatin remodelling, together
with cluster 3. Cluster 2 would also be related to DNA packaging complexes, possibly in response to
interferon, similarly to liver networks. Instead, in spleen ko most genes take part in processes related to
the extracellular matrix. In the spleen ko network, four clusters were identified (Figure A5d). Cluster 1
is related to the activation of an immune response, but also, alongside with clusters 2 and 4, to the
extracellular matrix, possibly in relation with collagen, highlighting its role in the response to MHV.
Cluster 3 is implied in protease binding. The dramatic shut down in the ko network of the nuclear
activity observed in the spleen wt network, leads to the hypothesis that the chromatin remodeling
activity observed could be related to the activation of certain immunoenhancer genes, modulated by
gene Ly6E. In any case, further experimental validation of these results would provide meaningful
insights in the face of potential therapeutic approaches (See Appendix A for more details).

The exploration of nodes memebership, depending on whether these exclusively belonged to wt
or ko networks or, by contrast, were present in both networks, helped to understand the impairment
caused by Ly6E∆HSC. In this sense, GO enrichment analyses over these three defined categories
of the nodes in the liver networks revealed that genes at their intersection are mainly related to
cytokine production, leukocyte migration and inflammatory response regulation, in accordance to the
phenotype described for MHV-infection [89]. However, a differential response to virus is observed in
wt mice compared to Ly6E-ablated. The nodes exclusively present at the wt liver network are related
to processes like regulation of immune effector process, leukocyte mediated immunity or adaptive
immune response. These processes, which are found at a relatively high gene ratio, are not represented
by nodes exclusively present in the liver ko network. Additionally, genes exclusively present at the
wt network and the intersection network are upregulated in case samples with respect to controls
(Figure A6a), which suggests the activation of the previously mentioned biological processes. On the
other hand, genes exclusively-present at the liver ko networks, mostly down-regulated, were found to
be associated with catabolism.

As for the spleen networks, genotype-wise GO enrichment results revealed that the
previously-mentioned intense nuclear activity involving protein-DNA complexes and nucleosome
assembly is mostly due to wt-exclusive genes. Actually, these biological processes could be pinpointing
cell replication events. Analogously to the liver case, genes that were found exclusively present in the
wt network and the intersection network are mostly upregulated, whereas in the case of ko-exclusive
genes the upregulation is not that extensive. Interestingly, the latter are mostly related to extracellular
matrix (ECM) organization, which suggest the relevance of Ly6E on these. Other lymphocyte antigen-6
(LY-6) superfamily members have been related to ECM remodelling processes such as the Urokinase
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receptor (uPAR), which participates in the proteolysis of ECM proteins [90]. However and to the best
of our knowledge, the implications of Ly6E in ECM have not been reported.

The results presented are in the main consistent with those by Pfaender et al. [54], who observed
a loss of genes associated with the type I IFN response, inflammation, antigen presentation, and B cells
in infected Ly6E∆HSC mice. Genes Stat1 and Ifit3, selected in their work for their high variation in
absence of Ly6e, were identified as hub genes in the networks reconstructed from liver wild type and
knockout samples, respectively. It is to be noticed that our approach significantly differs to the one
carried out in the original study. In this particular case, we consider that the reconstruction of GCN
enables a more comprehensive analysis of the data, potentially finding the key genes involved in the
immune response onset and their relationships with other genes. For instance, the transcriptomic
differences between liver and spleen upon Ly6E ablation become more evident using GCN.

Altogether, the presented results show the relevance of gene Ly6E in the immune response against
the infection caused by MHV. The disruption of Ly6E significantly reduced the immunogenic response,
affecting signaling and cell effectors. These results, combining in vivo and in silico approaches, deepen in
our understanding of the immune response to viruses at the gene level, which could ultimately assist
the development of new therapeutics. For example, basing on these results, prospective studies on
Ly6E agonist therapies could be inspired, with the purpose of enhancing the gene expression level
via gene delivery. Given the relevance of Ly6E in SARS-CoV-2 according to previous studies [54,91],
the overall effects of Ly6E ablation in HSCs upon SARS-CoV-2 infection, putting special interest in
lung tissue, might show similarities with the deficient immune response observed in the present work.

6. Conclusions

In this work we have presented an application of co-expression gene networks to analyze
the global effects of Ly6E ablation in the immune response to MHV coronavirus infection. To do
so, the progression of the MHV infection on the genetic level was evaluated in two genetic
backgrounds: wild type mice (wt, Ly6Efl/fl) and Ly6E knockout mutants (ko, Ly6E∆HSC) mice. For these,
viral progression was assessed in two different organs, liver and spleen.

The proposed reconstruction rationale revealed significant differences between MHV-infected wt
and Ly6E∆HSC mice for both organs. In addition we observed that MHV infection triggers a progressive
genetic response of upregulating nature in both liver and spleen. In addition, the results suggest that
the ablation of gene Ly6E at HSC caused an impaired genetic response in both organs compared to wt
mice. The impact of such ablation is more evident in the liver, consistently with the disease site. At the
same time, the immune response in the spleen, which seemed to be mediated by an intense chromatin
activity in the normal situation, is replaced by ECM remodeling in Ly6E∆HSC mice.

We infer that the presence of Ly6E limits the damage in the above mentioned target sites.
We believe that the characterization of these processes could motivate the efforts towards novel
antiviral approaches. Finally, in the light of previous works, we hypothesize that Ly6E ablation
might show analogous detrimental effects on immunity upon the infection caused by other viruses
including SARS-CoV, MERS and SARS-CoV-2. In future works, we plan to investigate whether
the over-expression of Ly6E in wt mice has an enhancement effect in immunity. In this direction,
Ly6E gene mimicking (agonist) therapies could represent a promising approach in the development of
new antivirals.
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Appendix A. Figures and Tables
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Figure A1. Multidimensional Scaling (MDS) plots showing main differences between individual
samples according to the four features these present: organ procedence, genotype, sample type
(mock infection or MHV-infected) and days post injection.
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Figure A2. Top 500 most variable genes in (a) liver and (b) spleen samples. Log2-normalization was
applied over the Counts per Million (CPMs) in order to properly compare distributions. Variance
estimation reaffirms the homogenity of control vs. case samples. Overall, differences are also observed
between 3 and 5 d p.i. case samples.
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Figure A3. Volcano plots showing the differentially-expressed genes (DEG) that proceeded to the
analyses. DEG were filtered by log2FC ≥ 2 and adjusted p value ≤ 0.05. These comparisons were
performed both organ and genotype-wise: (a) liver wt, (b) liver ko, (c) spleen wt, (d) spleen ko. ko,
Ly6E∆HSC.
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Figure A4. UpSet plot representing the commonalities between the 12 differentially-expressed genes
(DEG) groups identified in differential expression analyses. The comparison of controls vs. samples at
5 d p.i. comprised the greatest number of genes for all sample types.
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Table A1. Number of DEG used as input to EnGNet for network reconstruction and their latter
distribution in inferred networks. Genes that were not assigned to a cluster (or were comprised in
minoritary clusters) were not taken into consideration for enrichment analyses.

Liver wt Liver ko Spleen wt Spleen ko

Input genes 1133 1153 506 426
Network genes 1118 1300 485 403
Cluster 1 262 284 180 109
Cluster 2 218 379 255 190
Cluster 3 579 624 36 77
Cluster 4 59 25
Unconnected/minor clustered 0 13 14 2

(a) (b)

(c) (d)
Figure A5. Inferred networks for (a) liver wt (1118 nodes, 16,281 edges, 4 clusters), (b) liver ko
(1300 nodes, 15,727 edges, 3 clusters), (c) spleen wt (485 nodes, 4042 edges, 3 clusters), (d) spleen ko
(403 nodes, 4220 edges, 4 clusters). Nodes are colored according to log2FC, upregulated genes in
blue, downregulated genes in red. Clusters are numbered from left to right. Node size is represented
according to node’s degree. Edge transparency is represented according to edge weight. Networks are
displayed using the yfiles organic layout [92].
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(a)

(b)

Figure A6. Networks resulting from the organ-wise merging of (a) wt and (b) ko samples. From left to
right, nodes are displayed in circles depending on whether genes are contained exclusively at the wt,
in the intersection between the ko and wt networks and in the ko network exclusively. Nodes are sorted
and colored according to log2FC, upregulated genes in blue, downregulated genes in red. Node size is
represented according to node’s degree.
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Figure A7. Enrichment analyses based on node exclusiveness of (a) liver and (b) spleen networks.
wt refers to nodes exclusively present at those networks reconstructed from wt samples; ko refers to
nodes exclusively present at networks reconstructed from Ly6E∆HSC samples; both addresses shared
nodes between wt and ko networks. Gene ratio is defined by the number of genes used as input for the
ernichment analyses associated with a particular GO term divided by the total number of input genes.
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(d)
Figure A8. Distribution of node’s degree throughout the networks reconstructed from (a) liver wt
samples, (b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. The distribution trendline
is shown in red. Nodes that are not present in the zoomed area are considered hubs. Note degree
distributions do not fit a normal distribution (Shapiro–Wilk normality test, p-value < 0.05).

Table A2. Hubs identified in the network reconstructed from liver wt samples. Degree cutoff: 24.
Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000034593 1 1033 up Myo5a myosin VA

ENSMUSG00000000982 3 1006 up Ccl3 chemokine (C-C motif) ligand 3

ENSMUSG00000030745 2 997 up Il21r interleukin 21 receptor

ENSMUSG00000032322 3 989 up Pstpip1 proline-serine-threonine
phosphatase-interacting protein 1

ENSMUSG00000079227 3 975 up Ccr5 chemokine (C-C motif) receptor 5

ENSMUSG00000031304 3 957 up Il2rg interleukin 2 receptor,
gamma chain

ENSMUSG00000069268 3 940 up Hist1h2bf histone cluster 1, H2bf

ENSMUSG00000027071 1 938 down P2rx3 purinergic receptor P2X,
ligand-gated ion channel, 3

ENSMUSG00000019232 3 929 down Etnppl ethanolamine phosphate
phospholyase

ENSMUSG00000032643 3 921 up Fhl3 four and a half LIM domains 3

ENSMUSG00000033763 3 904 down Mtss2 MTSS I-BAR domain containing 2

ENSMUSG00000032094 1 887 up Cd3d CD3 antigen, delta polypeptide

ENSMUSG00000050896 3 883 up Rtn4rl2 reticulon 4 receptor-like 2

ENSMUSG00000067219 4 801 down Nipal1 NIPA-like domain containing 1

ENSMUSG00000110439 3 780 down Mup22 major urinary protein 22
ENSMUSG00000004105 2 743 down Angptl2 angiopoietin-like 2

ENSMUSG00000081650 1 713 up Gm16181 -

ENSMUSG00000050395 2 538 up Tnfsf15 tumor necrosis factor (ligand)
superfamily, member 15
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Table A2. Cont.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000038067 1 220 up Csf3 colony stimulating factor 3
(granulocyte)

ENSMUSG00000026104 2 90 up Stat1 signal transducer and activator
of transcription 1

ENSMUSG00000037965 2 66 up Zc3h7a zinc finger CCCH type
containing 7 A

Table A3. Hubs identified in the network reconstructed from liver Ly6E∆HSC samples. Degree cutoff:
39. Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000029445 2 800 down Hpd 4-hydroxyphenylpyruvic acid
dioxygenase

ENSMUSG00000037071 3 781 down Scd1 stearoyl-Coenzyme A desaturase 1

ENSMUSG00000041773 3 773 up Enc1 ectodermal-neural cortex 1

ENSMUSG00000075015 3 760 up Gm10801 -

ENSMUSG00000021250 3 742 up Fos FBJ osteosarcoma oncogene

ENSMUSG00000031618 3 735 down Nr3c2 nuclear receptor subfamily 3,
group C, member 2

ENSMUSG00000022419 1 732 down Deptor DEP domain containing
MTOR-interacting protein

ENSMUSG00000033610 3 700 down Pank1 pantothenate kinase 1

ENSMUSG00000024349 3 667 up Tmem173 transmembrane protein 173

ENSMUSG00000006519 3 666 up Cyba cytochrome b-245, alpha polypeptide

ENSMUSG00000035878 3 666 down Hykk hydroxylysine kinase 1

ENSMUSG00000054630 2 652 down Ugt2b5 UDP glucuronosyltransferase 2
family, polypeptide B5

ENSMUSG00000041757 3 639 down Plekha6 pleckstrin homology domain
containing, family A member 6

ENSMUSG00000053398 3 620 up Phgdh 3-phosphoglycerate dehydrogenase

ENSMUSG00000022025 3 555 down Cnmd chondromodulin

ENSMUSG00000029659 2 482 up Medag mesenteric estrogen dependent
adipogenesis

ENSMUSG00000062380 2 461 up Tubb3 tubulin, beta 3 class III

ENSMUSG00000069309 3 408 up Hist1h2an histone cluster 1, H2an

ENSMUSG00000034285 3 399 down Nipsnap1 nipsnap homolog 1

ENSMUSG00000027654 3 355 up Fam83d family with sequence similarity 83,
member D

ENSMUSG00000073435 2 355 down Nme3 NME/NM23 nucleoside diphosphate
kinase 3

ENSMUSG00000021062 2 336 up Rab15 RAB15, member RAS oncogene family

ENSMUSG00000037852 3 271 up Cpe carboxypeptidase E

ENSMUSG00000096201 2 260 up Gm10715 -

ENSMUSG00000022754 2 245 up Tmem45a transmembrane protein 45a

ENSMUSG00000038233 1 239 down Gask1a golgi associated kinase 1A
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Table A3. Cont.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000043456 2 236 up Zfp536 zinc finger protein 536

ENSMUSG00000095891 2 168 up Gm10717 -

ENSMUSG00000096688 1 126 down Mup17 major urinary protein 17

ENSMUSG00000099398 2 115 up Ms4a14 membrane-spanning 4-domains,
subfamily A, member 14

ENSMUSG00000025002 1 99 down Cyp2c55 cytochrome P450, family 2,
subfamily c, polypeptide 55

ENSMUSG00000074896 1 91 up Ifit3 interferon-induced protein with
tetratricopeptide repeats 3

ENSMUSG00000062488 1 86 up Ifit3b interferon-induced protein with
tetratricopeptide repeats 3B

ENSMUSG00000029417 1 78 up Cxcl9 chemokine (C-X-C motif) ligand 9

ENSMUSG00000057465 1 77 up Saa2 serum amyloid A 2

ENSMUSG00000050908 2 69 up Tvp23a trans-golgi network vesicle protein 23A

ENSMUSG00000030142 1 63 up Clec4e C-type lectin domain family 4,
member e

ENSMUSG00000038751 1 61 down Ptk6 PTK6 protein tyrosine kinase 6

ENSMUSG00000068606 1 40 up Gm4841 predicted gene 4841

Table A4. Hubs identified in the network reconstructed from spleen wt samples. Degree cutoff: 21.
Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000019505 2 365 up Ubb ubiquitin B

ENSMUSG00000094777 2 358 up Hist1h2ap histone cluster 1, H2ap

ENSMUSG00000057729 3 326 up Prtn3 proteinase 3

ENSMUSG00000056071 1 323 up S100a9 S100 calcium binding protein A9
(calgranulin B)

ENSMUSG00000025403 2 308 up Shmt2 serine hydroxymethyltransferase 2
(mitochondrial)

ENSMUSG00000023132 2 290 up Gzma granzyme A

ENSMUSG00000078920 2 284 up Ifi47 interferon gamma inducible
protein 47

ENSMUSG00000037894 1 274 up H2afz H2A histone family, member Z

ENSMUSG00000035472 2 247 down Slc25a21 solute carrier family 25 (mitochondrial
oxodicarboxylate carrier), member 21

ENSMUSG00000009350 1 244 up Mpo myeloperoxidase

ENSMUSG00000103254 1 234 up Ighv1-15 -

ENSMUSG00000069274 1 230 up Hist1h4f histone cluster 1, H4f

ENSMUSG00000028328 2 223 down Tmod1 tropomodulin 1

ENSMUSG00000094322 1 128 up Ighv9-4 -

ENSMUSG00000094124 1 114 up Ighv1-74 -

ENSMUSG00000094546 1 68 up Ighv1-26 -
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Table A5. Hubs identified in the network reconstructed from spleen Ly6E∆HSC samples. Degree cutoff:
21. Reg. regulation

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000027715 2 353 up Ccna2 cyclin A2

ENSMUSG00000024742 3 349 up Fen1 flap structure specific endonuclease 1

ENSMUSG00000024640 2 347 up Psat1 phosphoserine aminotransferase 1

ENSMUSG00000040026 2 338 up Saa3 serum amyloid A 3

ENSMUSG00000039713 2 327 down Plekhg5
pleckstrin homology domain
containing, family G (with RhoGef
domain) member 5

ENSMUSG00000075289 4 322 down Carns1 carnosine synthase 1

ENSMUSG00000067610 2 309 down Klri1 killer cell lectin-like receptor
family I member 1

ENSMUSG00000031503 1 305 up Col4a2 collagen, type IV, alpha 2

ENSMUSG00000095700 3 298 up Ighv10-3 -

ENSMUSG00000076613 3 287 up Ighg2b -

ENSMUSG00000051079 2 282 down Rgs13 regulator of G-protein signaling 13

ENSMUSG00000036027 2 268 down 1810046K07Rik RIKEN cDNA 1810046K07 gene

ENSMUSG00000027962 1 225 up Vcam1 vascular cell adhesion molecule 1

ENSMUSG00000049130 1 184 up C5ar1 complement component 5a receptor 1

ENSMUSG00000066861 1 35 up Oas1g 2′-5′ oligoadenylate synthetase 1G

Table A6. Highly DEG. List of DEG that are differentially-expressed for every of the comparisons
performed: control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. Memb,
membership to the group of samples genes belong; ko, Ly6E∆HSC samples. Reg. Type refers to the three
expression patterns observed, described in Section 5.

Ensembl ID Symbol Description Memb. Reg. Type

ENSMUSG00000032487 Ptgs2 prostaglandin-endoperoxide synthase 2 liver wt 1

ENSMUSG00000029816 Gpnmb glycoprotein (transmembrane) nmb liver wt 1

ENSMUSG00000035385 Ccl2 chemokine (C-C motif) ligand 2 liver wt 1

ENSMUSG00000035373 Ccl7 chemokine (C-C motif) ligand 7 liver wt 1

ENSMUSG00000015437 Gzmb granzyme B liver wt 1

ENSMUSG00000038037 Socs1 suppressor of cytokine signaling 1 liver wt 1

ENSMUSG00000026839 Upp2 uridine phosphorylase 2 liver ko 2

ENSMUSG00000075014 Gm10800 - liver ko 1

ENSMUSG00000040660 Cyp2b9 cytochrome P450, family 2,
subfamily b, polypeptide 9 liver ko 2

ENSMUSG00000056978 Hamp2 hepcidin antimicrobial peptide 2 liver ko 2

ENSMUSG00000073940 Hbb-bt hemoglobin, beta adult t chain liver ko 2

ENSMUSG00000052305 Hbb-bs hemoglobin, beta adult major chain liver ko 2

ENSMUSG00000025473 Adam8 a disintegrin and metallopeptidase domain 8 liver ko 1

ENSMUSG00000056973 Ces1d carboxylesterase 1D liver ko 2

ENSMUSG00000025317 Car5a carbonic anhydrase 5a, mitochondrial liver ko 2

ENSMUSG00000050578 Mmp13 matrix metallopeptidase 13 liver ko 1

ENSMUSG00000049723 Mmp12 matrix metallopeptidase 12 liver ko 1
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Table A6. Cont.

Ensembl ID Symbol Description Memb. Reg. Type

ENSMUSG00000035878 Hykk hydroxylysine kinase 1 liver ko 2

ENSMUSG00000069917 Hba-a2 hemoglobin alpha, adult chain 2 liver ko 2

ENSMUSG00000009350 Mpo myeloperoxidase liver ko 1

ENSMUSG00000109482 Gm4756 - liver ko 2

ENSMUSG00000060807 Serpina6 serine (or cysteine) peptidase inhibitor,
clade A, member 6 liver ko 2

ENSMUSG00000079018 Ly6c1 lymphocyte antigen 6 complex, locus C1 liver ko 1

ENSMUSG00000074896 Ifit3 interferon-induced protein with
tetratricopeptide repeats 3 liver ko 3

ENSMUSG00000062488 Ifit3b interferon-induced protein with
tetratricopeptide repeats 3B liver ko 3

ENSMUSG00000032808 Cyp2c38 cytochrome P450, family 2,
subfamily c, polypeptide 38 liver ko 2

ENSMUSG00000025004 Cyp2c40 cytochrome P450, family 2,
subfamily c, polypeptide 40 liver ko 2

ENSMUSG00000042248 Cyp2c37 cytochrome P450, family 2,
subfamily c, polypeptide 37 liver ko 2

ENSMUSG00000067225 Cyp2c54 cytochrome P450, family 2,
subfamily c, polypeptide 54 liver ko 2

ENSMUSG00000054827 Cyp2c50 cytochrome P450, family 2,
subfamily c, polypeptide 50 liver ko 2

ENSMUSG00000001131 Timp1 tissue inhibitor of metalloproteinase 1 liver ko 1

ENSMUSG00000015437 Gzmb granzyme B spleen wt 1

ENSMUSG00000022584 Ly6c2 lymphocyte antigen 6 complex, locus C2 spleen wt 1

ENSMUSG00000040026 Saa3 serum amyloid A 3 spleen ko 1
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(d)
Figure A9. CPM-normalized expression values of highly DEG identified across (a) liver wt samples,
(b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. Dashed lines separate samples
from the three groups under study: controls, cases at 3 d p.i. and cases at 5 d p.i. Note sample order
within same group is exchangeable.

Appendix B. Validation of the Reconstruction Method

The reconstruction method employed in this case study was validated against other thee
well-known inference methods: ARACNe [93], WGCNA [94] and wTO [95]. The output of each
reconstruction method, using default values (including EnGNet) was compared to a gold standard
(GS), retrieved from the STRING database.

Four different GSs were taken into consideration, since these were reconstructed from the DEG
that were identified in the comparison of control vs. case samples at 5 d p.i., as shown in Section 4.2.
These DEG were mapped to the STRING database gene identifiers selecting Mus musculus as model
organism (taxid: 10090). A variable percentage of DEG (6–20%) could not be assigned to a STRING
identifier, and were thus removed from the analysis. The interactions exclusively concerning the
resulting DEG in each case were retrieved from the STRING database. These interaction networks
would serve as GSs. The mentioned DEG (without unmapped identifiers) would also serve as input
for the four reconstruction methods to be compared.

The ARACNe networks were inferred using the Spearman correlation coefficient following the
implementations in the minet [96] R package. In this case, mutual information values were normalized
and scaled in the range 0–1. On the other hand, the WGCNA networks were reconstructed following
the original tutorial provided by the authors [97]. The power was defined as 5. Additionally, the wTO
networks were built using Pearson correlation in accordance to the documentation. Absolute values
were taken as relationship weights. Finally, EnGNet networks were inferred using the default
parameters described in the original article by Gómez-Vela et al. [33]. For the comparison, the Receiver
operating characteristic (ROC)-curve was estimated using the pROC [98] R package. ROC curves are
shown in Figure A10.
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Figure A10. Receiver operating characteristic (ROC) curves for the four datasets obtained in our study
using different reconstruction methods. Sensitivity is the true positive rate: TP/(TP + FN). Specificity
is the true negative rate: TN/(TN + FP). TP, true positive; TN, true negative; FN, false negative; FP,
false positive.

The area under the ROC curve (AUC) was also computed in each case for the quantitative
comparison of the methods, as shown in Figure A11a. The AUC compares the reconstruction
quality of each method against random prediction. An AUC ≈ 1 corresponds to the perfect classifier
whereas am AUC ≈ 0.5 approximates to a random classifier. Thus, the higher the AUC, the better
the predictions. On average, EnGNet provided the best AUC results, whilst maintaining a good
discovery rate. In addition, EnGNet provided relatively scarce networks compared to WGCNA,
as shown in Figure A11b. This is considered of relevance given that sparseness is a main feature of
gene networks [7].
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Figure A11. (a) Comparison of the average area under the ROC curve (AUC) for the four reconstruction
methods under comparison across the four used datasets. On average, EnGNet outperformed the
other three methods in terms of AUC. (b) Size comparison of the inferred networks. EnGNet exhibited
competitive results in terms of network size, providing considerably sparser networks than WGCNA’s.
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81. Milenković, T.; Pržulj, N. Uncovering biological network function via graphlet degree signatures. Cancer
Inform. 2008, 6, CIN-S680. [CrossRef]

82. Baron, S.; Fons, M.; Albrecht, T. Viral pathogenesis. In Medical Microbiology, 4th ed.; University of Texas
Medical Branch at Galveston: Galveston, TX, USA, 1996.

83. Deng, X.; Chen, Y.; Mielech, A.M.; Hackbart, M.; Kesely, K.R.; Mettelman, R.C.; O’Brien, A.; Chapman, M.E.;
Mesecar, A.D.; Baker, S.C. Structure-Guided Mutagenesis Alters Deubiquitinating Activity and Attenuates
Pathogenesis of a Murine Coronavirus. J. Virol. 2020. [CrossRef]

84. Khan, H.A.; Ahmad, M.Z.; Khan, J.A.; Arshad, M.I. Crosstalk of liver immune cells and cell death
mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat. Dis.
Int. 2017, 16, 245–256. [CrossRef]

85. Wu, D.; Wang, H.; Yan, W.; Chen, T.; Wang, M.; Han, M.; Wu, Z.; Wang, X.; Ai, G.; Xi, D.; et al. A disparate
subset of double-negative T cells contributes to the outcome of murine fulminant viral hepatitis via effector
molecule fibrinogen-like protein 2. Immunol. Res. 2016, 64, 518–530. [CrossRef]

86. Lewis, S.M.; Williams, A.; Eisenbarth, S.C. Structure and function of the immune system in the spleen.
Sci. Immunol. 2019, 4. [CrossRef] [PubMed]

87. Oh, J.; Kim, J.Y.; Kim, H.S.; Oh, J.C.; Cheon, Y.H.; Park, J.; Yoon, K.H.; Lee, M.S.; Youn, B.S. Progranulin and
a five transmembrane domain-containing receptor-like gene are the key components in receptor activator
of nuclear factor κB (RANK)-dependent formation of multinucleated osteoclasts. J. Biol. Chem. 2015, 290,
2042–2052. [CrossRef] [PubMed]

88. Dougall, W.C.; Glaccum, M.; Charrier, K.; Rohrbach, K.; Brasel, K.; De Smedt, T.; Daro, E.; Smith, J.; Tometsko,
M.E.; Maliszewski, C.R.; et al. RANK is essential for osteoclast and lymph node development. Genes Dev.
1999, 13, 2412–2424. [CrossRef]

89. Frattini, P.; Villa, C.; De Santis, F.; Meregalli, M.; Belicchi, M.; Erratico, S.; Bella, P.; Raimondi, M.T.;
Lu, Q.; Torrente, Y. Autologous intramuscular transplantation of engineered satellite cells induces
exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a
murine model of limb-girdle muscular dystrophy type 2I. Hum. Mol. Genet. 2017, 26, 3682–3698. [CrossRef]

90. Desmedt, S.; Desmedt, V.; Delanghe, J.; Speeckaert, R.; Speeckaert, M. The intriguing role of soluble urokinase
receptor in inflammatory diseases. Crit. Rev. Clin. Lab. Sci. 2017, 54, 117–133. [CrossRef] [PubMed]

91. Zhao, X.; Zheng, S.; Chen, D.; Zheng, M.; Li, X.; Li, G.; Lin, H.; Chang, J.; Zeng, H.; Guo, J.T. LY6E Restricts
the Entry of Human Coronaviruses, including the currently pandemic SARS-CoV-2. bioRxiv 2020. [CrossRef]

92. yWorks. Available online: https://www.yworks.com/ (accessed on 16 July 2020.)
93. Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Dalla Favera, R.; Califano, A.

ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.
In BMC Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 7, p. S7.

94. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.
2008, 9, 559. [CrossRef]

http://dx.doi.org/10.1080/03610918.2013.813037
http://dx.doi.org/10.1093/nar/gku1179
http://www.ncbi.nlm.nih.gov/pubmed/25428369
http://dx.doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1093/nar/gkw937
http://dx.doi.org/10.1371/journal.pone.0055871
http://dx.doi.org/10.4137/CIN.S680
http://dx.doi.org/10.1128/JVI.01734-19
http://dx.doi.org/10.1016/S1499-3872(17)60014-6
http://dx.doi.org/10.1007/s12026-015-8727-0
http://dx.doi.org/10.1126/sciimmunol.aau6085
http://www.ncbi.nlm.nih.gov/pubmed/30824527
http://dx.doi.org/10.1074/jbc.M114.608786
http://www.ncbi.nlm.nih.gov/pubmed/25406312
http://dx.doi.org/10.1101/gad.13.18.2412
http://dx.doi.org/10.1093/hmg/ddx252
http://dx.doi.org/10.1080/10408363.2016.1269310
http://www.ncbi.nlm.nih.gov/pubmed/28084848
http://dx.doi.org/10.1128/JVI.00562-20
https://www.yworks.com/
http://dx.doi.org/10.1186/1471-2105-9-559


Genes 2020, 11, 831 33 of 33

95. Gysi, D.M.; Voigt, A.; de Miranda Fragoso, T.; Almaas, E.; Nowick, K. WTO: An R package for computing
weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform.
2018, 19, 392. [CrossRef]

96. Meyer, P.E.; Lafitte, F.; Bontempi, G. minet: AR/Bioconductor package for inferring large transcriptional
networks using mutual information. BMC Bioinform. 2008, 9, 461. [CrossRef]

97. Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl.
Genet. Mol. Biol. 2005, 4. [CrossRef] [PubMed]

98. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source
package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef]
[PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s12859-018-2351-7
http://dx.doi.org/10.1186/1471-2105-9-461
http://dx.doi.org/10.2202/1544-6115.1128
http://www.ncbi.nlm.nih.gov/pubmed/16646834
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Materials and Methods
	Original Dataset Description
	Data Pre-Processing
	Differential Expression Analyses
	Inference of the Gene Networks: EnGNet
	Networks Analyses

	Results
	Data Pre-Processing and Exploratory Analyses
	Identification of Differentially-Expressed Genes Between Wild Type and Ly6EHSC Samples
	Reconstruction and Analysis of Gene Networks

	Discussion
	Exploratory Analyses Revealed a Time-Series Llike Behaviour on Raw Data, Assisting Network Reconstruction
	Differential Expression Analyses Revealed Significant Changes between Wild Type and Knockout Samples
	The Ablation of Ly6E in HSC Results in Impaired Immune Response as Predicted by Enrichment Analyses

	Conclusions
	Figures and Tables
	Validation of the Reconstruction Method
	References

