Skip to main content
. 2020 Jul 18;11(7):819. doi: 10.3390/genes11070819
Algorithm 1: ITO Algorithm
input:
  T: t × f matrix - training dataset with t samples and f features;
  V: v × f matrix - validation dataset - with v samples and f features;
  preps={Imputer, Robust, Quantile, Standard, …} - set of preprocessing methods;
  searchRadius={10, 50, 100, 150, 200, 250, …} - set of FSS sizes;
  searchStrategy={JMI, JMIM, mRMR …} - set of FSS methods;
  successEvaluation={10 Fold CV, LOOCV, …} - set of validation methods;
  LIGOptions={DT, AdaBoost, Extra Tree, …} - set of parameter-free classifiers;
  FTOptions={DNN, SVM, Random Forest, …} - set of parameterized classifiers
outputEnsembleFinal
BEGIN
 G ← GenerateOptionsGrid(searchRadius, searchStrategy, successEvaluation, preps);
 Choose tLIG ⊂ G using Randomized Grid Search;
LIGEnsembleComputeLIGEnsemble (T, V, LIGOptions, tLIG) //Algorithm 2;
 Choose tFT ⊂ G using Randomized Grid Search;
EnsembleFinalComputeEnsembleFinal (T, V, FTOptions, tFT) //Algorithm 3;
return EnsembleFinal;
END