Table 1.
Backpropagation training algorithms. MSE, mean squared error.
| Algorithm | Function | Optimal Neuron Number | MSE | R 2 |
|---|---|---|---|---|
| Resilient | trainrp | 16 | 57.48 | 0.908 |
| Fletcher–Reeves conjugate gradient | traincgf | 10 | 3.84 | 0.989 |
| Polak–Ribière–Polyak conjugate gradient | traincgp | 10 | 4.78 | 0.986 |
| Powell–Beale conjugate gradient | traincgb | 10 | 3.88 | 0.988 |
| Levenberg–Marquardt | trainlm | 6 | 4.50 | 0.987 |
| Scaled conjugate gradient | trainscg | 10 | 6.79 | 0.981 |
| BFGS quasi-Newton | trainbfg | 18 | 7.83 | 0.980 |
| One-step secant | trainoss | 8 | 7.07 | 0.979 |