Skip to main content
. 2020 Jun 27;11(7):717. doi: 10.3390/genes11070717
Algorithm 4 Hybrid Multi-filter approaches and Correlation-Based Redundancy
Input: D{ f1, f2, , fm} A dataset with m features, number of filter h, number of union filtered gene n, number of genes subset (S)P, classifier C
Output: optimal feature subset T
for i {1, h} do
    for j {1, ., m} do
          employ Wi filter to compute the statistical scores of each gene Gi
    end for
   select the top-ranking score in each list Gi and get a new gene list WiGj, j=1, , m
end for
produce a new ranking list R by aggregating the output k filter methods WiGj, i=1, , k using union the operator.
  R/* the union of the list genes */
for each candidate feature fi in G, compute the interaction between feature-feature and feature-class, to discard redundant features based on Correlation-Based Redundancy using SU.
Initialize S = ,
For i=1 to n, j=i+1
         fi first feature, fj second feature
       calculate SUi,c,SUi,j and SUj,c
   if SUi,cSUj,c & SUi,jSUj,c then
     remove fj i.e., SS{fj}.
                else
        insert fj into output selected features list SS+{fj},
         end if
  End of For
Return optimal feature subsets S