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This study was aimed at building a computed tomography- (CT-) based radiomics approach for the differentiation of sarcomatoid
renal cell carcinoma (SRCC) and clear cell renal cell carcinoma (CCRCC). It involved 29 SRCC and 99 CCRCC patient cases, and to
each case, 1029 features were collected from each of the corticomedullary phase (CMP) and nephrographic phase (NP) image.
Then, features were selected by using the least absolute shrinkage and selection operator regression method and the selected
features of the two phases were explored to build three radiomics approaches for SRCC and CCRCC classification. Meanwhile,
subjective CT findings were filtered by univariate analysis to construct a radiomics model and further selected by Akaike
information criterion for integrating with the selected image features to build the fifth model. Finally, the radiomics models
utilized the multivariate logistic regression method for classification and the performance was assessed with receiver operating
characteristic curve (ROC) and DeLong test. The radiomics models based on the CMP, the NP, the CMP and NP, the subjective
findings, and the combined features achieved the AUC (area under the curve) value of 0.772, 0.938, 0.966, 0.792, and 0.974,
respectively. Significant difference was found in AUC values between each of the CMP radiomics model (0:0001 ≤ p ≤ 0:0051)
and the subjective findings model (0:0006 ≤ p ≤ 0:0079) and each of the NP radiomics model, the CMP and NP radiomics
model, and the combined model. Sarcomatoid change is a common pathway of dedifferentiation likely occurring in all subtypes
of renal cell carcinoma, and the CT-based radiomics approaches in this study show the potential for SRCC from CCRCC
differentiation.

1. Introduction

Sarcomatoid renal cell carcinoma (SRCC) is a special subtype
of renal cell carcinoma (RCC). Rather than an independent
one, it is dedifferentiated from other histological subtypes
of RCC both in epithelial and mesenchymal tissues [1]. SRCC
is uncommon but highly aggressive, accounting for approxi-
mately 1/6 cases of advanced kidney cancers. In particular, it
results in more dismal prognosis than the common subtype
of clear cell renal cell carcinoma (CCRCC) [2]. According
to the newly International Society of Urological Pathology

(ISUP) grading system, RCC will be classified to grade IV
when a sarcomatoid component was identified [3, 4].

Previous studies report that 45%-84% of SRCC have syn-
chronous distant metastases at the time of diagnosis [5–7].
However, most systemic therapies developed for metastatic
RCC are less effective in SRCC [8]. CCRCC can benefit from
surgical resection even in the setting of metastasis, while for
SRCC patients, surgical resection prior to systemic targeted
therapies may worsen the outcomes because it might delay
the administration of systemic therapy [2, 9]. Although abla-
tive technique is an option for small renal masses, there is no
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enough support for using this technique in the small SRCC,
and moreover, the infiltrative nature of SRCC tumors makes
the determination of negative margin more difficult [2].

Preoperative diagnosis of SRCC is a challenging task.
Since recognizable sarcomatoid elements just comprise a var-
iable amount of the whole tumor, the use of biopsy is limited
to confirm this entity [10, 11]. Despite some studies that
reported that preoperative imaging could be used for predic-
tive diagnosis of SRCC, the small sample sizes of such studies
resulted in limited unconvincing consequences [12–15]. In
this study, we explore to use of radiomics for the extraction
and analysis of high-throughput features and both cortico-
medullary phase (CMP) and nephrographic phase (NP)
images during CT imaging are concerned. Incorporated with
clinical information, radiomics could further improve
computer-aided diagnosis, prognosis, and predictive accu-
racy [16–18]. Hence, the purpose of this study is to build a
CT-based radiomics approach that uses quantitative features
and subjective CT findings for the differentiation of SRCC
and CCRCC tumors in a relatively larger sample size.

2. Materials and Methods

2.1. Data Collection. The study was a retrospective study, and
the informed patient consent was waived. Given the predom-
inant number of CCRCC patients and a small number of
SRCC patients in our hospital, the SRCC cases were collected
from January 2007 to October 2017, and the CCRCC cases
were collected from January 2011 to October 2017. To
develop a study group with appropriate cases for building
the radiomics models, the following inclusion criteria were
used: (1) tumors originated from renal; (2) CT with
contrast-enhanced CMP and NP images; and (3) tumor
diameter ≥ 6 cm. The exclusion criteria were (1) CT images

without sufficient quality due to motion artifacts or poor con-
trast injection; (2) the pathology confirmed as CCRCC only
by biopsy; and (3) CT images not acquired in the specified
scanner. Figure 1 shows the recruitment pathway for patient
cases in this study.

2.2. Clinical Assessment of SRCC and Fuhrman Grades of
CCRCC. The determination of SRCC and Fuhrman grade
of CCRCC was gathered from the pathology reports, and
one pathologist with 8 years of experience specializing in
renal pathology reexamined all of the specimens. In this
study, one RCC was considered to be SRCC when it resem-
bles any form of sarcoma with or without atypical spindle
cells, and a minimum proportion of sarcomatoid tumor
was not required to make a diagnosis of sarcomatoid carci-
noma. The criterion was in accordance with the ISUP 2012
Consensus Conference [3].

2.3. CT Imaging Protocol. The CT images were obtained by
the scanner GE Light Speed VCT 64. The scanning parame-
ters were as follows: tube voltage, 120 kVp; the tube current,
250-400mA using automatic modulation; section thickness,
5mm; and reconstruction interval, 5mm. The patients were
injected with 1.0mL/kg of nonionic contrast material (iopro-
mide, Ultravist 370; Bayer, Germany) at rate of 3.5mL/s via
the antecubital vein through a power injector. The CMP
and the NP began 25 and 70 seconds after contrast injection,
respectively.

2.4. Subjective CT Findings. Subjective CT findings for each
patient were independently accessed and recorded in a
blinded manner by two readers with 6 and 10 years of expe-
rience in abdominal imaging, and interreader variability was
evaluated by using Kappa statistics. The solution to the

Searching the pathology database by the term
‘‘renal and sarcomatoid” from Jan. 2007 to Oct. 2017 and
‘‘renal and clear cell renal cell carcinoma” from Jan. 2011

to Oct. 2017

65 items contain ‘‘renal’’
and ‘‘sarcomatoid’’ 803 CCRCCs

54 SRCCs
11 sarcomatoids not

originated from renal
were excluded

756 CCRCCs were
confirmed by surgery

47 CCRCCs confirmed by
biopsy were excluded

49 SRCCs with available
CT images

5 SRCCs without available
CT images were excluded

521 CCRCCs with
available CT images

235 CCRCCs without
available CT images were

excluded

45 SRCCs with a diameter
≥6 cm

4 SRCCs with a diameter
<6 cm were excluded

163 CCRCCs with a
diameter ≥6 cm

378 CCRCCs with a
diameter <6 cm were

excluded

29 SRCCs were included 16 SRCCs scanned in
other CT were excluded 99 CCRCCs were included 64 CCRCCs scanned in

other CT were excluded

Figure 1: Recruitment pathway for patients in this study.
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divergences for the same case was to ask the readers jointly
reviewing it to reach a consensus for further analysis.

Each reader evaluated the tumors for spread pattern,
presence or absence of venous thrombus, intratumoral neo-
vascularity, peritumoral neovascularity, calcification, and
diameter. (a) Spread pattern was categorized into infiltrative
or noninfiltrative. An infiltrative spread pattern was defined
as invasion into the collecting system or neighboring organ,
or interdigitation into adjacent renal parenchyma with the
loss of a clear radiological capsule separating the lesion from
adjacent parenchyma. (b) Intratumoral or peritumoral neo-
vascularity means visible vascularity in the tumor paren-
chyma or perinephric fat adjacent to the mass. (c) Diameter
was the largest transverse diameter measured at the maxi-
mum axial slice.

The difference in the subjective CT findings between the
two patient groups was analyzed by using a chi-squared test
or independent sample t-test, if appropriate. The findings
without significant difference would not be integrated for
the model building. All statistical analysis was completed by
using SPSS (version 21.0).

2.5. Image Segmentation. To obtain the regions of interest
(ROIs), the entire tumor of all contiguous slices was outlined
except for the first and the last one which aimed to minimize
the partial volume effects. Contouring was drawn slightly
within the borders of the tumor masses. It included necrotic,
cystic change, and hemorrhagic areas, while normal renal tis-
sue and perinephric or sinus fat were excluded. The ROIs
were drawn by the two readers both of whom were blinded
to the clinical and pathological information. Figure 2 shows
a representative example of manually outlined patient cases.

2.6. Radiomics Feature Extraction. To each phase image per
patient, 1029 radiomics features were extracted through Rad-
cloud platform (Huiying Medical Technology, http://
radcloud.cn/). The radiomics features were divided into
first-order features, shape features, and texture features.
Shape features were calculated on the original ROI image,
while first-order features and texture features were computed
on the original ROI image and other derived images obtained
by applying several filters, including exponential filter, square

filter, square root filter, logarithm filter, and wavelet decom-
position [19, 20]. Furthermore, texture features were derived
from gray-level cooccurrence matrix (GLCM), gray-level run
length matrix (GLRLM), and gray-level size zone matrix
(GLSZM). As for the full details of radiomics data, please
refer to supplemental S01.

2.7. Assessment of Delineation Consistency and Radiomics
Feature Stability. To estimate the consistency of delineating
CMP and NP images by the two readers, interclass correla-
tion coefficient (ICC) values among 1029 features of each
patient and each phase were calculated. If the ICC value of
one patient in a phase was greater than 0.75, the manual
delineation was considered in good agreement [21, 22] and
the delineated image of the first reader would be used in
follow-up model construction. Otherwise, the delineation
would be repeated by the readers until the ICC met the
requirement.

To ensure the stability and reproducibility of the radio-
mics features, the ICC was also calculated in each radiomics
feature between two readers in the CMP and NP images. Fea-
tures with an ICC greater than 0.75 were regarded as being in
good agreement and retained for further radiomics analysis,
and others were trimmed off.

2.8. Radiomics Feature Selection.Although some of the radio-
mics features with an ICC lower than 0.75 were removed,
there still remained a great quantity of features. In order
to decrease the high degree of redundancy and irrelevance,
feature selection was conducted using the least absolute
shrinkage and selection operator (LASSO) regression method
in Anaconda3 platform (https://www.anaconda.com) with
scikit-learn (https://scikit-learn.org/) and matplotlib pack-
ages (https://matplotlib.org/).

The LASSO regression method has been proved to be
efficient and effective in the high-dimensional data analysis
[23, 24]. It is aimed at minimizing the cost function and at
keeping the features with nonzero coefficients. In this study,
features passing the ICC screening were normalized by Z
-score transform. Then, a 10-fold crossvalidation was carried
out to choose the optimal parameters via the minimum of

(a) (b)

Figure 2: Manual delineation of a SRCC tumor of the same patient at different phases: (a) corticomedullary phase and (b) nephrographic
phase.
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average mean square error. At last, the radiomics features
with nonzero coefficients were used for further analysis.

2.9. Development, Diagnostic Performance, and Comparison
of Classification. In order to evaluate the potential of CT-
based radiomics and subjective CT findings for the differen-
tiation of SRCC and CCRCC tumors, 5 models were built
with the logistic regression method and fivefold crossvalida-
tion strategy. These models differ from each other, since the
selected features are the CMP, the NP, the CMP and NP,
the subjective CT findings, and the combined features and
subjective CT findings.

K-fold crossvalidation is a common model validation
technique and widely used in machine learning studies. It
randomly partitions the whole set into K subsets with equal
or close size of data samples. Among the subsets, one is set
as the validation set and the others as the training set. The
experiment repeats K times to ensure that each of the subsets
will be used exactly once as the validation set.

Specifically, to build the model with the subjective CT
findings, the findings with statistically significant difference
were concerned. In this study, infiltrative spread pattern,
presence of venous thrombus, neovascularity, and calcifica-
tion were set as 1, and noninfiltrative spread pattern and
absence were set as 0. In the combined model, the CT find-
ings were further selected by Akaike information criterion
(AIC) and in the end integrated into a combined model with
these selected CMP and NP features.

The quantitative indices used to assess the performance
of these classification models were the receiver operating
curve (ROC) and the area under the ROC curve (AUC),
accuracy, sensitivity, and specificity. The confidence interval
of AUC was computed by the exact binomial method. The
ROC values of every two models were compared by using
the DeLong test [25]. All the model construction, statistical
computation, and figures were conducted in the Anaconda3
platform with scikit-learn and matplotlib.

3. Results

3.1. Clinical Characteristics. This study involved 128 patients
(89 males and 39 females; mean age, 57:11 ± 10:52 years;
range, 24-80 years). There were 29 (22.66%) SRCC and 99
(77.34%) CCRCC patients. No significant difference was
found in gender (p = 0:593) or age (p = 0:297) between the
patient groups, while it showed significant difference in
tumor size (p < 0:001) and T stage (p < 0:001). Patient char-
acteristics are shown in Table 1.

Specifically, among the SRCC patient cases, 23 were ded-
ifferentiated from CCRCC tumors, followed by chromo-
phobe RCC (4 cases), collecting duct carcinoma (1 case),
and Xp11.2 translocation RCC (1 case), while among the
CCRCC patient cases, the number of Fuhrman I, II, III, and
IV was 4, 51, 40, and 4, respectively.

3.2. Interreader Agreement of Subjective CT Findings and
Radiomics Features. Venous thrombus showed excellent
agreement, with a Kappa value of 0.867 (95% CI (confidence
interval): 0.598-1.000). Both peritumoral neovascularity and

calcification showed good agreement, with Kappa values of
0.629 (95% CI: 0.489-0.761) and 0.787 (95% CI: 0.653-
0.901), respectively. Besides, spread pattern and intratumoral
neovascularity showed moderate agreement, with Kappa
values of 0.571 (95% CI: 0.391-0.733) and 0.404 (95% CI:
0.270-0.537), respectively.

It was found that 1020 CMP radiomics features and 1023
NP radiomics features were with good interreader agree-
ment, and ICC values, respectively, ranged from 0.786 to
0.999 and 0.765 to 0.999. In addition, 9 CMP radiomics fea-
tures and 6 NP radiomics features were with ICC values less
than 0.75, ranging from 0.148 to 0.748 and 0.102 to 0.696,
respectively.

3.3. The Selection of Subjective CT Findings. It was found
out that spread pattern (p < 0:001), venous thrombus
(p = 0:001), peritumoral neovascularity (p = 0:017), calcifi-
cation (p = 0:005), and diameter (p < 0:001) showed signifi-
cant differences between the SRCC and CCRCC groups,
while there was no significant difference of intratumoral neo-
vascularity (p = 0:073) and thus, it was not used in model
building. Subjective CT findings between the two patient
groups are shown in Table 2.

3.4. The Selection of Radiomics Features. Using the regular-
ized regression with the penalty (α is denoted as the weight
of penalty term), the number of CMP features was reduced
to 6 (α = 0:074 and−log ðαÞ = 1:13) and that of NP features
was decreased to 29 (α = 0:028 and−log ðαÞ = 1:55) with non-
zero coefficients. As shown in Figure 3, (a) shows the optimi-
zation of the parameter α by using LASSO, and (b) indicates
the coefficients of selected CMP radiomics features, while (c)
and (d) demonstrate the results of the parameter α and cor-
responding coefficients of selected NP radiomics features.

Table 1: The characteristics of SRCC and CCRCC patient groups.

SRCC (29)
CCRCC
(99)

Whole set
(128)

p value

Gender

Male
19

(65.51%)
70

(70.71%)
89 (69.53%) 0.593a

Female
10

(34.48%)
29

(29.29%)
39 (30.47%)

Age (yrs, mean
± std) 55:3 ± 14:0 57:6 ± 9:3 0.297b

Size (cm, mean
± std) 10:1 ± 3:0 7:7 ± 1:6 <0.001b

T stage

1b 6 (20.69%)
66

(66.67%)
72 (56.25%) <0.001c

2
11

(37.93%)
19

(19.19%)
30 (23.44%)

3
11

(37.93%)
13

(13.13%)
24 (18.75%)

4 1 (3.45%) 1 (1.01%) 2 (1.56%)

yrs: years; std: standard deviation; p < 0:05 is set as significant difference; aχ2

test; bStudent’s t-test; cFisher’s exact test.
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Specifically, the selected CMP features are 3 first-order
features, 1 shape feature, and 2 texture features, and the
selected NP features include 8 first-order features, 3 shape
features, and 18 texture features. The coefficients of selected
features are shown in Table 3.

For the combination model, subjective CT findings
(spread pattern and calcification) with minimum AIC value
were integrated into the selected CMP and NP radiomics
features as the input for tumor differentiation. AIC values
of subjective CT findings are shown in supplemental S02.

3.5. Development, Diagnostic Performance, and Comparison
of Classification Models. Five radiomics approaches were
explored via logistic regression. The subjective CT findings
model considered 4 features (venous thrombus, peritumoral
neovascularity, calcification, and diameter). For radiomics
approaches, one utilized 6 CMP features, one used 29 NP fea-
tures, and one concerned these 35 features (6 CMP features
and 29 NP features). The last model contained those 35
radiomics features and 2 subjective CT findings.

The diagnostic performance of the five models is shown
in Table 4. The subjective CT findings model and the CMP
radiomics model showed inferior values of AUC, sensitivi-
ties, specificity, and accuracy when compared to the models
using NP features, using CMP and NP features, and using
the combined features. The CMP radiomics model showed
the worst performance with AUC (0.772, 95% CI: 0.689-
0.841), accuracy (78.12%), and sensitivity (65.52%), and the
combined model achieved the best AUC (0.974, 95% CI:
0.924-0.992), accuracy (93.75%), and sensitivity (96.55%).

Figure 4 shows ROC curves of the five models. The model
using combined features achieved the best AUC, followed by
the model using the selected CMP and NP radiomics fea-

tures, and the model using NP features. Relatively, the model
using subjective CT findings or CMP radiomics features
obtained relatively worse results. According to the DeLong
test, there was no significant difference of the AUC values
among the NP radiomics model, the CMP and NP radiomics
model, and the combined model (0:2245 ≤ p ≤ 0:6692), as
well as between the CMP radiomics model and the subjective
CT findings model (p = 0:7479). On the other hand, each of
the former three models showed significant improvement
compared with each of the latter two models (the CMP
model, 0:0001 ≤ p ≤ 0:0051; the subjective CT findings
model, 0:0006 ≤ p ≤ 0:0079).

4. Discussion

Sarcomatoid change is believed to be a common pathway of
dedifferentiation likely occurring in all subtypes of RCC
tumors [4], and preoperative identification of the change is
challenging but important in clinic. This study found that
the CT-based radiomics approach could help discriminate
the SRCC and CCRCC tumors and it also achieved superior
performance over the subjective CT findings.

The AUC value using the selected CMP and NP radio-
mics features was significantly higher than that using the sub-
jective findings, while incorporating the subjective CT
findings into the model achieved no incremental predictive
value. The AUC value of the NP radiomics model was higher
with significant difference than that of the model using the
CMP radiomics features. It was slightly lower than that of
the CMP and NP radiomics model and that of the combined
model with no statistical difference. Such an interesting find-
ing indicated that the NP features are important in radiomics
discrimination of SRCC and CCRCC tumors. In addition, the
diagnosis power of the NP features better than the CMP
features has been reported in machine learning-based CT
images [26], which aimed for discriminating fat-poor renal
angiomyolipoma from CCRCC. Thus, it might allow the
omission of CMP acquisition to reduce the radiation dose
in the differentiation of SRCC and CCRCC tumors.

The selected features showed that the “GrayLevelNonU-
niformity” of the GLSZM texture feature was the most fre-
quently selected feature (Table 3). The feature quantifies the
heterogeneity of a tumor. It appeared in the selected SRCC
radiomics features with “squareroot_GrayLevelNonUnifor-
mity” (coefficient, 0.0926) and in the CCRCC features with
“logarithm_GrayLevelNonUniformity” (coefficient, 0.0938)
and with “wavelet-HLL_GrayLevelNonUniformity” (coeffi-
cient, -0.0063). One reason might be attributed to necrosis
which was extremely highly frequent in tumors, for instance,
the component of sarcomatoid carcinoma [15], and showed
low or nonenhanced in CT images. Some previous studies
[27, 28] also highlighted that low enhancement on CT images
could be an independent predictor of the presence of high
tumor grade of CCRCC, since CCRCC was more heteroge-
neous [29, 30]. Moreover, that lesion heterogeneity was a fea-
ture of malignancy and potential marker of survival, and the
patients having heterogeneous tumors with lower uniformity
might be with poorer survival [17]. Since SRCC tumors show
heterogeneous appearance in multiphase CT imaging, this

Table 2: Subjective CT findings of SRCC and CCRCC patient
groups.

Imaging features SRCC (29) CCRCC (99) p value

Spread pattern

Infiltrative 16 (55.17%) 12 (12.12%) <0.001a

Noninfiltrative 13 (44.83%) 87 (87.88%)

Venous thrombus

Present 6 (20.69%) 3 (3.03%) 0.001a

Absent 23 (79.31%) 96 (96.97%)

Intratumoral neovascularity

Present 14 (48.28%) 30 (30.30%) 0.073a

Absent 15 (51.72) 69 (60.70%)

Peritumoral neovascularity

Present 24 (82.76%) 58 (58.59%) 0.017a

Absent 5 (17.24%) 41 (41.41%)

Calcification

Present 13 (44.83%) 19 (19.19%) 0.005a

Absent 16 (55.17%) 80 (80.81%)

Diameter (cm, mean ± std) 10:1 ± 3:0 7:7 ± 1:6 <0.001b

std: standard deviation; p < 0:05 is set as significant difference; aχ2 test;
bStudent’s t-test.
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kind of gray-level nonuniformity feature is difficult to be
quantified by a subjective finding until the radiomics
emerged.

To the subjective CT findings, they figured out that infil-
trative spread pattern, venous thrombus, peritumoral neo-
vascularity, and calcification were more frequently showed
in SRCC tumors, yet the Kappa values of these findings were
relatively lower. The subjective CT findings to discriminate
between SRCC and CCRCC tumors with poor Kappa values
were also reported in [14]. However, there is little focus on
the calcification of renal mass. One study [30] found that
SRCC contained more calcium than RCC (28.6% vs 10.3%)

which presumed that calcification is related to necrosis.
Indeed, calcification was highly frequent in SRCC, particu-
larly in the components of sarcomatoid carcinoma [15]. In
this study, venous thrombus had the highest Kappa value of
0.867, while only 6 out of 29 SRCC and 3 out of 99 CCRCC
manifested this feature, indicating the incidence was too
low to be used. In short, the subjective findings were valuable
but unstable or identifiable in a small cohort, which might
account for unsatisfactory diagnostic performance of the
subjective CT findings model.

At present, the main research of radiomics approaches
for RCC analysis is the renal mass differentiation and nuclear
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Figure 3: Radiomics feature selection by using the LASSO regression method. The optimal α was selected using a tenfold crossvalidation via
the minimum of average mean square error. To the CMP features, α = 0:074 and −log ðαÞ = 1:13 (a) and to the NP features, α = 0:028 and
−log ðαÞ = 1:55 (c). (b) and (d), respectively, showed the coefficient profiles along the full path of possible α values in the CMP and the NP
feature selection. In addition, dashed vertical lines were drawn at the optimal α based on the minimum of average mean square error in
(a–d).
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grade prediction [31], and few studies focus on the differen-
tiation of SRCC and CCRCC tumors. To our knowledge,
one study explored CT-based radiomics approaches to clas-
sify the SRCC and CCRCC tumors [14]. It involved 20 SRCC
and 25 CCRCC cases, and both CT subjective findings and
texture features were analyzed through noncontrast images.
The study indicated that SRCC tumors (7:1 ± 2:7 cm) were
significantly larger than CCRCC tumors (5:0 ± 2:9 cm), peri-
tumoral neovascularity and the size of peritumoral vessels
differed between the SRCC and CCRCC tumors in the sub-
jective analysis, and SRCC tumors were with greater values
of run length nonuniformity and gray-level nonuniformity
features. In addition, the classification performance reached
an AUC value of 0:81 ± 0:08 based on the combined textural
features. Interestingly, as reported in [14], the current study
also figured out SRCC tumors with significantly larger size
over CCRCC tumors. Except for peritumoral neovascularity,
subjective CT findings of spread pattern, venous thrombus,
and calcification showed significant difference. In particular,
the current study achieved superior performance on tumor
differentiation through the analysis of multiphase CT images.
It is worth noting that there are two other studies that con-
cerned SRCC and CCRCC tumors by using MRI. One
study [15] involved 11 patients with SRCC dedifferentiated
from CCRCC tumors, and preoperative renal T1- and T2-
weighted MRI were utilized. Compared to a normal renal
cortex, it showed that the presence of the areas showing a
hypovascular nature and markedly restricted diffusion
might be characteristic findings of SRCC. The other study
[32] collected 17 patients with SRCC and 17 patients with
CCRCC, and dynamic T1-weighted MRI was analyzed. It
indicated that the portion of segmented whole tumor with
MRI signal suggestive of sarcomatoid involvement was cor-
related with histological examination, while the percentage
of sarcomatoid differentiation was underestimated. There-
fore, the current study differs itself from other studies
[14, 15, 32] by using multiphase CT.

Multiphase CT was widely used in RCC analysis, and
both CMP and NP have been proved to be important in renal
lesion differentiation and staging [29]. CMP, the first phase
of contrast enhancement, is between 25 and 70 seconds after
the injection of contrast material, and the renal cortex
enhances more brightly than the renal medulla. NP is the
second phase when the contrast material filters through the
glomeruli into the loops of Henle and the collecting tubules.
At this time, the renal parenchyma becomes homogeneous,
and the difference between a normal renal medulla and
masses is well observed [33]. In the current study, 6 CMP fea-
tures and 29 NP features were retrieved, and the NP radio-
mics approach achieved a significantly higher AUC value
over the CMP radiomics approach. The reasons are mani-
fold. First, various amounts of sarcomatoid differentiation
are presented in SRCC tumors, which leads to inconsistent
CMP imaging features, and in addition, the identified radio-
mics features cannot well differ the SRCC and CCRCC
tumors. Second, NP image features have been reported as
the most sensitive features for characterizing CCRCC from
other subtypes of tumors, since the features coincided with
the maximum tumor-to-kidney contrast [34]. Unfortunately,

Table 3: The selected radiomics features and corresponding
coefficients.

Selected CMP features Coefficients

First-order features

squareroot_Energy 0.0003

squareroot_Maximum 0.0057

wavelet-LHH_Skewness 0.0069

Shape features

original_Minoraxis 0.0312

Texture features

Gray-level run length matrix (GLRLM)

exponential_RunVariance 0.0037

squareroot_GrayLevelNonUniformity 0.0926

Selected NP features

First-order features

wavelet-HLH_Skewness -0.04831

wavelet-LHH_Median -0.0272

wavelet-HHH_Median -0.0076

squareroot_Energy 0.0002

wavelet-LLH_fskewness 0.0019

square_Kurtosis 0.0337

wavelet-LHL_Mean 0.0417

wavelet-LLH_Kurtosis 0.0613

Shape features

original_SurfaceArea 2.85E-5

original_RunVariance 0.0210

original_SphericalDisproportion 0.0226

Texture features

Gray-level cooccurrence matrix (GLCM)

square_Idmn -0.0196

square_Correlation -0.0075

wavelet-HHH_ClusterProminence 0.0152

squareroot_DifferenceVariance 0.0422

Gray-level run length matrix (GLRLM)

wavelet-LLL_ShortRunLowGrayLevelEmphasis -0.0075

square_ShortRunLowGrayLevelEmphasis 0.0017

wavelet-HHH_RunVariance 0.0225

exponential_RunVariance 0.0242

exponential_RunEntropy 0.0246

exponential_ShortRunLowGrayLevelEmphasis 0.0499

Gray-level size zone matrix (GLSZM)

square_ZoneVariance -0.0285

wavelet-HLL_SizeZoneNonUniformityNormalized -0.0173

wavelet-LLL_LowGrayLevelZoneEmphasis -0.0086

wavelet-HLL_GrayLevelNonUniformity -0.0063

wavelet-LLL_ZoneVariance 0.0022

wavelet-HHH_LargeAreaEmphasis 0.0183

logarithm_LargeAreaLowGrayLevelEmphasis 0.0437

logarithm_GrayLevelNonUniformity 0.0938

7BioMed Research International



due to different purposes and specific data sets, there are
conflicts of evidence. For instance, [20] indicated that there
was no significant difference when CMP and MP radiomics
features were independently used for low- and high-grade
CCRCC staging, while [35] showed that CMP features
resulted in better performance. Therefore, the exact reason
why the selected NP features are better than the selected
CMP features in the SRCC and CCRCC differentiation
requires further investigation.

In the current study, SRCC and CCRCC tumors are with
size larger than 6 cm. Two reasons account for this setting.
First, one feature differing SRCC from other tumors is their

larger tumor size [14]. During the data collection, it was
found that almost all SRCC tumors had a diameter larger
than 6 cm. Therefore, to reduce the effect of lesion size on
the outcome, this study concerned a large tumor size. Second,
a large tumor size benefits manual annotation of lesions, and
good interreader agreement can be achieved. It should be
noted that several studies concerned small RCC tumors.
For instance, multiphase CT of tumor attenuation was
explored for the differentiation between renal oncocytomas
and CCRCC tumors (size ≤ 5 cm) [34, 36] and for distin-
guishing subtypes of RCC, angiomyolipoma, and oncocy-
toma tumors (≤4 cm) [21, 37]. Meanwhile, MR image
texture features were also utilized for predicting histologic
grade of CCRCC with tumor size ≤ 4 cm [38].

There are several limitations of the current study. First,
due to the rarity of SRCC, data imbalance occurs. In order
to overcome the risk of overfitting, the K-folder crossvalida-
tion strategy was performed and the built radiomics
approach was verified on an independent data set [39]. To
overcome the issue of data imbalance, potential solutions
include multicenter collaboration and nationwide and world-
wide data sharing. Second, SRCC samples were not stratified
according to the underlying diagnosis and the ratio of sarco-
matoid component. RCC tumors with even a small compo-
nent of sarcomatoid change might have an enormously
adverse outcome, whereas the primary histologic appearance
of SRCC does not have an impact on the prognosis [3, 11].
RCC that contains a sarcomatoid component is categorized
to grade IV in the ISUP system, and there was a consensus
that a minimum proportion of sarcomatoid tumor was
not required to make a diagnosis of sarcomatoid carcinoma
[3, 4]. Third, this study concerned SRCC and CCRCC with
diameters larger than 6 cm. Pilot studies explored predict
histologic grade of CCRCC less than 4 cm using CT and
MRI, and statistically significant features were figured out
[38, 40], which inspire our future investigation of small
RCC samples. Furthermore, MRI features can be embedded
into CT-based radiomics approach for improved differenti-
ation [12, 15]. Last but not the least, novel techniques, such
as full-automated image segmentation [41], feature dimen-
sion reduction [42], multiobjective optimization [43], and
deep learning [44], could be further considered for improv-
ing classification performance.

Table 4: The diagnostic performance of the five radiomics approaches.

AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

Subjective CT findings 0.792 78.12 82.76 75.76

(0.712-0.859)

CMP features 0.772 78.12 65.52 82.83

(0.689-0.841)

NP features 0.938 90.62 89.66 91.92

(0.881-0.973)

CMP+NP features 0.966 93.75 89.66 94.95

(0.918-0.990)

Combined features 0.974 93.75 96.55 88.89

(0.924-0.992)
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Figure 4: ROC curves of five radiomics approaches for
differentiation of SRCC and CCRCC cases. The models are the
subjective findings model (blue line), the CMP radiomics model
(green line), the NP radiomics model (orange line), the CMP and
NP radiomics model (red line), and the combined model (purple
line). In addition, the brown dashed line shows the prediction
distribution of random inputted features.

8 BioMed Research International



5. Conclusion

Sarcomatoid change is believed to be a common pathway of
dedifferentiation likely occurring in all subtypes of renal cell
carcinoma, and preoperative identification of SRCC helps
determine the therapeutic strategies. This study shows that
the CT-based radiomics approaches could help discriminate
the SRCC and CCRCC tumors and further improve patient
management, treatment, and quality of life.

Data Availability

The clinical CT images used to support the findings of this
study are available from the corresponding author upon
request, while the radiomics date extracted from CT images
is included within the supplementary information file.
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integrated into a combined model with selected CMP and
NP features for tumor differentiation. (Supplementary
Materials)

References

[1] G. M. Farrow, E. G. Harrison Jr., D. C. Utz, andW. H. Remine,
“Sarcomas and sarcomatoid and mixed malignant tumors of
the kidney in adults—part I,” Cancer, vol. 22, no. 3, pp. 545–
550, 1968.

[2] B. Shuch, G. Bratslavsky, W. M. Linehan, and R. Srinivasan,
“Sarcomatoid renal cell carcinoma: a comprehensive review
of the biology and current treatment strategies,” The Oncolo-
gist, vol. 17, no. 1, pp. 46–54, 2011.

[3] B. Delahunt, J. C. Cheville, G. Martignoni et al., “The Interna-
tional Society of Urological Pathology (ISUP) grading system
for renal cell carcinoma and other prognostic parameters,”
American Journal of Surgical Pathology, vol. 37, no. 10,
pp. 1490–1504, 2013.

[4] H. Moch, A. L. Cubilla, P. A. Humphrey, V. E. Reuter, and
T. M. Ulbright, “The 2016 WHO classification of tumours of
the urinary system and male genital organs - part a: renal,
penile, and testicular tumours,” European Urology, vol. 70,
no. 1, pp. 93–105, 2016.

[5] B. M. Mian, N. Bhadkamkar, J. W. Slaton et al., “Prognostic
factors and survival of patients with sarcomatoid renal cell car-
cinoma,” Journal of Urology, vol. 167, no. 1, pp. 65–70, 2002.

[6] J. C. Cheville, C. M. Lohse, H. Zincke et al., “Sarcomatoid renal
cell carcinoma: an examination of underlying histologic sub-
type and an analysis of associations with patient outcome,”
American Journal of Surgical Pathology, vol. 28, no. 4,
pp. 435–441, 2004.

[7] T. Cangiano, J. Liao, J. Naitoh, F. Dorey, R. Figlin, and
A. Belldegrun, “Sarcomatoid renal cell carcinoma: biologic
behavior, prognosis, and response to combined surgical resec-
tion and immunotherapy,” Journal of Clinical Oncology,
vol. 17, no. 2, pp. 523–528, 1999.

[8] L. C. Pagliaro, N. Tannir, K. Sircar, and E. Jonasch, “Systemic
therapy for sarcomatoid renal cell carcinoma,” Expert Review
of Anticancer Therapy, vol. 11, no. 6, pp. 913–920, 2011.

[9] A. Kutikov, R. G. Uzzo, A. Caraway et al., “Use of systemic
therapy and factors affecting survival for patients undergoing
cytoreductive nephrectomy,” BJU International, vol. 106,
no. 2, pp. 218–223, 2010.

[10] B. Shuch, J. Said, J. C. La Rochelle et al., “Cytoreductive
nephrectomy for kidney cancer with sarcomatoid histolo-
gy—is up-front resection indicated and, if not, is it avoidable?,”
Journal of Urology, vol. 182, no. 5, pp. 2164–2171, 2009.

[11] M. de Peralta-Venturina, H. Moch, M. Amin et al., “Sarcoma-
toid differentiation in renal cell carcinoma a study of 101
cases,” American Journal of Surgical Pathology, vol. 25, no. 3,
pp. 275–284, 2001.

[12] M. Takeuchi, T. Kawai, T. Suzuki et al., “MRI for differentia-
tion of renal cell carcinoma with sarcomatoid component
from other renal tumor types,” Abdominal Imaging, vol. 40,
no. 1, pp. 112–119, 2015.

[13] J. R. Young, J. A. Young, D. J. A. Margolis et al., “Sarcomatoid
renal cell carcinoma and collecting duct carcinoma discrimi-
nation from common renal cell carcinoma subtypes and
benign RCC mimics on multiphasic MDCT,” Academic Radi-
ology, vol. 24, no. 10, pp. 1226–1232, 2017.

[14] N. Schieda, R. E. Thornhill, M. Al-Subhi et al., “Diagnosis of
sarcomatoid renal cell carcinoma with CT: evaluation by
qualitative imaging features and texture analysis,” American
Journal of Roentgenology, vol. 204, no. 5, pp. 1013–1023, 2015.

[15] M. Takeuchi, M. Urano, M. Hara, Y. Fujiyoshi, H. Inagaki, and
Y. Shibamoto, “Characteristic MRI findings of sarcomatoid
renal cell carcinoma dedifferentiated from clear cell renal car-
cinoma radiological-pathological correlation,” Clinical Imag-
ing, vol. 37, no. 5, pp. 908–912, 2013.

[16] P. Lambin, E. Rios-Velazquez, R. Leijenaar et al., “Radiomics:
extracting more information from medical images using
advanced feature analysis,” European Journal of Cancer,
vol. 48, no. 4, pp. 441–446, 2012.

[17] R. J. Gillies, P. E. Kinahan, and H. Hricak, “Radiomics: images
are more than pictures, they are data,” Radiology, vol. 278,
no. 2, pp. 563–577, 2016.

[18] H. J. W. L. Aerts, E. R. Velazquez, R. T. Leijenaar et al.,
“Decoding tumour phenotype by noninvasive imaging using
a quantitative radiomics approach,” Nature Communications,
vol. 5, no. 1, pp. 4006–4013, 2014.

[19] J. J. M. Van Griethuysen, A. Fedorov, C. Parmar et al., “Com-
putational radiomics system to decode the radiographic phe-
notype,” Cancer Research, vol. 77, no. 21, pp. e104–e107, 2017.

[20] J. Shu, Y. Tang, J. Cui et al., “Clear cell renal cell carcinoma:
CT-based radiomics features for the prediction of Fuhrman
grade,” European Journal of Radiology, vol. 109, pp. 8–12,
2018.

[21] R. Yang, J. Wu, L. Sun et al., “Radiomics of small renal masses
on multiphasic CT: accuracy of machine learning-based classi-
fication models for the differentiation of renal cell carcinoma
and angiomyolipoma without visible fat,” European Radiology,
vol. 30, no. 2, pp. 1254–1263, 2020.

9BioMed Research International

http://downloads.hindawi.com/journals/bmri/2020/7103647.f1.zip
http://downloads.hindawi.com/journals/bmri/2020/7103647.f1.zip


[22] E. Cui, Z. Li, C. Ma et al., “Predicting the ISUP grade of clear
cell renal cell carcinoma with multiparametric MR and multi-
phase CT radiomics,” European Radiology, vol. 30, no. 5,
pp. 2912–2921, 2020.

[23] Y. Q. Huang, C. H. Liang, L. He et al., “Development and val-
idation of a radiomics nomogram for preoperative prediction
of lymph node metastasis in colorectal cancer,” Journal of
Clinical Oncology, vol. 34, no. 18, pp. 2157–2164, 2016.

[24] Z. Ma, M. Fang, Y. Huang et al., “CT-based radiomics signa-
ture for differentiating Borrmann type IV gastric cancer from
primary gastric lymphoma,” European Journal of Radiology,
vol. 91, pp. 142–147, 2017.

[25] E. R. DeLong, D.M. DeLong, and D. L. Clarke-Pearson, “Com-
paring the areas under two or more correlated receiver operat-
ing characteristic curves: a nonparametric approach,”
Biometrics, vol. 1, pp. 837–845, 1988.

[26] T. Hodgdon, M. D. McInnes, N. Schieda, T. A. Flood, L. Lamb,
and R. E. Thornhill, “Can quantitative CT texture analysis be
used to differentiate fat-poor renal angiomyolipoma from
renal cell carcinoma on unenhanced CT images?,” Radiology,
vol. 276, no. 3, pp. 787–796, 2015.

[27] Z. Feng, P. Rong, P. Cao et al., “Machine learning-based quan-
titative texture analysis of CT images of small renal masses:
differentiation of angiomyolipoma without visible fat from
renal cell carcinoma,” European Radiology, vol. 28, no. 4,
pp. 1625–1633, 2018.

[28] Y.-H. Zhu, X. Wang, J. Zhang, Y. H. Chen, W. Kong, and Y. R.
Huang, “Low enhancement on multiphase contrast-enhanced
CT images: an independent predictor of the presence of high
tumor grade of clear cell renal cell carcinoma,” American Jour-
nal of Roentgenology, vol. 203, no. 3, pp. W295–W300, 2014.

[29] B. Ganeshan, E. Panayiotou, K. Burnand, S. Dizdarevic, and
K. Miles, “Tumour heterogeneity in non-small cell lung carci-
noma assessed by CT texture analysis: a potential marker of
survival,” European Radiology, vol. 22, no. 4, pp. 796–802,
2012.

[30] W.W. Daniel Jr., G.W. Hartman, D. M.Witten, G. M. Farrow,
and P. P. Kelalis, “Calcified renal masses: a review of ten years
experience at the Mayo Clinic,” Radiology, vol. 103, no. 3,
pp. 503–508, 1972.

[31] R. Suarez-Ibarrola, M. Basulto-Martinez, A. Heinze,
C. Gratzke, and A. Miernik, “Radiomics applications in renal
tumor assessment: a comprehensive review of the literature,”
Cancers, vol. 12, no. 6, p. 1387, 2020.

[32] D. Jeong, D. H. Natarajan Raghunand, M. Poch, K. Jeong,
B. Eck, and J. Dhillon, “Quantification of sarcomatoid differ-
entiation in renal cell carcinoma on magnetic resonance imag-
ing,” Quantitative Imaging in Medicine and Surgery, vol. 8,
no. 4, pp. 373–382, 2018.

[33] S. Sheth, J. C. Scatarige, K. M. Horton, F. M. Corl, and E. K.
Fishman, “Current concepts in the diagnosis and management
of renal cell carcinoma: role of multidetector CT and three-
dimensional CT,” Radiographics, vol. 21, suppl_1, pp. S237–
S254, 2001.

[34] G. Gakis, U. Kramer, D. Schilling, S. Kruck, A. Stenzl, and
H. P. Schlemmer, “Small renal oncocytomas: differentiation
with multiphase CT,” European Journal of Radiology, vol. 80,
no. 2, pp. 274–278, 2011.

[35] J. Shu, D. Wen, Y. Xi et al., “Clear cell renal cell carcinoma:
machine learning-based computed tomography radiomics
analysis for the prediction of WHO/ISUP grade,” European
Journal of Radiology, vol. 121, article 108738, 2019.

[36] F. Gentili, I. Bronico, U. Maestroni et al., “Small renal masses
(≤ 4 cm): differentiation of oncocytoma from renal clear cell
carcinoma using ratio of lesion to cortex attenuation and
aorta-lesion attenuation difference (ALAD) on contrast-
enhanced CT,” La Radiologia Medica, 2020.

[37] P. M. Pierorazio, E. S. Hyams, S. Tsai et al., “Multiphasic
enhancement patterns of small renal masses (≤4 cm) on pre-
operative computed tomography: utility for distinguishing
subtypes of renal cell carcinoma, angiomyolipoma, and onco-
cytoma,” Urology, vol. 81, no. 6, pp. 1265–1272, 2013.

[38] S. Haji-Momenian, Z. Lin, B. Patel et al., “Texture analysis and
machine learning algorithms accurately predict histologic
grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot
study,” Abdominal Radiology, vol. 45, no. 3, pp. 789–798, 2020.

[39] B. Kocak, E. S. Durmaz, C. Erdim, E. Ates, O. K. Kaya, and
O. Kilickesmez, “Radiomics of renal masses: systematic review
of reproducibility and validation strategies,” American Journal
of Roentgenology, vol. 214, no. 1, pp. 129–136, 2020.

[40] K. Moran, J. Abreu-Gomez, S. Krishna et al., “Can MRI be
used to diagnose histologic grade in T1a (< 4 cm) clear cell
renal cell carcinomas?,” Abdominal Radiology, vol. 44, no. 8,
pp. 2841–2851, 2019.

[41] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: a compre-
hensive survey from bottom-up to semantic image segmenta-
tion and cosegmentation,” Journal of Visual Communication
and Image Representation, vol. 34, pp. 12–27, 2016.

[42] L. H. Nguyen and S. Holmes, “Ten quick tips for effective
dimensionality reduction,” PLoS Computational Biology,
vol. 15, no. 6, article e1006907, 2019.

[43] Z. Zhou, S. Li, G. Qin, M. Folkert, S. Jiang, and J. Wang,
“Multi-objective-based radiomic feature selection for lesion
malignancy classification,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, no. 1, pp. 194–204, 2020.

[44] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

10 BioMed Research International


	A CT-Based Radiomics Approach for the Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Clinical Assessment of SRCC and Fuhrman Grades of CCRCC
	2.3. CT Imaging Protocol
	2.4. Subjective CT Findings
	2.5. Image Segmentation
	2.6. Radiomics Feature Extraction
	2.7. Assessment of Delineation Consistency and Radiomics Feature Stability
	2.8. Radiomics Feature Selection
	2.9. Development, Diagnostic Performance, and Comparison of Classification

	3. Results
	3.1. Clinical Characteristics
	3.2. Interreader Agreement of Subjective CT Findings and Radiomics Features
	3.3. The Selection of Subjective CT Findings
	3.4. The Selection of Radiomics Features
	3.5. Development, Diagnostic Performance, and Comparison of Classification Models

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Supplementary Materials

