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Abstract

Recent single-cell RNA-sequencing studies have suggested that cells follow continuous 

transcriptomic trajectories in an asynchronous fashion during development. However, observations 

of cell flux along trajectories are confounded with population size effects in snapshot experiments 

and are therefore hard to interpret. In particular, changes in proliferation and death rates can be 

mistaken for cell flux. Here, we present pseudodynamics, a mathematical framework that 
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reconciles population dynamics with the concepts underlying developmental trajectories inferred 

from timeseries single-cell data. Pseudodynamics models population distribution shifts across 

trajectories to quantify selection pressure, population expansion, and developmental potentials. 

Applying this model to time-resolved single-cell RNA-sequencing of T-cell and pancreatic β-cell 

maturation, we characterize proliferation and apoptosis rates and identify key developmental 

checkpoints, inaccessible to existing approaches.

Single-cell experiments, such as single-cell RNA-sequencing (scRNA-seq)1, single-cell 

qPCR2, mass cytometry3 and flow cytometry enable the study of heterogeneity of cell 

populations. In development, this often corresponds to the distribution of asynchronously4,5 

developing cells across intermediate cellular states. Pseudotemporal ordering methods, 

which describe development as a transition in transcriptomic state (i.e. a ‘trajectory’) rather 

than a transition in real time4,5, have been devised to capture such trajectories. These 

trajectory-learning approaches are complemented by methods which learn the overall 

topology of the data set and thereby infer the connectivity between trajectories: monocle26, 

graph abstraction7, and others4,8. One can merge overlapping snapshots from multiple time 

points across a developmental process to learn a trajectory that covers the full range of cell 

states accessible in this process; this is however still a static description. Accordingly, a 

trajectory does not uncover the dynamic behavior of individual cells in state space and time - 

this dynamic information is lost in population snap-shot experiments. Hence pseudotime 

does not directly correspond to real time but is rather a cell state space metric4. In contrast, 

one can recover population dynamics, such as developmental potentials and source and sink 

positions, from a time-series of snapshot experiments. Population dynamics govern 

distributional shifts in cellular systems and are key to understand how cell type frequencies 

change in response to developmental and environmental cues which underlie physiological 

mechanisms of health and disease. An example scenario with such a frequency change is as 

follows: The relative proportion of a given cell type A may decrease during a process 

because its proliferation rate decreases, its death rate increases or because A differentiates to 

other cell types. It is crucial to understand the nature of this shift if a frequency shift in A is 

associated with a disease, such as a decrease in pancreatic β-cell frequency is associated 

with diabetes.

Population dynamics have been previously modeled in the context of cell cycle 

transitions9,10, and in the context of scRNA-seq under steady state assumptions11. The 

problem of developmental trajectory estimation from time series data is typically non-

stationary (Fig. 1a) as recently addressed via an optimal transport framework for discrete 

transitions12, and secondly from a dynamic point of view for low dimensional systems13. 

However, it remains difficult to disentangle the effects of population sources and sinks and 

effects of directed development which both contribute to the observed distribution in a 

snapshot experiment11.

Here, we present pseudodynamics, a mathematical framework that uses population size and 

single-cell snapshot data in an integrated model of development which can distinguish 

population size and differentiation effects (Fig. 1a-c). Pseudodynamics adds layers of 

information to developmental graphs, in particular state-resolved proliferation and death and 
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developmental potentials, an approximation of Waddington’s landscape. Firstly, we apply 

our model to T-cell maturation and uncover the population dynamics of beta-selection. 

Secondly, we apply our model to maturation of pancreatic β-cells in neonatal mice and we 

find that there is no evidence for extracellular regulation of proliferation.

Results

Pseudodynamics models single-cell time series measurements along developmental 
trajectories

A population of cells observed in a single-cell experiment is a sample from a probability 

distribution on the molecular space (such as transcriptome or proteome). During 

development, this distribution changes as a function of time (Fig. 1a). The molecular space 

is high-dimensional and typically transformed for interpretation, such as through space 

discretization or dimension reduction (Fig 1b). Pseudodynamics describes the population 

dynamics in such a low-dimensional space which we denote the cellular state s.

The time-dependence of a distribution of cells of a population, u(s,t), across discrete bins s 
with known connectivity has been traditionally described by a system of ordinary differential 

equations14 (Fig. 1b). We propose to describe the time-dependence of the number density 

u(s,t) across a set of continuous states s by a partial differential equation model. We model 

the dynamic process as a reaction-diffusion-advection partial differential equation, a 

population balance model11,15 (online methods eq. 1): The diffusion term represents 

undirected or stochastic movement of cells on the trajectory. The advection (‘drift’) 

parameter models directed movement across the trajectory. Weinreb et al. refer to the drift as 

the gradient of the development potential function11. The reaction term describes 

proliferation and death.

We allow all parameters to depend on the cell state (online methods eq. 1) and therefore 

define diffusion, drift and birth-death rates as continuous functions (splines) of state s. The 

cell state-dependent parameters encode local characteristics of the system in the cell state 

space such as proliferative compartments (high birth-death rates) or regions of increased cell 

death (negative birth-death rate). One can also introduce a time-dependence of the 

parameters to model changes in regulation over time (Supp. Note 1 eq. SN1.3).

We estimate the cell state-dependent parameters by maximizing a likelihood function that 

contains terms for developmental progress and total population size (online methods eq. 11). 

As inputs, the model takes a) time-resolved, normalized samples of the population obtained 

through a single-cell method and b) separate time-resolved measurements of the total 

number of cells in the entire system (Fig. 1c). Such total population size estimates can be 

approximated based on flow cytometry counts or cell counting in tissue sections. By 

integrating total population size measurements, pseudodynamics can infer state-specific 

birth-death parameters. It is necessary to forward simulate a dynamical system at each 

iteration of the parameter estimation to evaluate the likelihood function given a set of 

parameters. We achieved numerical stability and accuracy of the forward simulations of the 

partial differential equation system with the finite volumes method (online methods) and 

validated the robustness of the parameter estimation in multiple simulation studies (Supp. 
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Note 2). Moreover, we showed that cell type sampling bias correction is possible within 

pseudodynamics16,17 (Supp. Note 2 sec. SN2.2.3).

We fit the continuous pseudodynamics model to a pseudotemporal ordering of scRNA-seq 

observations from four time points along mouse embryonic stem cell differentiation1,4 (Fig. 

1d, online methods) without population size observations. Pseudodynamics was able to fit 

the samples along this transcriptomic trajectory and allowed imputation of unobserved time 

points (Fig. 1e,f, Supp. video 1). With lower regularization parameters, the model fit is better 

but has worse predictive power as shown by leave-one-time-point-out cross-validation (Fig. 

1e,f).

Pseudodynamics extends previous models of T-cell maturation

T-cell maturation has been previously described as a sequence of transitions between cell 

states defined based on surface marker protein expression18. Here, we propose a trajectory 

model for T-cell maturation (Fig. 2), and show that pseudodynamics yields a comprehensive 

description of the T-cell maturation process. This includes quantitative analyses of the size 

of the proliferative burst after beta-selection, magnitude of selection on double-positive T-

cells and position of beta-selection on the trajectory (Fig. 3,4).

Pseudotime inference identifies continuous states in T-cell maturation.—We 

constructed a cell state trajectory for T-cell maturation based on 19 scRNA-seq thymus 

samples (Drop-seq protocol1) from mouse embryos at eight different time points spanning 

12.5 to 19.5 days after fertilization (E12.5-P0)19 (Fig. 2a,b). The data set contains clusters of 

putative myleloid and dendritic cells19 (Supp. Fig. 1-3), T-cells (Supp. Fig. 3,4) and innate 

lymphoid cells and γδ-T-cells (Supp. Fig. 5). The set of innate lymphoid cells and γδ-T-

cells was previously grouped as non-conventional lymphocytes (NCLs)19. We filtered a 

branch of putative myeloid or dendritic cells from the set of all lymphocytes (Supp. Fig. 6a, 

online methods) to generate a data set consisting of T-cells and NCLs only (online methods). 

The diffusion map20 of this gated data set uncovers one branching region between the T-cell 

lineage and the NCL lineage (Fig. 2b,c, Supp. Fig. 6b). This branching is also found by 

partition-based graph abstraction7 (Supp. Fig. 1i) and has been discussed in detail 

recently19. The branching is consistent with the previous result that T-cells and NCLs are 

derived from the same progenitor in the thymus21,22,23. We used diffusion pseudotime as a 

one dimensional cell state coordinate with the tip cell of the progenitor branch as a root cell. 

The cell state therefore captures transcriptomic progression along the T-cell and the NCL 

lineages. We performed a linear partition in the branching region to distinguish the T-cell 

and the NCL trajectories (Supp. Fig. 6c). The expression profiles along the T-cell lineage 

recapitulate the previously established sequence of developmental stages from double 

negative to double positive cells which are defined based on surface marker proteins18 (Fig. 

2d, Supp. Fig. 7a-c) and transcription factors18 (Supp. Fig. 7d,e). TCRα (Tcra) and TCRβ 
(Tcrb) expression together with surface marker expression suggest that the T-cell lineage 

trajectory in the diffusion map corresponds to the αβ-T-cell lineage (Fig. 2d, Supp. Fig. 7a, 

Supp. Fig. 8a,b). We found TCRγ (Tcrg)- and TCRδ (Tcrd)-expressing cells on this T-cell 

lineage before the upregulation of double-positive stage markers (Fig. 2d) which could 

correspond to γδ-T-cells or to temporary expression of TCRγ and TCRδ on the αβ-T-cell 
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lineage. Expression profiles across the trajectory have a higher resolution than across 

previously used discrete cell stages and highlight the order of activity of gene regulatory 

modules of interest (Supp. Fig. 7d). Moreover, expression profiles along the trajectory can 

be used to suggest putative surface marker proteins for particular developmental stages 

(Supp. Fig. 7b,c).

Pseudodynamics identifies a proliferative burst and selection pressure during 
T-cell maturation.—We fit the continuous pseudodynamics model to the developmental 

tree with a single branching region between the T-cell and putative NCL lineages (Supp. 

Note 3 sec. SN3.2.2). Population size observations of the total number of lymphocytes per 

thymus were collected separately24. The model provides a continuous interpolation of the 

density across cell state in time and predicts the time-resolved flux of cells through the cell 

state space (Fig. 3a,b): The normalized distribution across bins reaches a steady state during 

the last three observed time points (Fig. 2d), while the overall population size is still 

increasing (Fig. 3a,b). We found the predictive power of pseudodynamics to impute missing 

time points (Supp. video 2) to depend on the sampling density (Supp. Fig. 9).

We extended the continuous cell state description of T-cell development by annotating the 

cell states with the parameter fits from the pseudodynamics model. The T-cell lineage drift 

parameter fit (Fig. 3c) uncovers two intervals of rapid transcriptomic development (high drift 

parameter) which peak at cell states 0.13 and 0.35. They correspond to transcriptomic states 

in which transcription factors are sequentially regulated, for example Notch1 and Notch3 in 

interval one, and Id3 and Rorc in interval two. This sequential regulation leads to directed 

transcriptomic development and to deterministic behavior of individual cells. Indeed, we 

observed global changes in transcription factor activity at these stages (Fig. 2d, Supp. Fig. 

7e). Downregulation of Bcl2 and Mcl1, up-regulation of Bcl-xL (Bcl2l1)18 and double-

positive stage markers (Fig. 2d, Supp. Fig. 8c) suggest that the developmental checkpoint is 

beta-selection and lies around cell state 0.23. Pseudodynamic parameter fits capture this 

checkpoint as an area of non-deterministic development with low drift and non-zero 

diffusion. This is a saddle point of the developmental potential function (Fig. 4b).

T-cells that pass beta-selection divide rapidly and then undergo positive and negative 

selection18. The cell state-specific division and death rates are captured as a high birth-death 

rate after the putative point of beta-selection, which then monotonically decreases with cell 

state and eventually becomes negative (Fig. 3c). The parameter trends are qualitatively 

similar across a range of regularization hyperparameters (Supp. Fig. 10). We fit a single-

trajectory pseudodynamics model without branching to a pseudotemporal ordering inferred 

with monocle26 (Supp. Fig. 11, Supp. Fig. 12a-c, Supp. Note 3 sec. SN3.2.2.5). The inferred 

peak of the birth-death parameter at beta-selection and the negative interval during selection 

are robust with respect to the underlying state space (Supp. Fig. 12d-f, Supp. Note 3 sec. 

SN3.2.2.6). Transcriptome-derived M- and G2.M-phase scores (online methods) were 

increased in the cell states with negative birth-death rates (Fig. 3d). The transcriptome-

derived scores reflect expansion of the cells that survive selection as only these surviving 

cells are observed in scRNA-seq. These scores do not capture the global population size 

effect of selection, which the pseudodynamics framework can recover.
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Pseudodynamics can map developmental check-points based on knock-out 
data.—Rag1 and Rag2 knockout (KO) mice produce T-cells that cannot overcome beta-

selection as they are unable to rearrange the T-cell receptor genes25. We took scRNA-seq 

samples from these knockout mice to validate the prediction of the position of beta-selection 

in cell state space. We fit a diffusion map to the union of all wild-type samples, an E14.5 

Rag2KO at and two E16.5 Rag1KO samples (Supp. Fig. 13, online methods). The T-cell 

populations in the knock-out mice are significantly delayed in transcriptomic development 

along the αβ-T-cell trajectory compared to age-matched wild-type samples, and lack high 

cell state outliers at these time points (Fig. 4a, Supp. Fig. 14a,b). Beyond trends in cell state 

space, we also observed a reduced mean expression of double-positive stage markers in the 

knock-out animals compared to age-matched wild-type mice (Supp. Fig. 14c,d). We trained 

the pseudodynamics model on wild-type samples and adapted the inferred parameters to 

account for the arrest expected at beta-selection with the position of beta-selection as a free 

parameter (online methods). Then, we computed a least squares cost profile (Supp. Note 1 

sec. SN1.6) of the mutant data across the beta-selection position (Fig. 4a). The resulting 

estimator of the beta-selection point at cell state 0.27 is in agreement with the Bcl-xL 
expression profile and lies at the end of the low drift parameter interval in cell state (Fig. 

4b). We obtained similar beta-selection estimates for multiple regularization parameters 

(Supp. Fig. 14e,f). This probabilistic model for the position of beta-selection is better 

defined than a model based on marker gene changes and is not as sensitive to resampling as 

the maximal pseudotime coordinate in the knock-out cells would be.

Pseudodynamics attributes variation in proliferation rates of pancreatic β-cells across time 
to a state-dependent effect

Pancreatic β-cell proliferation in young mice was previously observed as the fraction of 

cycling cells in tissue sections and was shown to decrease with age26,27. Above, we showed 

that average cell state often changes during development (Fig. 1e, 2d). Hence, both state- 

and time-dependent birth parameters induce variation in proliferation rates across time. 

State-dependent birth parameters may occur if there are proliferative stages along a 

developmental trajectory, such as in the T-cell system. In contrast, cell state-invariant time-

dependence of parameters requires extracellular regulators (Fig. 5a) if the cell state variable 

captures the full molecular state of the cell. To inform hypotheses about extracellular cues, it 

is important to distinguish the state-dependent from time-dependent regulation.

State- and time-dependence of proliferation have been previously analyzed based on a two-

stage compartment model of β-cell maturation with the marker Flattop (Fltp, Cfap126): The 

proliferation rate was measured as the fraction of cycling cells in the Fltp- (immature) and 

Fltp+ (mature) compartment at multiple time points and was found to vary with age in both 

compartments27. We modeled such a discrete state space using the pseudodynamics 

likelihood with a two-state ordinary differential equation model. For input data, we collected 

pancreatic β-cell population size measurements28 (Supp. Note 3 sec. SN3.2.3) and measured 

the distribution of the population across two maturation compartments based on the marker 

Ucn3 by counting cells in stained sections (Fig. 5d). Likelihood-based model selection 

between models with different parameterizations suggests a state- and time-dependence of 

the birth-death rate in this two-stage description (Supp Note 2 sec. SN2.2.4).
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Time-dependence may arise not because of extrinsic signals but because discretizing the 

state space lowers resolution so that cell state alone can no longer explain proliferation. 

Accordingly, we also fit the continuous pseudodynamics model to a trajectory model based 

on scRNA-seq data26 (Fig. 5c). To distinguish state- and time-dependent proliferation, we fit 

the model with two different parameterizations of the birth-death rate, namely a function of 

the cell state only (state model) and a function of cell state and time (state-time model). We 

accounted for the time-dependence in the state-time model with a factor based on an 

additional spline of the time coordinate (Supp. Note 1 eq. SN1.3). Both models were able to 

fit the cell state density and the total population size well (Supp. Fig. 15). To validate 

predictions of the birth-death rates, we estimated the fraction of cycling β-cells using Ki67-

stainings across multiple time points, and computed birth rates based on an estimate of the 

cell cycle length in pancreatic β-cells29 (Fig. 6a). We only detected subtly cleaved caspase-3 

positive β-cells at P9 (Fig. 6b). Thus, the death rates are close to zero. This conclusion is 

supported by low apoptosis rates in pancreatic β-cells of neonatal rats observed in propidium 

iodide staining assays30. As the death rates are close to zero, the birth rate measurements 

approximate the birth-death rate. These measurements are independent of the estimates from 

the pseudodynamics model and confirm both magnitude and decreasing trend of the 

predicted birth-death rates (Fig. 6c). We performed model selection with a likelihood-ratio 

test between the state (null) model and state-time (alternative) model (Fig. 6d): The test did 

not reject the null hypothesis for any regularization. Therefore, the state-dependent 

proliferation model is sufficient to explain the observations.

The previously observed temporal variation of proliferation rates by cell state26,27 may be 

caused by the discretization of the β-cell maturation trajectory into two compartments. 

Pseudodynamics is able to overcome these discretization problems given a continuous cell 

state space. This yields a mechanistic hypothesis: The observed proliferation rates of 

pancreatic β-cells can be explained with a maturation-dependent proliferation model and 

there is no evidence for extracellular regulation.

Discussion

The order of cells along developmental trajectories can be inferred from large and high-

dimensional single-cell data sets. However, temporal sample coordinates encode dynamic 

information which is not exploited in transcriptome-based embeddings. Secondly, 

population size measurements, that encode information on proliferation and death events, 

have been neglected in this context. We showed that a description solely based on 

transcriptomic data uncovers many known aspects of T-cell maturation in an unbiased 

fashion. We used pseudodynamics to integrate scRNA-seq and population size observations 

to infer the dynamics underlying T-cell maturation and found that this process is biphasic. 

One may think of this class of dynamic models as a step towards approximating the 

developmental potential previously termed “Waddington’s landscape”31. The inclusion of 

population size into the diffusion-advection framework allowed us to map selection pressure 

and population expansion on the cell state coordinate, which was not possible in previous 

dynamic models of cellular development in transcriptome space11,13. Moreover, we showed 

via model selection that the variation of proliferation across time in pancreatic β-cells is 

consistent with a state-dependent effect in a continuous cell state space.
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Here, we chose a pseudotemporal ordering as the developmental progression space. Possible 

extensions include different cell state spaces, such as from coarsened graphs32, protein 

measurements, coordinates determined by lineage tracing33,34 or coordinates informed by 

RNA velocities35. Pseudodynamics bridges the concepts of pseudotemporal ordering and 

cell state dynamics in a probabilistic framework that adds layers of information with 

uncertainty quantification to a developmental lineage.

Online Methods

Ethical approval

The thymus study protocol was approved by The University of Massachusetts Medical 

School Institutional Animal Care and Use Committee (IACUC). The animal experiments for 

the pancreas study were carried out in compliance with the German Animal Protection Act, 

the guidelines of the Society of Laboratory Animals (GV-SOLAS) and Federation of 

Laboratory Animal Science Associations (FELASA).

Statistics

We used a log-likelihood ratio test to perform model selection between pseudodynamics 

model fits on the pancreatic β-cell data as explained in the main text. We used false-

discovery rate-corrected p-values for differential expression based on a multivariate Wald 

test in Supp. Fig. 7. We used a one-sided Kolmogorov-Smirnov test to test the 

developmental delay of the T-cell population in the knockout versus the wild-type animals 

(Supp. Fig. 14a,b).

The continuous pseudodynamics model:

See also (Supp. Note 1 sec. SN1.3). Pseudodynamics describes the development of a 

population of single cells in time and cell state. We consider the number density u s, t  of 

cells over a cell state coordinate s at a time point t. The integral of u s, t  over an interval I

=[0,i], ∫0
iu s, t ds provides the number of cells with cell state s in I. Due to differentiation 

and growth dynamics this density changes during development. In pseudodynamics, the 

change in this density over time is modeled by a reaction-diffusion-advection partial 

differential equation (PDE) across the 1D transcriptomic progression (“cell state”) 

coordinate (eq. 1). The model includes directed movement of cells along the cell state 

coordinate (drift) with drift parameter v s, t , random fluctuations in cell state modeled by a 

diffusion term with a diffusion parameter D s, t , and population growth with growth rate 

g s, t . A detailed discussion of the influence of the parameters on the model behavior can be 

found in the Supp. Note 1 sec. SN1.3.3. All rates can depend on cell state s and time t. The 

parameters are parameterized as natural cubic splines in cell state or time.

∂
∂t u s, t = ∂

∂s D s, t ∂
∂s u s, t − ∂

∂s v s, t u s, t + g s, t u s, t 1 (1)

Boundary conditions for pseudodynamics should be chosen to correspond to the biological 

setting. For the applications in this work, we assumed no-flux boundary conditions at both 
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boundaries of the 1D domain. To improve numerical stability, the drift is decreased to zero 

on the right hand side:

D s, t ∂
∂s u s, t − v s, t u s, t

s = 0
= 0 2 (2)

∂
∂s u s, t s = smax

= 0 3 (3)

Accordingly, one can formulate a pseudodynamics model for a process with one branching 

region as a system of two coupled partial differential equations. The first PDE describes the 

evolution of the population along the main trajectory from a progenitor state to a chosen 

terminal cell fate (eq. 4) and the second equation describes the evolution along the side 

branch starting at the branching region (eq. 5) to the alternative terminal cell fate. Both 

equations are coupled at the branching region in which cells can switch between main and 

side branch with propensities δij for change from branch i to branch j:

∂
∂t u1 s, t = ∂

∂s D1 s, t ∂
∂s u1 s, t − ∂

∂s v1 s, t u1 s, t + g1 s, t u1 s, t − T s

δ12u1 s, t − δ21u2 s, t 4
(4)

∂
∂t u2 s, t = ∂

∂s D2 s, t ∂
∂s u2 s, t − ∂

∂s v2 s, t u2 s, t + g2 s, t u2 s, t + T s

δ12u1 s, t − δ21u2 s, t 5
(5)

Here, the function T s  defines a branching region in state space: T s  is one inside the 

branching region and zero outside of it. On each branch we assume no-flux boundary 

conditions. Analogous to (3), the drift parameter is decreased to zero at each right boundary:

D1 s, t ∂
∂s u1 s, t − v1 s, t u1 s, t

s = 0
= 0 6 (6)

D2 s, t ∂
∂s u2 s, t − v2 s, t u2 s, t

s = 0
= 0 7 (7)

∂
∂s u1 s, t s = smax

= 0 8 (8)

∂
∂s u2 s, t s = smax

= 0 9 (9)
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The population size N t  at a time point t is computed as the sum of the integrals of the 

corresponding density with respect to cell state summed over branches B,

N t, θ = ∑
b ∈ B

∫
s = 0

s = smax
ub s, t ds 10 (10)

The initial conditions for the system can be derived from the experimental data at the initial 

time point, i.e., the population size and the initial distribution of cells are initialized as the 

(mean) observed population size and cell distribution at the first measurement time point. In 

principle, it is also possible to include these as additional parameters.

Likelihood, regularization and parameter estimation

See also (Supp. Note 1 sec. SN1.5). The parameters of the pseudodynamics model are 

estimated from a given dataset using a maximum likelihood estimation. The likelihood L
(eq. 11) accounts for the cell state distribution of the population, the population size, and the 

proportion of cells on each branch. The data consist of samples Sb,t, of cell state 

observations of single cells in a population at time points T cdf and in branches B, a set of 

mean population sizes N−t observed at time points T N, and of the standard error in the 

population size observations per time point σt
N. From the cell state sample Sb,t the empirical 

cumulative density function (ECDF) ecdfSb, t s  at cell state s, time point t and branch b, as 

well as the fraction of cells observed on a branch b at time t, ωb,t , and the corresponding 

standard deviation σb, t
ω  can be computed. Using these data the log-likelihood can be 

formulated as:

log L θ = ∑
b ∈ B

∑
t ∈ Tcdf

log L ecdfSb, t s θ + ∑
t ∈ TN

log L N− t θ, σtN +

∑
b ∈ B\bmax

∑
t ∈ Tcdf

log L ωb, t θ, σb, t
ω 11

(11)

where θ is the set of parameters of the pseudodynamics model. Note that the likelihood term 

on the fraction of cells per branch does not need to be evaluated on one branch as the 

proportions across all branches sum to one. For numerical reasons, we minimize the negative 

log-likelihood and add regularization terms on the parameter splines with regularization 

parameter ρ to counteract overfitting. This yields the objective function:
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Jρ θ = − log L θ + ρ ∑
b ∈ B

∑
i = 1

nb
D − 1

α⃑Db i + 1 − α⃑Db i
2

+ ∑
i = 1

nb
vD − 1

α⃑vb i + 1 − α⃑vb i
2 + ∑

i = 1

nb
g − 1

α⃑gb i + 1 − α⃑gb i
2 12

(12)

where nb
D, nbv and nb

g are the number of nodes of the natural cubic splines and αD, αv, and α
g the associated parameter vectors on each branch b out of B branches. Similarly, time-

dependent parameterizations can be regularized (Supp. Note 1 sec. SN1.5.3). The 

regularization parameter ρ can be chosen via cross-validation (Supp. Note 1 sec. SN1.5.3.1).

The likelihood of observing the cell state distribution for given parameters is evaluated based 

on the area between the ECDF of the observed data and simulated cumulative density 

function. In the case of branching, this is done per branch. The simulated cumulative density 

function is:

cdfub s, t =
∫0

sub s−, t ds−

∫0
smaxub s−, t ds−

13 (13)

where ub is the simulated density on branch b. We assumed that area between the curves (A) 

is normally distributed with standard deviation σA(t) and mean μA(t) estimated per time 

point t on the area between the curves of the ECDF of each experimental replicate to the 

ECDF of the union of all cells (St) of a given time point t, yielding the likelihood function

log L ecdfSb, t θ = N A cdfub s, t , ecdfSb, t s μ = μb
A t , σ2 = σb

A t 2

= N ∫
0

smax
cdfub s−, t , ecdfSb, t s− ds− μ = μb

A t , σ2 = σb
A t 2 14

(14)

For the population size, we assumed normally distributed errors. We estimated the standard 

deviation of the measurement noise per time point as the standard error of the population 

size observation at that time point σt
N. Accordingly, the likelihood for the population size 

observations is a normal distribution:

log L N− t θ, σtN = N N− t μ = N− t, θ , σ2 = σtN
2 15 (15)

which has the square of the standard error of the population size observations as variance 

and which has the integral of the simulated density over cell state as a mean parameter (eq. 

10).
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Implementation of the parameter estimation of the continuous model

See also (Supp. Note 1 sec. SN1.5, Supp. Note 3). The estimation of the parameters of the 

pseudodynamics models is non-trivial as the PDE has to be forward simulated for each 

likelihood evaluation. The numerical implementation of the forward simulation of the 

pseudodynamics model was based on the method of lines. The model was discretized in cell 

state using finite volumes. For the solution of the resulting system of ordinary differential 

equations we employed the Sundials CVODE suite36 and AMICI37 (https://github.com/ICB-

DCM/AMICI/) as Matlab interface. For the optimization, we used a multi-start approach 

(with gradient information) that is implemented in the Matlab toolbox PESTO38 (https://

github.com/ICB-DCM/PESTO). We supplied the optimizer with the analytical gradient as 

this increases efficiency in comparison to gradients computed using finite differences39. 

Uncertainty analysis and computation of confidence intervals was performed using profile 

likelihoods (also implemented in PESTO) or asymptotic confidence intervals. To determine 

the regularization parameter, we performed leave-one-out cross validation successively 

leaving out the data corresponding to a time point and estimating the parameters for the 

reduced data set. For these parameters we were able to evaluate the likelihood on the whole 

data set and compare prediction accuracy (Supp. Note 1 sec. SN1.5.3.1).

Estimation of the cell state coordinate of beta-selection with pseudodynamics

(See also Supp. Note 1 sec. SN1.6). To compute a least squares cost profile of the point of 

beta-selection across the cell state coordinate s, we calibrated the pseudodynamics model on 

the wild-type data subset of the combined wild-type and knock-out sample diffusion 

pseudotime model. To estimate the point of beta-selection, s*, we considered the 

discrepancy between the calibrated pseudodynamics model that was modified to include 

developmental arrest at some time point s’ and the mutant data. The estimator for the point 

of beta-selection was then chosen as the arrest point that minimizes this discrepancy (eq. 

17). The model was adjusted for developmental arrest at a proposed cell state s’ by setting 

the drift parameter at the cell state coordinates beyond the proposed point of arrest to zero 

(eq. 18,19) and the growth parameter to -3, a lower bound of estimated birth-death 

parameters. We computed a least squares cost profile of s’ between the smallest cell state 

grid point not observed at the initial time point and the highest cell state observed on the T-

cell lineage by computing the fit of the model with arrest at s’ to the knock-out data for 

every s’ in that range. As no replicates were available, we used a least squares objective 

function to evaluate the fit (eq. 20).

θmut = vmut s s′ , DW T s , gmut s s′ 16 (16)

vmut s s′ =
vW T s if s ≤ s′
0, otℎerwise

17 (17)

gmut s s′ =
gW T s if s ≤ s′
−3, otℎerwise

18 (18)
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s* = arg min
s′

log Lmut ecdfSb, t
mut θmut 19 (19)

Lmut ecdfSb, t
mut θmut = A cdfub s, t = 14.5 θmut , ecdfSb, t = 14.5

mut s 2

+ A cdfub s, t = 16.5 θmut , mean ecdfSb, t = 16.5
mut, 1 s , ecdfSb, t = 16.5

mut, 2 s 2 20
(20)

where θmut contains the adjusted parameters as described in eq. 18,19 and the wild-type drift 

parameter. We trained the pseudodynamics model and computed the least squares cost 

profile based on cell state coordinates derived from diffusion pseudotime ordering computed 

on the union of all wild-type and mutant cells. This diffusion pseudotime coordinate (s
WT+KO) is different from the diffusion pseudotime computed only on the set of wild-type 

cells (sWT). We mapped the cell state sWT+KO back to sWT to interpret the beta-selection 

point in the context of the T-cell maturation description established based on the wild-type 

data (Fig. 2). We note that sWT+KO is a monotonously increasing function of sWT. 

Accordingly, we performed the mapping with a smooth function class (degree 5 natural 

cubic splines) (Supp. Fig. 14f).

Computation of the developmental potential function

We assume that the gradient of the developmental potential function W  with respect to cell 

state s can be approximated by the drift parameter estimate of the pseudodynamics model 

(eq. 21). Accordingly, one can approximate W  as the integral of the negative drift parameter 

trajectory with respect to cell state (eq. 22).

dW
ds = − v s 21 (21)

W s = ∫
0

s
−v s− ds− 22 (22)

We approximated the integral (eq. 22) with Euler’s method by setting W (0) = 0 and by using 

the negative drift parameter fit to do stepwise finite difference approximation of W  in s (eq. 

23), where Δs is the grid spacing of the drift parameter fit in cell state.

W s = i = W s = i − 1 − v i ∆ s 23 (23)

We note that this approach to approximate the developmental potential function only yields 

approximations of W  along the observed developmental trajectories.

Generation of Drop-seq dataset of T cell development

Detailed description of isolation of thymus resident cells and generation of Drop-seq 

datasets are provided in19. Briefly, C57BL6/J and Rag1 knockout mice were obtained from 
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The Jackson Laboratory, and thymus tissue was isolated from timed pregnant mice. Live 

cells were enriched using FACS and immediately processed for Drop-seq analysis. Drop-seq 

was performed following the online protocol provided from the McCarroll lab at Harvard 

Medical School (Drop-seq Laboratory Protocol version 3.1; http://mccarrolllab.com/

dropseq/).

Drop-seq data processing and analysis

Drop-seq libraries were sequenced at paired-end (20–50) on a Nextseq500. Alignment was 

done as described in Supp. Note 3 sec. SN3.2.2.5. We rescaled raw molecule counts of each 

cell to sum to 10,000, and we transformed the resulting values via X→log2(1+X) . The 

number 10,000 was chosen by rounding the median unique molecular identifier (UMI) count 

up to the nearest power of 10.

T-cell receptor alignment was improved by augmenting the reference genome. The 

augmented reference contained an artificial TCR contig in which known constant, joining, 

and variable regions of the TCR were concatenated. TCR regions were extracted from 

TRACER40 annotation files. The boundaries were annotated as splice junctions, allowing the 

extensive spliced alignment capabilities of STAR to position reads, despite TCR 

rearrangement. Reads aligning to the TCR contig were subsetted, and transcript 

quantification was performed as above. We made two alterations: in place of 

MIN_NUM_GENES_PER_CELL=1000; we used cell barcodes established using the 

conventional alignment pipeline, and we specified READ_MQ=1. TCR realignment was 

performed after the initial analysis, and this did not affect the set of cells classified as thymic 

hematopoietic cells.

In silico isolation of wild-type thymic hematopoietic cells E12.5-E16.5

Quality control and thymic hematopoietic isolation were conducted using the R language 

(https://www.R-project.org/) and the package Seurat41 (http://www.satijalab.org/seurat). The 

main goals for quality control were to verify exclusion of female embryos; to exclude empty 

droplets; and to deplete cell doublets. Only male embryos were analyzed to avoid biological 

confounding by sex. To remove empty droplets, we excluded any cell expressing less than 

1000 genes. We also excluded any gene expressed in less than 10 cells. Doublet depletion 

was carried out, followed by isolation of the thymic hematopoietic cells. Both steps used 

unsupervised machine learning.

For doublet depletion and thymic hematopoietic cell isolation, we used two pipelines that 

differ only in their final steps. Each began by compensating for variation due to the cell 

cycle. For each of five cell cycle phases (IG1.S, S, G2.M, M, M.G1), scores were computed 

by averaging expression within each cell over a set of genes found in the second workbook 

of table S2 from a reference42. Seuraťs RegressOut function was used to replace expression 

levels with standardized residuals from linear regressions (one per gene). In each regression, 

observations are cells; the response variable is log-normalized expression; and the covariates 

are the five cell cycle scores. After cell-cycle correction, we enriched for informative genes 

by applying Seuraťs MeanVarPlot function (with x.low.cutoff = 0.1 and y.cutoff = 0.5). 
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Principal components analysis (PCA) was run on the selected genes using as features the 

normalized residuals from RegressOut.

The first difference in the two pipelines occurs after PCA. For doublet removal, the top 20 

principal components (PCs) were used as input to Barnes-Hut t-Stochastic Neighbor 

Embedding (tSNE). DBSCAN was used to isolate and remove outlying cells and clusters 

showing markers from multiple cell types. In DBSCAN, the t-SNE embedding was used as 

input, and the parameters were 1.1 (neighborhood size) and 5 (minPts). In total, 52 putative 

doublets and 80 outlying cells were excluded from downstream analyzes.

For isolation of thymic hematopoietic cells, the entire process up to PCA was repeated after 

doublet depletion. Clustering was then carried out using Seuraťs FindClusters function, 

which applies a variant of the Louvain algorithm43 to a shared-nearest-neighbor graph 

constructed in the principal subspace (20 PCs, resolution 0.5). Results were visualized as 

before via tSNE. Six contiguous clusters were manually labeled as thymic hematopoietic 

cells based on expression of known markers. Different parameter choices for variable gene 

selection and for the number of PCs were explored and results remained qualitatively 

consistent.

In silico isolation of E17.5-P0 wild-type thymic hematopoietic cells and E14.5 Rag2 
knockout thymic hematopoietic cells

The thymic hematopoietic cells from these later time points were aligned following the same 

procedure. Data were filtered for at least 1000 genes per cell, but the requirement was 

relaxed to at least 3 cells per gene due to the smaller total number of cells. No doublet 

removal was attempted. Thymic hematopoietic cell isolation was performed via the pipeline 

described above using x.low.cutoff = 0.1 and y.cutoff = 1.2 for gene selection, 25 PCs, and 

the Louvain algorithm with resolution 0.5. Two clusters lacked Ptprc and expressed thymic 

stromal markers, and these were manually removed. Different parameter choices were 

explored for variable gene selection and for the number of PCs; relabeled results remained 

relatively robust. Wild-type cells were processed together and Rag2 knockout cells were 

processed separately.

In silico isolation of E16.5 Rag1 knockout thymic hematopoietic cells

For whole-thymus samples from Rag1 knockout embryos, the same alignment, 

quantification, and quality control steps were performed (>1000 genes per cell, >3 cells per 

gene). Cells were classified by k-nearest-neighbors (k = 25) after projection into a 20-

dimensional principal subspace, with both PCA and classifier trained on the E12.5-E16.5 

wild-type data. Cells classified into any of the six thymic hematopoietic cell clusters were 

retained for analysis.

Preparation of pseudodynamics input from thymic hematopoietic cell transcriptomes

See also (Supp. Note 3 sec. SN3.2.2) and (Supp. data 1.2, 1.3). We fit diffusion pseudotime 

with one branching point to the union of all lymphocytes from all samples with scanpy44 (k 

= 100, knn = False) (diffusion map A). We classified the resulting four groups of cells based 

on markers genes as progenitors/intermediate cells, T-cells, non-conventional lymphoid cells 
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(NCL) and putative myeloid and dendritic cells (Supp. Fig. 3–5). We discarded the putative 

myeloid and dendritic cell group to obtain a data set that contains a single branching 

between the αβ-T-cell lineage and the NCL lineage and fit a new pseudotemporal ordering 

on this data set with scanpy (k = 100, knn = False) (diffusion map B). We defined the 

allocations of cells to branches and the branching region in diffusion map B based on 

pseudotime coordinates and diffusion component 1 and 2 coordinates. We repeated the 

workflow from diffusion map A to diffusion map B separately for the wild-type only and the 

wild-type with knock-out samples data sets. We discarded the putative myeloid and dendritic 

cell group and the NCL group from diffusion map A to obtain a data set that contains no 

branching and only the T-cell lineage (used for monocle2-based cell state coordinates6).

Preparation of pseudodynamics input from pancreatic β-cell transcriptomes

See also (Supp. Note 3 sec. SN3.2.3) and (Supp. data 1.4). We fit diffusion pseudotime with 

no branching points to all pancreatic β-cells from all time points with scanpy44 (k = 30, knn 

= False). We obtained total β-cell population size measurements for mice at ages P10 and 

P45 (via extrapolation from counts in cross-sections) from Herbach et al.28. We generated 

rough estimates in the same fashion for E17.5, P4, P9 and P14. We extrapolated our P9 and 

P14 observations with a linear model to P10 and used the relative difference to the P10 

observation from Herbach et al. as a scaling factor which we applied to all of our 

observations. We note that such cell counting is very laborious and we therefore restricted 

our data collection to relative counts which we scaled to the accurate data of Herbach et al.. 
The state-dependent model parameter gs as a function of time gs t , shown in Fig. 6c, is the 

integral over the product of the density at a given time point, and the birth-death parameter 

spline with respect to cell state gs s .

gs t = ∫
0

smax
u s−, t gs s− ds− 24 (24)

Mice for pancreas study

For pancreas dissection C57BL6/J mice were sacrificed at each of the tested developmental 

stages.

Cryosections of pancreas

The dissected pancreas was fixed in 4% paraformaldehyde (PFA) for 2–24 hours at 4 °C. 

After fixation, the tissues were cryoprotected in a sequential gradient of 10% and 30% 

sucrose in PBS (1–2 hours each at room temperature). Next, the pancreas was incubated in 

30% sucrose and tissue embedding medium (Leica) (1:1) at 4 ºC overnight (O/N). The 

pancreas was orientated in an embedding mold, frozen using dry ice and stored at -80 °C. 

Cryosections were cut into 20 μm sections using a cryostat (Leica), mounted on a glass slide 

(Thermo Fisher Scientific) and dried for 10 min at RT before use or storage at -20 °C.
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Immunostaining of pancreatic cryosections

Cryosections were rehydrated by 3 times washing with 1X PBS, permeabilized with 0.2% 

Triton X-100 in H2O for 15 min and blocked in blocking solution (PBS, 0.1% Tween-20, 

1% donkey serum, 5% FCS) for 1–2 hrs. Afterwards, the sections were incubated with 

primary antibody in blocking solution at 4 °C overnight. Prior to the incubation with 

secondary antibodies in blocking solution the sections were rinsed 3 times and washed 3 

times with 1X PBS. Finally after incubated for 3–5 hrs with the secondary antibodies, the 

sections were stained for DAPI (1:500 in 1X PBS) for 30 min, rinsed and washed 3 times 

with 1X PBS and mounted by Elvanol. Confocal pictures were taken using a Leica DMI 

6000 microscope and LAS AF software. For all quantifications, the sections were ≥ 100 μm 

apart. The primary and secondary antibodies used are listed Reporting Summary.

Microscopy & analysis of pancreatic cryosections

The acquired images were analyzed using Leica LAS AF software and/or Image J software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A population-based view of single-cell RNA-seq time-series experiments: Concept of 

pseudodynamics and example fits on a mouse embryonic stem cell differentiation data set. 

(a) Development can be modeled as the temporal progression of a population density in 

transcriptome (cell state) space. Here, the developmental process is a branched lineage from 

a progenitor to two terminal fates. (b) Dimension reductions of the full cell state space are 

useful for dynamic modelling. Discrete cell types, such as from FACS gates, were previously 

used for ordinary differential equation models. Branched trajectories with pseudotime 
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coordinates can be used in the context of pseudodynamics. (c) Conceptual overview of the 

pseudodynamics algorithm: The input consists of developmental progress data (normalized 

distributions across cell state) and population size data (number of cells) for each time point. 

The output contains interpretable parameter estimates and imputed samples at unseen time 

points (dotted densities). (d) Diffusion map of mouse embryonic stem cell development in 

vitro after leukemia inhibitory factor (LIF) removal1. Color: days after LIF removal in cell 

culture. (e,f) Kernel density estimate and simulated density of cells across cell state 

coordinate (diffusion pseudotime) at four sampled time points (n0=933, n2=303, n4=683, 

n7=798 cells) for regularized (rho = 1) and unregularized (rho = 0) model fits. Colored 

density: kernel density estimate, solid line: simulated density based on model fitted to all 

data, dotted line: simulated density in leave-one-time-point-out cross-validation.
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Figure 2. 
A trajectory model for T-cell maturation yields a description with higher resolution than a 

discretized description of the cell state space. (a) Design of the single-cell RNA-seq 

experiment. TCs: T-cells, NCLs: non-conventional lymphoid cells. (b) 2D density estimate 

in hexagonal bins of population by time point in the diffusion map. The density is encoded 

by the hexagon color (dark: low density, bright: high density, white: no cells observed, grey: 

non-zero density in the union of all samples). The diffusion map was computed based on 

TCs and NCLs from all time points. (c) Diffusion map based on TCs and NCLs only with 
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cell state (diffusion pseudotime) superimposed. (d) Summary of the trajectory model for T-

cell maturation. The boxplots show the sampled density of cells across cell state by time 

point. The boxplots are based on nE12.5=366 cells, nE13.5=1611 cells, nE14.5= 981, nE15.5= 

974, nE16.5= 2492, nE17.5= 1908, nE18.5= 857, nP0= 890. The center of each boxplots is the 

sample median, the whiskers extend from the upper (lower) hinge to the largest (smallest) 

data point no further than 1.5 times the interquantile range from the upper (lower) hinge. 

The heatmap shows z-scores of sliding window expression estimates across cell state in the 

T-cell lineage (n=10079 cells) and the NCL lineage (n=793 cells). ETP: early thymic 

progenitors, DN2a/b, DN3a/b, DN4: double-negative stages, DP: double-positive stage.
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Figure 3. 
Pseudodynamics density and parameter fits extend the stationary description of T-cell 

maturation. (a) Simulated population size by time point. log N: log number of total cells. (b) 

Alluvial plot showing the flows between intervals of cell state bins across time. Each bar 

plot corresponds to one time point. The height of the boxes of each bin within a bar is 

proportional to the fraction of cells of all cells in that bin. The T-cell trajectory was divided 

into 15 equidistant bins in cell state (labelled 1–15), the non-conventional lymphoid cell 

branch was summarized to one bin (labelled NCL). The resulting 16 bins and their outflows 

are color coded. Outflow width represents the fraction of surviving cells transitioning into 

each bin at the old time point. Inflow width represents the contribution of each flow to the 

population size in a bin at the new time point. The alluvial plot is explained in Supp. Note 3 

sec. SN3.2.2.7 and also provided as Supp. video 3. (c) Parameter estimates of 

pseudodynamics as function of cell state on the αβ-T-cell lineage with confidence intervals 

for regularization parameter rho=10. Shaded area: spline fit to 99% confidence interval 

boundary on spline nodes. (d) Transcriptome-based cell cycle state scores (online methods) 

per cell by cell state bin. The cell state was binned into intervals of length 0.05. The boxplots 

are based on nx cells observed per bin x (sorted ascending in cell state): n1=500, n2=930, 

n3=623, n4=1078, n5=3624, n6=2580, n7=646, n8=368, n9=276, n10=186, n11=61. The 

center of each boxplots is the sample median, the whiskers extend from the upper (lower) 

hinge to the largest (smallest) data point no further than 1.5 times the interquantile range 

from the upper (lower) hinge.
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Figure 4. 
Pseudodynamics annotates a trajectory model with the position of a developmental 

checkpoint based on knock-out data, with the developmental potential and with 

developmental phases. (a) Boxplots of population density in cell state on T-cell lineage by 

sample with least squares cost profile of proposed beta-selection point as function of cell 

state based on the following number of cells per sample: n={215, 145, 55} at t=12.5; 

n={664, 603, 462} at t=13.5; n={436} at t=14.5 in the Rag2KO sample; n={487, 531} at 

t=14.5 in the wild-type samples; n={420, 560} at t=15.5; n={694, 896} at t=16.5 in the 
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Rag1KO samples; n={784, 828, 865} at t=16.5 in the wild-type samples; n={929, 936} at 

t=17.5; n={429, 405} at t=18.5; n={378, 427} at t=19.5. Here, cell state coordinates are 

computed based on all replicates. Replicates are independent Drop-seq samples which are 

based on separate thymus samples, the two replicates at P0 are based on the two lobes of a 

single thymus. The red box denotes high cell state outliers at E16.5 only observed in wild-

type. The cost profile shows the fit of the mutant data to the pseudodynamics 

parameterization which reflects the position of beta-selection in cell state space as a free 

parameter (online methods eq. 20). Color: time point, black solid outline: wild-type mice, 

red dotted outline: Rag1/2KO mice. The center of each boxplots is the sample median, the 

whiskers extend from the upper (lower) hinge to the largest (smallest) data point no further 

than 1.5 times the interquantile range from the upper (lower) hinge. (b) Approximation of 

developmental potential of the proposed model of T-cell maturation with other 

pseudodynamics output annotated. The developmental potential is the integral of the drift 

parameter on the T-cell lineage across cell state (online methods eq. 22).
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Figure 5. 
Cell state space discretization and time-dependence of models of pancreatic β-cell 

maturation and proliferation. (a) Concept of state- and time-dependent effects in vivo. Cell 

state-dependent effects (cell color) directly depend only on the molecular state of the cell. 

Time-dependent effects (background color) are invariant with respect to the cell state. Time-

dependent effects depend directly only on extracellular regulators if the cell state variable 

captures the full molecular state of a cell. (b) Surface marker-based compartment model for 

β-cell maturation. Here, the presence of Ucn3 is used as a marker for maturation within the 
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set of Ins+ cells. (c) Continuous trajectory model of β-celll maturation in cell state space. 

Here, pseudotime quantifies maturation as cell state in a continuous interpolation of the two 

states shown in (b). The boxplots show the distribution of single-cell RNA-seq samples 

across cell state space by sampled time point with nx cells per time point x: n0=61, n1.5=84, 

n4.5=88, n10.5=81, n16.5=59, n19.5=71, n61.5=131. The center of each boxplots is the sample 

median, the whiskers extend from the upper (lower) hinge to the largest (smallest) data point 

no further than 1.5 times the interquantile range from the upper (lower) hinge. (d) 

Maturation quantification of β-cells in pancreas sections via co-staining of DAPI, insulin (β-

cells) and Ucn3 (β-cell maturation) at multiple time points (P0, P4, P9, P14). The fractions 

of cells in the two compartments shown in (b) can be directly counted in these sections. We 

quantified the proliferation of 1000–3300 β-cells in 3 animals per animal per time point. 

White scale bar: 50 μm.
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Figure 6. 
Likelihood-based model selection favors a state-dependent birth-death model over a state- 

and time-dependent model for β-cell maturation. (a,b) Proliferation (Ki67, a) and apoptosis 

(cleaved caspase-3, b) quantification of β-cells in pancreas sections via co-staining with 

DAPI and insulin (β-cells) at multiple time points (E17.5, P0, P4, P9, P14, P25). The 

fraction of proliferating and apoptotic β-cells can be directly counted, similarly to Fig. 5d. 

We observed the apoptosis and maturation status of 1900–3600 β-cells in 3 animals per time 

point. White scale bar: 50 μm. (c) Average birth-death rate per time point by model and 

observed proliferation rates by time point with one standard deviation around the mean as 

error bars. The birth-death rates at a given time point are computed as the convolution of the 

simulated population density at that time point with the parameter fit, both functions of cell 

state (Supp. Note 3 sec. SN3.2.3.3). The parameter fit is multiplied by the value of the time 

dependent birth-death function at that time point in the case of the time-dependent model. 

Two regularization hyper-parameters (rho) are shown for each model. (d) Likelihood of ten 

best fits by birth-death rate model for different regularization hyper-parameters. The interval 
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shown is the interval between the best and the worst fit. Model selection was performed via 

a likelihood ratio test between of the best fit of each model (n.s.: not significant at threshold 

of 0.05).

Fischer et al. Page 30

Nat Biotechnol. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Pseudodynamics models single-cell time series measurements along developmental trajectories
	Pseudodynamics extends previous models of T-cell maturation
	Pseudotime inference identifies continuous states in T-cell maturation.
	Pseudodynamics identifies a proliferative burst and selection pressure during T-cell maturation.
	Pseudodynamics can map developmental check-points based on knock-out data.

	Pseudodynamics attributes variation in proliferation rates of pancreatic β-cells across time to a state-dependent effect

	Discussion
	Online Methods
	Ethical approval
	Statistics
	The continuous pseudodynamics model:
	Likelihood, regularization and parameter estimation
	Implementation of the parameter estimation of the continuous model
	Estimation of the cell state coordinate of beta-selection with pseudodynamics
	Computation of the developmental potential function
	Generation of Drop-seq dataset of T cell development
	Drop-seq data processing and analysis
	In silico isolation of wild-type thymic hematopoietic cells E12.5-E16.5
	In silico isolation of E17.5-P0 wild-type thymic hematopoietic cells and E14.5 Rag2 knockout thymic hematopoietic cells
	In silico isolation of E16.5 Rag1 knockout thymic hematopoietic cells
	Preparation of pseudodynamics input from thymic hematopoietic cell transcriptomes
	Preparation of pseudodynamics input from pancreatic β-cell transcriptomes
	Mice for pancreas study
	Cryosections of pancreas
	Immunostaining of pancreatic cryosections
	Microscopy & analysis of pancreatic cryosections

	References
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

