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Abstract

Background: To investigate the feasibility of a knowledge-based automated intensity-modulated radiation therapy
(IMRT) planning technique for locally advanced nasopharyngeal carcinoma (NPC) radiotherapy.

Methods: One hundred forty NPC patients treated with definitive radiation therapy with the step-and-shoot IMRT
techniques were retrospectively selected and separated into a knowledge library (n = 115) and a test library (n = 25).
For each patient in the knowledge library, the overlap volume histogram (OVH), target volume histogram (TVH) and
dose objectives were extracted from the manually generated plan. 5-fold cross validation was performed to divide
the patients in the knowledge library into 5 groups before validating one group by using the other 4 groups to
train each neural network (NN) machine learning models. For patients in the test library, their OVH and TVH were
then used by the trained models to predict a corresponding set of mean dose objectives, which were subsequently
used to generate automated plans (APs) in Pinnacle planning system via an in-house developed automated
scripting system. All APs were obtained after a single step of optimization. Manual plans (MPs) for the test patients
were generated by an experienced medical physicist strictly following the established clinical protocols. The
qualities of the APs and MPs were evaluated by an attending radiation oncologist. The dosimetric parameters for
planning target volume (PTV) coverage and the organs-at-risk (OAR) sparing were also quantitatively measured and
compared using Mann-Whitney U test and Bonferroni correction.

Results: APs and MPs had the same rating for more than 80% of the patients (19 out of 25) in the test group. Both
AP and MP achieved PTV coverage criteria for no less than 80% of the patients. For each OAR, the number of APs
achieving its criterion was similar to that in the MPs. The AP approach improved planning efficiency by greatly
reducing the planning duration to about 17% of the MP (9.85 ± 1.13 min vs. 57.10 ± 6.35 min).
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Conclusion: A robust and effective knowledge-based IMRT treatment planning technique for locally advanced NPC
is developed. Patient specific dose objectives can be predicted by trained NN models based on the individual’s
OVH and clinical TVH goals. The automated planning scripts can use these dose objectives to efficiently generate
APs with largely shortened planning time. These APs had comparable dosimetric qualities when compared to our
clinic’s manual plans.

Keywords: Knowledge-based, Intensity-modulated radiation therapy, Automated planning, Nasopharyngeal carcinoma

Background
Radiation therapy treatment planning for nasopharyngeal
carcinoma (NPC) is often challenged by the convoluted
target volume and many adjacent organs at risk (OAR) [1].
Intensity-modulated radiation therapy (IMRT) technique
has been considered as a common treatment for NPC, be-
cause it delivers highly conformal doses to the targets and
effectively spares the OARs, potentially improving the local
control rate and reducing radiation-related toxicities [2].
However, it is time-consuming to manually generate an
IMRT plan due to its intrinsic trial-and-error process. In
addition, IMRT plan quality may be inconsistent due to
the inhomogeneous knowledge and experience level of the
planners [3]. Hence, it is of great need to develop highly
efficient automated planning techniques to consistently
generate high quality plans.
In general, automated planning techniques are either

algorithm based on some optimization methods [4–10]
or knowledge based on prior plan data [11–19]. The
knowledge-based techniques usually involve machine
learning methods, which demonstrated their utility in
improving treatment planning quality and efficiency.
Some commercial modules can generalize a dose volume
histogram (DVH) estimation model, from which treatment
plans can be generated semi- or fully-automatically [11–13].
An in-house knowledge-based treatment planning technique
has also been developed and proved effective in fully auto-
mating IMRT plans [20], using the overlap volume histo-
gram (OVH) information [21]. One study recruited 138
head-and-neck patients but the inclusion of NPC patients
was unknown [20]. Furthermore, all of these studies had not
been exclusively applied to the treatment planning of locally
advanced NPC patients [4–19]. The efficacy of the
knowledge-based autoplan technique for locally advanced
NPC treatment planning still needs further investigation due
to the particular challenges from the tumor and OAR anat-
omy in this disease.
In our institution, we developed a knowledge-based

IMRT treatment planning technique for locally advanced
NPC based on a neural network (NN) machine learning
model. The NN model correlated an individual patient’s
OVH with the corresponding plan optimization dose
objectives by learning from a cohort of similar locally
advanced NPC patients. A set of Perl scripts were

developed to bridge the NN model predicted patient
specific dose objectives to the treatment planning system
for plan optimization and dose calculations.

Methods
Patient libraries
Consecutive 140 locally advanced NPC patients treated
with definitive IMRT at Fujian Cancer Hospital between
July 2016 and September 2018 were retrospectively
selected and chronologically separated into a knowledge
library (n = 115) and a test library (n = 25). Only NPC
patients with bilateral cervical lymph nodes metastases
were included. All patients were diagnosed and staged
by pretreatment enhanced magnetic resonance imaging
(MRI) according to the Chinese 2008 staging system for
NPC [22, 23]. Each patient was immobilised in a supine
position with a thermoplastic mask and underwent con-
trast enhanced computed tomography (CT) (Brilliance
CT Big Bore; Philips Medical Systems Inc., Cleveland,
OH, USA) at a 3-mm slice spacing from the skull vertex
to the level of 2 cm below the clavicles. Volume delinea-
tion was performed on the CT images in the Pinnacle3
treatment planning system (TPS) (Philips Radiation On-
cology Systems, Madison, WI) after a CT-MRI fusion.
The target volumes were delineated using an institu-

tional treatment protocol defined as following: the primary
nasopharyngeal tumor (GTV_T) and definitive bilateral
lymph nodes (GTV_NL and GTV_NR), as determined by
clinical information, endoscopic examinations and radiog-
raphy including CT and MRI. The clinical target volumes
(CTVs) included high-risk regions (CTV1), low-risk re-
gions (CTV2), and bilateral low-risk nodal regions (CTV_
NL and CTV_NR). The CTV1 included GTV plus 5- to
10-mm margin. The CTV2 was designed for potentially
involved regions and encompassed the entire CTV1. Each
target volume was expanded by 3mm to generate the
planning target volume (PTV) in consideration of the
setup error, geometric uncertainties and patient move-
ment. In total, for each patient, seven target volumes
(GTV_T_P, CTV1_P, CTV2_P, GTV_NL_P, GTV_NR_P,
CTV_NL_P and CTV_NR_P) and ten OARs (left/right
parotid, brainstem, spinal cord, left/right optic lens, left/
right optic nerves, pituitary and optic chiasm) were delin-
eated. A total dose of 69.96 Gy in 33 fractions at 2.12 Gy/
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fraction to the GTV_T_P, 66Gy at 2 Gy/fraction to the
GTV_NL_P/GTV_NR_P, 61.05 Gy at 1.85 Gy/fraction to
the CTV1_P, 56.1 Gy at 1.7 Gy/fraction to the CTV2_P/
CTV_NL_P/CTV_NR_P were prescribed.

Manual planning
All patient treatment plans in the knowledge and test
libraries were manually generated by a single experi-
enced physicist. All plans were optimised in Pinnacle3
9.2 for treatment delivery by an Elekta Synergy acceler-
ator using seven equally spaced coplanar 6MV photon
beams (210°, 260°, 310°, 0°, 52°, 104°, and 156°). During
treatment planning, auxiliary structures were generated
to be used in objectives parameters (Table 1).
Direct machine parameter optimization (DMPO) was

set for all beams with 9 cm2 minimum segment area, 9
minimum segment monitor unit (MU) and up to 60
maximum segments. The manual plans (MPs) in both
libraries followed the institutional locally advanced NPC
planning criteria shown in Table 2. To achieve these cri-
teria, objectives shown in Table 3 were used as a starting
point for planning. The type, volume and weight for
regions of interest (ROIs) were preset and not allowed to
change. Only the target dose objectives are tunable to
improve plan quality. All the MPs required the planner’s
best effort to lower the OAR doses by only adjusting the
target dose values while maintaining the PTVs’ dose
coverage. This iterative process shall be repeatedly exe-
cuted until no further improvement can be made.

Neural network model
The patients in the knowledge library were equally and
chronologically divided into 5 groups, each group with 23
patients. A 5-fold cross validation scheme was adopted to
generate 5 NN machine learning models. Each model was
used to validate one group by training the other 4 groups.
The output dose objectives for patients in the test library

were obtained by taking the mean of the 5 dose objectives
generated from the 5 models.
The details of how to build our NN model were given

in this paragraph. For all patients in the knowledge
library, their OVH, target volume histogram (TVH) and
dose objective values were extracted and normalised.
The OVH essentially defines the overlapping volume
fraction between an OAR and a uniformly contracted/
expanded PTV (see Fig. 1). It acts as a visualisable de-
scriptor depicting the three-dimensional anatomical rela-
tionships between an OAR and the tumor volumes into
the two-dimensional Cartesian coordinate system, which
can be conveniently used as inputs to an NN model.
The TVH indicates the uniformly contracted or ex-
panded PTV. Each NPC patient in the knowledge library
had 20 OVH, 5 TVH, and one set of 21 dose objectives.
Both OVH and TVH had 11 values, starting from a zero
or negative (contraction) distance to an ending positive
distance (expansion) with a fixed step size (see Table 4).
Our 3-layer NN model had consisted 275, 184 and 21
nodes in its input, hidden and output layer respectively,
taking OVH and TVH values as inputs and returning
dose objectives as desired outputs. The model learned
by refining their node-to-node link weights between two
neighboring layers to minimize the cost function defined
as the mean squared error between the trained and
known value on each output node.
The NN modeling was run by Spyder (a python inte-

grated development environment) on a personal com-
puter with an Intel (i7-2630QM) CPU with 2 GHz main
frequency. The model learning rate affects how big a
step we update our model weights and values to move
towards the minimum output error. The rate was set to
0.02 and model iteration time set to 2500. The choice of

Table 1 Auxiliary structures for treatment planning

Structure Generation approach

CTV1_GTV avoiding GTV_T_P from CTV1_P

CTV2_CTV1 avoiding CTV1_P from CTV2_P

CTV_GTV_NL_P avoiding GTV_NL_P from CTV_NL_P

CTV_GTV_NR_P avoiding GTV_NR_P from CTV_NR_P

CTV_ALL integrating CTV2_P, CTV_NL_P and CTV_NR_P

R5200 5-mm-wide rings coming from the 5mm and
10 mm extension of the CTV_ALL

R4500 5-mm-wide rings coming from the 10mm and
15 mm extension of the CTV_ALL

R3600 10-mm-wide ring coming from the 15 mm -
25 mm extension of the CTV_ALL

R3100 between body contour and 25mm extension of
the CTV_ALL

Table 2 The criteria of regions of interest for manual IMRT
planning

Regions of interest Criteria

GTV_T_P 68.96Gy < D95 < 70.96Gy

CTV1_P D95 > 61.05Gy

CTV2_P D95 > 56.1Gy

GTV_NL_P/GTV_NR_P 65.5Gy < D95 < 67Gy

CTV_NL_P/CTV_NR_P D95 > 52.8Gy

left/right parotid V30 < 50%

brainstem D1cc < 65Gy

spinal cord D1 < 45Gy

left/right optic lens Dmax<8Gy

left/right optic nerves Dmax<62Gy

pituitary Dmax<66Gy

optic chiasm Dmax<66Gy

Dx Received dose corresponding to x% of volume, Vx Percentage volume
corresponding to x Gy, Dxcc Received dose corresponding to x
cubic centimeters
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Table 3 Objective parameters

Region of interest Objective parameters

type Target dose volume weight

GTV_T_P MinDVH (1) 98 90

MaxDVH =MinDVH of GTV_T_P + 100 2 80

UniformDose = MinDVH of GTV_T_P + 50 / 75

CTV1_GTV MinDVH (2) 98 85

MaxDVH =MinDVH of GTV_T_P 2 80

CTV2_CTV1 MinDVH (3) 98 85

MaxDVH 6100 2 80

GTV_NL_P/GTV_NR_P MinDVH (4)(5) 98 90

MaxDVH =MinDVH of GTV_NL_P/ GTV_NR_P + 100 2 80

UniformDose =MinDVH of GTV_NL_P/ GTV_NR_P + 50 / 75

CTV_GTV_NL_P/CTV_GTV_NR_P MinDVH (6)(7) 98 85

MaxDVH 6600 2 80

left/right parotid MaxDVH (8)(9) 50 50

brainstem MaxDVH (10) 0 50

spinal cord MaxDVH (11) 0 50

left/right optic lens MaxDVH (12)(13) 0 50

left/right optic nerves MaxDVH (14)(15) 0 50

pituitary MaxDVH (16) 0 50

optic chiasm MaxDVH (17) 0 50

R5200 MaxDVH (18) 2 50

R4500 MaxDVH (19) 2 50

R3600 MaxDVH (20) 2 50

R3100 MaxDVH (21) 2 50

(): 21 target dose objectives marked in the parentheses
(/ : None)

Fig. 1 The overlapping between the left parotid (sky blue) and: (a) the CTV-ALL contracted with a distance of 5 mm (red); (b) the initial CTV-ALL
(purple); (c) the CTV-ALL expanded with a distance of 5 mm (tan). The overlap volume fraction is defined as the overlapping volume divided by
the volume of the left parotid
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these parameters yielded satisfactory results in this feasi-
bility study with relatively short training time. During
test, the trained model simply calculated a set of patient
specific dose objectives based on the OVH and TVH
values.

Automated planning
Automated plans (APs) were all generated by an in-house
developed Perl and HotScripts planning scripts in Pinna-
cle3 9.2. It automated the entire planning process including
additional structure generation, beam and optimization pa-
rameters setup, and the final inverse optimization. This
script also received planning parameters of gantry angle,
beam energy, beam modality, treatment isocenter placing,
prescription, number of fractions, isodose lines for
visualization, IMRT optimization type, maximum number
of segments, minimum segment area, minimum segment
MU, max iteration (100) and convolution dose iteration at
40th. Finally, the script incorporated the derived dose ob-
jectives before the APs were automatically generated with
a single loop of iteration of the planning process. An over-
view of our proposed process was presented in Fig. 2.

Plan comparison and statistical analysis
The AP and the MP of each patient from the test library
were all blindly reviewed and rated by one attending
radiation oncologist in our institute by evaluating both
DVH and dose distribution. Grade C indicated an infer-
ior plan quality which is considered clinically unaccept-
able. A grade B plan was deemed just about acceptable
and grade A suggested a superior plan where the DVH
and dose distribution were more desirable. Similar qual-
ity plans could be deemed comparable and rated the
same. The ratings for both the APs and MPs in the test
library were compared by McNemar-Bowker tests using
Statistical Package for the Social Sciences (SPSS 21.0;
SPSS Inc., Chicago, IL, USA) software. The reviewer also
recorded the numbers of ROIs achieving the given
criteria to be compared between the APs and MPs.
SPSS 21.0 was also used for statistical analysis. The

dose parameters in Table 2 were included in the statis-
tical analysis. Mann-Whitney U test was performed to
compare dose parameters of the APs and MPs. Dx was
the received dose corresponding to x% of volume. D5

was used to evaluate the high dose in PTV. V30 was the

Table 4 Overlap volume histogram (OVH) and target volume histogram (TVH) used as inputs to build neural network model

OVH

OAR Target volume Starting distance (cm) Step size (cm) ending distance (cm)

Left/right parotid CTV_ALL − 1.0 0.2 1

Brainstem CTV_ALL −1.0 0.2 1

Spinal cord CTV_ALL 0 0.2 2

Left/right optic lens CTV_ALL 0 0.4 4

Left/right optic nerves CTV_ALL −1.0 0.3 2

Pituitary CTV_ALL −1.0 0.3 2

Optic chiasm CTV_ALL −1.0 0.3 2

CTV1_P GTV_T_P −1.0 0.2 1

CTV2_P CTV1_P −1.0 0.2 1

CTV_NL_P GTV_NL_P −1.0 0.2 1

CTV_NR_P GTV_NR_P −1.0 0.2 1

Left parotid GTV_NL_P −1.0 0.3 2

Right parotid GTV_NR_P −1.0 0.3 2

Left/right parotid GTV_T_P 0 0.3 3

Pituitary GTV_T_P 0 0.3 3

Optic chiasm GTV_T_P 0 0.3 3

TVH

Target volume Starting distance (cm) Step size (cm) ending distance (cm)

GTV_T_P −1.0 0.2 1

GTV_NL_P −1.0 0.2 1

GTV_NR_P −1.0 0.2 1

CTV1_P −1.0 0.2 1

CTV2_P −1.0 0.2 1
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percentage volume receiving 30 Gy dose. Conformity
index (CI = (VPTV region receiving prescription dose/VPTV)*
(VPTV region receiving prescription dose/VPrescription dose)) and
homogeneity index (HI = D5/D95) were calculated for
PTV evaluation. Furthermore, planning duration and
MU per fraction were also analysed for both the APs
and MPs. The alpha level was set at 0.05 and the Bonfer-
roni correction was also applied to control type I error
probability. Since 32 tests were carried out in this analysis,
it was considered statistically significant when P < 0.0015.

Results
Plan quality comparison
In the blind test, 11 APs were rated A, 10 rated B, and 4
rated C, while 12 MPs were rated A, 10 rated B, and 3
rated C (see Fig. 3). The APs and MPs had the same rating
in 19 out of 25 patients. APs were rated better for two pa-
tients and worse for four patients. The McNemar-Bowker
test result showed that there existed no difference between
the rating distribution of AP and MP with a P value of
0.549.

ROI meeting criteria
The numbers of PTVs and OARs achieving the given
criteria are listed in Table 5. For no less than 80% of the
patients from the test library, the PTV coverage met the
criteria in both the APs and MPs. Particularly, CTV_
NL_P and CTV_NR_P of all the APs and MPs achieved
their given criteria. GTV_T_P remained the most
challenging PTV, since the number of GTV_T_P D95

achieved the given criteria was 20 and 22 in APs and
MPs, respectively.
All the left and right lens in both the APs and MPs

met the dose constraint of Dmax<8Gy. Pituitary ap-
peared the most challenging OAR to manage, as only 17
APs and 15 MPs were able to meet Dmax<66Gy. Not-
ably, the number of the APs was close to that of the
MPs in achieving each OAR criterion. The largest differ-
ent OAR number achieving its criteria between the APs
and the MPs was 2 in both the pituitary and optic
chiasm..

Data comparison and analysis
Dose parameters of the PTVs and the OARs using
Mann-Whitney U test and Bonferroni correction are
also shown in Table 5. PTVs (including GTV_T_P,
CTV1_P, CTV2_P, CTV_NL_P, and CTV_NR_P) in the
MPs had significantly higher D95 than those in the APs
(P < 0.0015). No significant difference was observed in
the D5, CI, and HI of PTVs between APs and MPs (P >
0.0015). Moreover, dose parameters of all OARs were
comparable between APs and MPs (P > 0.0015), al-
though all the APs showed lower mean dose parameters
(except brainstem D1cc) compare to the MPs. The D1cc

of brainstem was 56.19 ± 6.87 cGy and 54.95 ± 7.8 cGy in
the APs and the MPs, respectively (P = 0.449). The MU
for the APs was comparable to that for the MPs
(685.04 ± 59.63 vs. 721.36 ± 63.36, P = 0.051). It was also
found that the planning duration for the APs was greatly
shorten compared to that for the MPs (9.85 ± 1.13 min
vs. 57.10 ± 6.35, P < 0.001).
Figure 4 is the DVH for patient (#12), one of the best

plans of which its AP (solid line) and MP (dashed line)
were both rated grade A. It shows clinically acceptable
PTV coverages for both the AP and the MP, and it also
shows that the AP considerably increases dose sparing
to both right optic lens and pituitary. For patient (#12),
the PTV coverage in the AP was approximately equal to
that in the MP; relative percentage difference at D95 for
GTV_T_P, CTV1_P, CTV2_P, GTV_NL_P, GTV_NR_P,
CTV_NL_P and CTV_NR_P were − 0.4, − 1.2%, − 2.4,
0.2, 0.2, 1.9 and 1.8%, respectively. Compared to the MP,
AP greatly reduced OAR dose for left parotid V30, right
optic lens Dmax, left optic nerve Dmax, right optic nerve
Dmax and pituitary Dmax with relative percentage

Fig. 2 The flow chart of knowledge-based IMRT treatment planning
technique for locally advanced nasopharyngeal carcinoma
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difference values of − 6.9, − 15.8%, 7.3, 10.2 and 21.2%,
respectively.

Discussion
We developed a feasible knowledge-based IMRT treat-
ment planning technique for locally advanced NPC using
a trained 3 layer NN model. The knowledge-based library
consisted of a comparatively larger sample size of 115 lo-
cally advanced NPC patients [12, 14, 20], and each pa-
tient had a high-quality manual IMRT plan. 5-fold cross

validation method was also applied in our study. In
addition, a wide range of OVH and TVH information
which would have a great effect on the resulting dose dis-
tribution were selected as the input of the NN model
[24]. Patient specific dose objectives predicted by the
model were subsequently used for a single-iteration
automated planning, which generated high quality, clinic-
ally acceptable or superior APs for 21 out of the 25 pa-
tients under test. For the 4 patients whose APs were
rated C, their MPs were rated C as well (#6, 13, and 18),

Table 5 The comparison between automated and manual IMRT plans for 25 patients with locally advanced nasopharyngeal
carcinoma

ROI Parameter Criteria Number Parameter

AP MP AP (mean ± SD) MP (mean ± SD) P

GTV_T_P D5(Gy) 76.27 ± 0.59 76.43 ± 0.98 0.756

D95(Gy) 68.96Gy ~ 70.96Gy 20 22 69.61 ± 0.64 70.21 ± 0.59 0.001*

CI 0.793 ± 0.039 0.792 ± 0.044 0.839

HI 1.096 ± 0.017 1.089 ± 0.022 0.09

CTV1_P D95(Gy) > 61.05Gy 24 25 63.53 ± 0.66 64.41 ± 0.81 < 0.001*

CI 0.759 ± 0.044 0.728 ± 0.048 0.024

CTV2_P D95(Gy) > 56.1Gy 24 25 57.11 ± 0.58 57.93 ± 0.66 < 0.001*

CI 0.856 ± 0.022 0.849 ± 0.021 0.265

GTV_NL_P D5(Gy) 69.17 ± 0.82 68.86 ± 1.10 0.087

D95(Gy) 65.5Gy ~ 67Gy 23 24 66.29 ± 0.40 66.18 ± 0.32 0.169

CI 0.487 ± 0.100 0.471 ± 0.117 0.961

HI 1.044 ± 0.017 1.040 ± 0.016 0.587

GTV_NR_P D5(Gy) 69.17 ± 0.59 68.63 ± 0.64 0.003

D95(Gy) 65.5Gy ~ 67Gy 24 25 66.47 ± 0.37 66.25 ± 0.28 0.006

CI 0.474 ± 0.082 0.484 ± 0.082 0.635

HI 1.041 ± 0.011 1.036 ± 0.009 0.146

CTV_NL_P D95(Gy) > 52.8Gy 25 25 54.06 ± 0.51 54.97 ± 0.58 < 0.001*

CI 0.666 ± 0.036 0.666 ± 0.040 0.884

CTV_NR_P D95(Gy) > 52.8Gy 25 25 54.18 ± 0.47 54.83 ± 0.59 0.001*

CI 0.653 ± 0.034 0.653 ± 0.037 0.778

Left parotid V30(%) < 50% 20 21 45.36 ± 5.06 47.14 ± 4.97 0.091

Right parotid V30(%) < 50% 20 20 45.75 ± 5.16 47.43 ± 5.13 0.177

Brainstem D1cc(Gy) <65Gy 24 23 56.19 ± 6.87 54.95 ± 7.8 0.449

Spinal cord D1Gy) <45Gy 23 23 40.23 ± 3.06 40.56 ± 3.59 0.691

Left optic lens Dmax(Gy) <8Gy 25 25 5.03 ± 0.87 5.06 ± 0.93 0.861

Right optic lens Dmax(Gy) <8Gy 25 25 4.79 ± 0.54 5.02 ± 0.70 0.206

Left optic nerve Dmax(Gy) <62Gy 23 23 32.85 ± 19.08 40 ± 20.35 0.677

Right optic nerve Dmax(Gy) <62Gy 20 19 33.99 ± 21.58 37.58 ± 21.39 0.473

Pituitary Dmax(Gy) <66Gy 17 15 53.55 ± 18.20 55.12 ± 19.17 0.547

Optic chiasm Dmax(Gy) <66Gy 21 19 43.52 ± 23.24 44.69 ± 23.8 0.892

MU 685.04 ± 59.63 721.36 ± 63.36 0.051

Duration (min) 9.85 ± 1.13 57.10 ± 6.35 < 0.001*

ROI Region of interest, AP Automated plan, MP Manual plan
*P < 0.0015 indicates statistical significance

Bai et al. Radiation Oncology          (2020) 15:188 Page 7 of 10



except for one patient (#25) whose MP was rated B.
Further examinations were conducted for these four
patients. For the patient (#6), GTV_T_P completely over-
lapped the left optic nerve. For the patient (#13), GTV_
T_P which was given the highest prescription dose over-
lapped partially with the bilateral parotids, and thus the
parotid V30 was greatly increased. A large portion of tar-
get volume invaded superficial cerebral tissue in the pa-
tient (#18), which made it a difficulty to cover the
superficial target with the prescription dose. For the
above patients, the APs mimicked the manual operation
on the choices of optimization priorities. However, the
AP for the patient (#25) prioritised pituitary and brain-
stem and chose to sacrifice the dose coverage on GTV_
T_P, in contrast to the MP that well covered the tumor
volume. It suggested that our automated technique could
not always make expected choices aligning to the oncolo-
gist’ preference, particularly for those challenging cases.
Our automated method greatly reduced the planning

duration compared to the MPs (9.85 ± 1.13 min vs
57.10 ± 6.35 min). Moreover, it involved no human

Fig. 3 Blind review on plan quality between automated plans (APs)
and manual plans (MPs) for the 25 NPC patients in the test library

Fig. 4 A comparison of dose volume histograms for the automated plan (solid line) and the manual plan (dashed line). As one of the best plans
which were both rated grade A, patient (#12) demonstrated acceptable PTV coverage and considerably greater dose sparing to both right optic
lens and pituitary
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intervention when the embedded Pinnacle scripts were
running. Currently, the dose objectives derived from the
NN model on our personal computer had to be manually
transferred to the TPS computer, so our knowledge-based
automated planning technique was not fully automated in
this sense. Nevertheless, the model could be transferred
on the TPS to complete the automation workflow in the
future. Note that although the training time for each NN
model was 27min, the time to generate a set of objective
for one patient took only less than 0.1 s.
Wu B and his group [20] applied k-nearest neighbour

method and made a prediction on the best DVH of each
single OAR based on its OVH, which might compromise
the dose distribution when every OAR reached its best
DVH. However, our study took all target volumes and
OARs into consideration at the same time, and
employed a NN model to derive a patient-specific set of
dose objectives.
Our study did not include some OARs such as oral

cavity, temporal lobes, and thyroid glands because these
OARs could easily achieve their dose constraint by
setting dose constraint to the additional rings (R5200,
R4500, R3600, and R3100). Our study has not fully ad-
dressed the dose inhomogeneity with single iteration
optimization. But one study suggested that automatic
generation of regions and objectives for hot and cold
spots would further improve dose uniformity without
manual interference [25]. The study also utilised embed-
ded Pinnacle scripts and provided a solution on achiev-
ing better CI and HI for us.
Our study proposed a prospective automated IMRT

planning technique for locally advanced NPC. Although
our current study has limited the settings of machine
parameters such as gantry angles and segment sizes, the
same technique can be applied to more complicated
IMRT delivery techniques. We anticipate that volumetric
modulated arc therapy treatment planning can also take
advantage of the described technique to achieve indi-
vidually tailored optimal radiotherapy plans. In addition,
as the volume, position and dose of targets and OARs
would change during the treatment course for NPC
patients [26–28], the introduction of adaptive radiation
therapy (ART) could potentially improve the treatment
outcome [29]. Our knowledge-based automated planning
approach would be of great value to generate high quality
ART plans for NPC patients in an efficient manner.

Conclusions
A robust and effective knowledge-based IMRT treatment
planning technique for locally advanced NPC is devel-
oped by use of NN model and HotScripts planning
scripts in Pinnacle3 9.2 TPS. This automated technique
largely shortened planning time without compromising
the plan quality.
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