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Abstract 

Background:  Brassica napus is one of the most important oilseed crops, and also an important biofuel plant due to 
its low air pollution and renewability. Growth period are important traits that affect yield and are crucial for its adapta-
tion to different environments in B. napus.

Results:  To elucidate the genetic basis of growth period traits, genome-wide association analysis (GWAS) and link-
age mapping were employed to detect the quantitative trait loci (QTL) for days to initial flowering (DIF), days to final 
flowering (DFF), flowering period (FP), maturity time (MT), and whole growth period (GP). A total of 146 SNPs were 
identified by association mapping, and 83 QTLs were identified by linkage mapping using the RIL population. Among 
these QTLs, 19 were pleiotropic SNPs related to multiple traits, and six (q18DFF.A03-2, q18MT.A03-2, q17DFF.A05-1, 
q18FP.C04, q17DIF.C05 and q17GP.C09) were consistently detected using both mapping methods. Additionally, we 
performed RNA sequencing to analyze the differential expression of gene (DEG) transcripts between early- and late-
flowering lines selected from the RIL population, and the DEGs were integrated with association mapping and linkage 
analysis to confirm their roles in the growth period. Consequently, 12 candidate genes associated with growth period 
traits were identified in B. napus. Among these genes, seven have polymorphic sites in the coding sequence and the 
upstream 2-kb sequence based on the resequencing data. The haplotype BnaSOC1.A05-Haplb and BnaLNK2.C06-
Hapla showed more favorable phenotypic traits.

Conclusions:  The candidate genes identified in this study will contribute to our genetic understanding of growth 
period traits and can be used as targets for target mutations or marker-assisted breeding for rapeseed adapted to dif-
ferent environments.
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Introduction
Brassica napus (B. napus, genome AACC, 2n = 38) is 
one of the most important oilseed crops and an impor-
tant source of protein-rich livestock feed in the world. At 
the same time, due to the energy crisis, low air pollution 
and renewability of rapeseed oil, an increasing number 
of people regard rapeseed oil as an ideal green energy 
source. This species is an allopolyploid (AACC) that 
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evolved from an interspecies cross between Brassica rapa 
(B. rapa, genome AA, 2n = 20) and Brassica oleracea (B. 
oleracea, genome CC, 2n = 18) approximately 7500 years 
ago [1]. The species originated in Europe and spread 
worldwide (to East Asia, Australia, and North America). 
The growth period of rapeseed can be divided into veg-
etative growth period (the duration from seedling to 
flowering), and reproductive growth period (the duration 
from flowering to maturity). Flowering is a major trait 
in the plant’s growth period, as it represents the transi-
tion from the vegetative stage to the reproductive stage. 
Flowering time plays an indispensable role in adaptation 
to specific environments. It has been reported that the 
growth stages show high correlations with plant height, 
pod number and seed yield [2]. Therefore, understanding 
the genetic network underlying growth period traits pro-
vides a theoretical and practical basis for developing new 
cultivars adapted to different geographical environments.

Linkage mapping based on bi-parental populations 
has been widely applied to detect QTLs for flowering 
time traits in B. napus [3–9]. Long et al. [4] identified 36 
significant level (SL-QTL) and 6 micro real QTL (MR-
QTL) in the doubled haploid (DH) population (Tapi-
dor × Ningyou7) and its derived F2 population. Raman 
et  al. [6] identified at least 20 flowering time loci local-
ized on ten different chromosomes in the SASDH DH 
population (Skipton × Ag-Spectrum), which explained 
2.4–28.6% of phenotypic variation. Raman et al. [7] fur-
ther constructed an integrated genetic linkage map of the 
SASDH population and identified QTLs for flowering 
time accounted for up to 40.2% of genetic variation. Liu 
et al. [8] found 22 QTLs for days to flowering (DIF) in the 
spring-type DH population under multiple spring envi-
ronments. Four major QTL were located on A7, C2, and 
C8, and explained 10.0–46.5% of phenotypic variation. Li 
et al. [10] used DH populations to localize QTL for flow-
ering time in oilseed rape under winter, semi-winter, and 
spring ecological conditions, and identified 55 consistent 
QTL, including 12 environmentally stable QTL and 43 
environmentally specific QTL.

Genome-wide association studies (GWAS) using natu-
ral populations provide higher mapping resolution than 
linkage mapping based on bi-parental segregating popu-
lations and have greater cost-effectiveness. Based on the 
GWAS website (https​://bigd.big.ac.cn/gwas/), approxi-
mately 8373 associations related to 19 growth period 
traits have been identified across six crops (cotton, maize, 
rapeseed, rice, sorghum, and soybean) using GWAS tech-
nology [11]. Among these associations, 198 associations 
for seven growth period traits were identified in rape-
seed. Xu et al. [12] found 41 SNPs correlated with flower-
ing time with a diversity panel comprising 523 B. napus 
cultivars, and 12 SNPs were consistent with previously 

identified QTLs. Niklas et  al. [13] found six QTLs for 
beginning of flowering (BOF) and one QTL for end of 
flowering (EOF) in 405 B. napus inbred lines. Zhou et al. 
[14] identified 131 SNPs strongly linked to four earliness 
traits (initial flowering day, maturity time, final flowering 
day and flowering period), 40 of which fell into or were 
physically close to published flowering time SNPs. Wei 
et al. [15] detected 12 SNPs significantly associated with 
flowering time using 3,318,6 high-quality SNPs from 327 
accessions. From the above results, it can be seen that 
these studies focused mainly on the initial flowering time. 
Other growth period traits, such as final flowering stage 
(DFF), flowering period (FP) and maturity time (MT), 
have rarely been reported by mapping methods.

RNA sequencing has been widely applied to examine 
differences in global gene expression with the benefit of 
high sensitivity and is more cost-effective than micro-
array analysis. However, transcriptome analysis often 
obtained a large number of differentially expressed genes 
(DEGs) between samples. Therefore, the integration of 
DEGs with GWAS or linkage mapping has been consid-
ered to be an effective way to identify candidate genes 
related to complex traits [16–19].

In this study, using a panel of 588 accessions, we car-
ried out a GWAS for five growth period traits, the num-
ber of days to initial flowering (DIF), the number of days 
to final flowering (DFF), flowering period (FP), matu-
rity  time  (MT), and growth period (GP). Furthermore, 
the SNPs associated with DIF, DFF, FP, MT and GP were 
detected in the recombinant inbred line (RIL) population. 
In addition, we performed transcriptomic analysis of the 
leaves of early-flowering and late-flowering accessions at 
different developmental stages (vegetative and reproduc-
tive). The main objectives of our study are: (1) to dissect 
the genetic mechanism of growth period traits by GWAS 
using a natural population and QTL mapping using an 
RIL population derived from GH06 and P174; (2) to dis-
sect the molecular mechanism of floral development by 
characterizing the DEGs of leaves for early-flowering and 
late-flowering lines using RNA sequencing technology; 
and (3) integrating the QTLs and DEGs to identify can-
didate genes that control growth period traits for further 
verification.

Results
Phenotypic variations, correlations, and ANOVA for growth 
period traits
Five growth period traits (DIF, DFF, FP, MT and GP) 
of 588 rapeseed lines were investigated in 3  years. Sig-
nificant variation among the genotypes for five growth 
period traits was observed: for instance, DIF ranged 
from 138 to 207  days with an average of 157.98  days in 
2017, from 149 to 174 days with an average of 157.34 days 
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in 2018, and from 137 to 189  days with an average of 
151.87  days in 2019 (Table  1). The coefficient variation 
(CV) of FP and MT was the highest (over 10%) followed 
by DIF and DFF, and GP was the lowest. In addition, the 
phenotypic frequency distributions of five traits in the 
3 years all showed approximately continuous and normal 
distributions, which showed that the group was suitable 

for association analysis (Fig. 1).To test the effects of geno-
type (G), environment (E) and their interactions (G × E), 
we conducted analysis of variance (ANOVA) for each 
trait (Additional file  1: Table  S1a). Significant variations 
were observed among environments and genotypes for 
all five traits. The DFF has the highest broad-sense herit-
ability (h2) of 92.66%, the FP has relatively low heritability 

Table 1  Phenotypic variation of five growth period traits in three environments

17CQ17 Chongqing, 18CQ 18 Chongqing, 19CQ 19Chongqing, SD standard deviation, CV coefficient of variation, DIF days to initial flowering, DFF days to final 
flowering, FP flowering period, MT maturity time, GP growth period

Environment Trait Range (days) Mean (days) SD Variance CV (%) Kurtosis Skewness

17CQ DIF 138–207 157.98 12.29 150.95 7.78 1.23 0.98

DFF 157–229 186.28 11.12 123.59 5.97 1.12 0.70

FP 20–54 29.81 4.89 23.92 16.41 2.30 0.87

MT 20–56 36.82 6.80 46.23 18.47 − 0.19 − 0.04

GP 182–272 222.57 7.08 50.07 3.18 10.09 − 0.03

18CQ DIF 149–174 157.34 4.43 19.66 2.82 1.19 0.98

DFF 163–197 176.15 6.07 36.80 3.44 0.50 0.66

FP 14–30 20.27 2.93 8.60 14.47 0.51 0.40

MT 18–50 33.65 4.86 23.65 14.45 0.34 − 0.23

GP 204–219 209.82 3.23 10.44 1.54 − 0.84 0.33

19CQ DIF 137–189 151.87 8.94 79.97 5.89 1.18 1.87

DFF 147–212 177.99 9.04 81.78 5.08 0.94 1.82

FP 19–40 27.93 3.51 12.33 12.57 0.31 0.26

MT 11–50 33.54 6.19 38.32 18.46 − 0.60 0.45

GP 200–220 210.87 3.17 10.06 1.50 − 0.24 0.53

Fig. 1  Frequency distribution of five growth period traits in GWAS population in 3 years (2017, 2018 and 2019)
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(74.11%). Overall, these findings indicated that all five 
traits were stably inherited.

To determine whether there are any relationships 
between five growth period traits in B. napus, the aver-
age value of 3 years for each trait was used for correlation 
analysis (Table 2). DIF showed a significant positive cor-
relation with DFF and GP, but was negatively correlated 
with FP and MT. DFF was significantly correlated with 
FP, MT, and GP with correlation coefficients of 0.148, 
− 0.664 and 0.760, respectively. It can be concluded that 
a shorter flowering time corresponds to a shorter growth 
period and a longer maturity time.

Genome‑wide association analysis for growth period traits 
in 3 years
Through a set of processes of library construction, paired-
end sequencing and SNP calling, a series of 3,856,91 
highly consistent and locus-specific SNPs (minor allele 
frequency > 0.05 and call frequencies > 0.9) were retained 
for the following analysis. Additional file 2: Fig. S1 shows 
the density distribution of SNP markers on different 
chromosomes. The 3,856,91 SNPs were covered and une-
venly distributed on all 19 B. napus chromosomes.

To avoid false-negative associations, three general linear 
models (GLM), naïve, PCA and Q models, and three mixed 
linear models (MLM), K, Q + K and PCA + K models were 
chosen to evaluate the effects of population structure (Q, 
PC) and relative kinship (K). According to the Q–Q plots 
of the six models, the MLM model can control false posi-
tives well for each trait in 3 years (Additional file 3: Fig. S2). 
To minimize the effect of environmental variation, best 
linear unbiased predictor (BLUP) value for each line were 
also calculated for each trait using the R package lme4 [20]. 

Therefore, the MLM models were conducted for GWAS of 
five growth period traits with 3 years’ data and BLUP val-
ues. We mainly focused on the QTLs detected in at least 
two environments. In total, 146 SNP loci significantly asso-
ciated (− log10(P) ≥ 5.58) with five growth-related traits 
were identified, including 13 related to DIF, 23 to DFF, 6 to 
FP, 19 to MT and 85 to GP for the whole panel of accessions 
(Additional file 3: Fig. 2 and Additional file 4: Table S2).

Identification of candidate genes for growth period traits 
in B. napus
Among the 146 SNP loci significantly associated with 
growth period traits, 60 SNPs were divided into 19 
genomic regions using a haplotype block estimation, with 
sizes ranging from 7  bp to 270.31  kb, while the remain-
ing 86 SNP loci were not present in the LD blocks (Addi-
tional file 5: Table S3). Then, we obtained the genes within 
the same LD block or within 300 kb to either side of the 
significant SNPs using B. napus ‘Darmor v4.1’ as the refer-
ence genome. Finally, a total of 101 candidate genes were 
identified as orthologous to Arabidopsis flowering genes 
reported in the Flowering Interactive Database (FLOR-ID), 
most of which were involved in six flowering pathways of 
aging, autonomous pathway, vernalization, photoperiod, 
GA, and circadian clock; other genes functioned as flower 
development and meristem identity and flowering time 
integrator (Additional file 6: Table S4). The flowering time 
integrators FLOWERING LOCUS C (FLC) control the tran-
sition from vegetative to reproductive meristem by inte-
grating the signals from six pathways and then precisely 
regulating the expression of specific flower meristem iden-
tity genes APETALA2 (AP2) and FRUITFULL (FUL) [21].

By comparing the SNP regions, 28 SNP loci (within 
300 kb) associated with growth period traits, were located 
in or near the QTL regions identified in previous studies: 
23 were reported by Raman et al., seven were reported by 
Wang et al. and four were reported by Zhou et al. [3, 14, 
22, 23] (Additional file  5: Table  S3 and Fig.  3). Among 
these loci, S1_5075025, S2_5719334 and S15_5922896 
were reported in two studies, and S3_13708544 and 
S7_10803897 were detected simultaneously in three stud-
ies. At the same time, the candidate genes we identified in 
this study were also reported in previous studies [14, 22–
28]. The flowering time integrator (BnaFLC.C02, BnaFUL.
A03 and BnaSVP.A09) were reported in three or more 
previous studies (Additional file 5: Table S3). Overall, the 

Table 2  Correlation analysis of five growth period-related 
traits of GWAS population

a  Correlation is significant at the 0.01 level (2-tailed). DIF, days to initial 
flowering; DFF, days to final flowering; FP, flowering period; MT, maturity time; 
GP, growth period

Traits DIF DFF FP MT

DFF 0.705a

FP − 0.302a 0.148a

MT − 0.626a − 0.664a − 0.004

GP 0.581a 0.760a − 0.016 − 0.316a

Fig. 2  The Manhattan plots for five growth period traits using BLUP value. Different colors represent different chromosomes of B. napus (A1–A10, 
C1–C9). The solid horizontal line (in grey color) signifies the threshold for significant associations [− log10(1/385,691) = 5.58]. Significant SNPs 
above the threshold line on all chromosomes are highlighted in red. The position of candidate flowering genes that located in the vicinity of the 
significant SNP is shown

(See figure on next page.)
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comparison of QTLs and candidate genes further validates 
the reliability of the GWAS mapping and help us mine the 
novel QTL.

QTL linkage mapping of growth period traits in 2 years
The RIL population (GH06 × P174) grown in 2017 and 
2018 was evaluated for DIF, DFF, FP, MT and GP pheno-
types and then used for QTL analysis. The flowering time 
of GH06 was later than that of P174 in the two investi-
gated environments. A wide range of variation (Table 3) 

and the normal phenotypic distribution for the growth 
period traits (Additional file 7: Fig. S3) were observed in 
the RIL population, indicating the  quantitative inherit-
ance suitable for QTL mapping. ANOVA was performed 
on the phenotypic data from 2 years, and h2 ranged from 
49% (DFF) to 53% (GP) (Additional file 1: Table S1b).

The LOD score plots across 19 linkage groups are 
shown in Additional file 8: Fig. S4. A total of 17, 25, 7, 21 
and 13 QTLs for DIF, DFF, FP, MT and GP were detected 
in 2 years and were located on all B. napus chromosomes 

Fig. 3  Distribution of consensus QTLs for five growth period traits among different populations. From inside to outside, the four inner circles with 
different color represent four populations (Raman, Udall, Zhou and Wang, respectively), and short bars with color within the four inner circles 
represent SNPs identified in different populations (red bars, QTLs for DIF; blue bars, DFF; purple bars, MT; bright green bars, GP). The dotted lines 
indicate that the SNP loci detected in different populations are co-localized. The blocks at the outermost circle represent the 19 genetic linkage 
groups
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except C02 (Additional file 9: Table S5 and Fig. 4). These 
QTLs for DIF, DFF, FP, MT and GP explained ~ 17.48%, 
~ 15.92%, ~ 7.95%, ~ 18.30% and ~ 9.43% of the pheno-
typic variance, and the additive effect varied from − 0.43 
to 2.30, − 1.12 to 1.79, − 0.83 to 0.71, − 2.09 to 1.13, and 
from − 0.70 to 1.10, respectively. The QTLs have the 
overlapped confidence intervals with the same direction 
of additive effect are considered to be the same QTL. 
Among the 83 QTLs, 14 QTLs were associated with at 
least two traits. The QTL q18DIF.A01-2, q18DFF.A01 and 
q18MT.A01-1 have the same QTL region and explained 
the highest total phenotypic variation of each trait. 
However, the additive values of DIF and DFF were posi-
tive, and the additive value of MT was negative, which 
indicates that the QTL from GH06 increased DIF and 
DFF, while the QTL from P174 increased MT. The QTL 
q17DIF.A06-1, q17DFF.A06-2, q17MT.A06-3 and the 
QTL q17DIF.A07-2, q17DFF.A07-2, q17FP.A07, q17MT.
A07-3 also has the same region and opposite additive 
effect. These results indicate that the same QTL may 
have opposite effects on the different traits. Based on the 
rapeseed genome annotation and the physical locations 
of these QTL regions, a total of 74 Arabidopsis flower-
ing homolog genes were identified (Additional file  10: 
Table S6).

Identification of DEGs for floral transition and flower 
development by RNA‑sequencing
To identify candidate DEG transcripts controlling flower-
ing time, we sequenced four RNA samples from leaves of 
early-flowering cultivar 18Z134 and late-flowering culti-
var 18Z88 sampled at vegetative and reproductive devel-
opment stages (EV, ER, LV and LR). Every sample had 
two replicates. The flowering time differences between 

18Z134 and 18Z88 are shown in Additional file  11: 
Table  S7. The total reads, mapped and unique mapped 
reads to the reference B. napus genome are shown in 
Additional file  12: Table  S8. After removing low-quality 
sequences, 34,862,287 (86.32%)–37,786,256 (90.79%) 
clean reads were successfully mapped to the genome 
using TopHat. Of these clean reads, 33,089,439 (81.93%)–
38,684,877 (85.93%) were uniquely mapped.

Two types of comparisons were performed: (1) to iden-
tify DEGs between the two extreme lines at each devel-
opment stage: LR vs. ER and LV vs. EV; (2) to identify 
expression changes between different stages in each 
line: EV vs. ER and LV vs. LR. The false discovery rate 
(FDR) ≤ 0.05 and absolute value of |log2 (fold change) 
| ≥ 1 were used as thresholds to judge the DEGs between 
the two groups. In total, 3727 DEGs were identified in 
LR vs. ER (2421 upregulated, 1306 downregulated), 2327 
DEGs were identified in LV vs. EV (1557 upregulated, 
770 downregulated), 3750 DEGs were identified in EV 
vs. ER (2135 upregulated, 1615 downregulated), and 2038 
DEGs were identified in LV vs. LR (1281 upregulated, 757 
downregulated). In addition, 1662 and 683 DEGs were 
common to LR vs. ER/LV vs. EV and EV vs. ER/LV vs. 
LR, respectively (Additional file  13: Fig. S5 and Addi-
tional file 14: Table S9).

GO and KEGG analysis of differentially expressed genes
As the first criterion, we analyzed DEGs between vegeta-
tive and reproductive stages (EV vs. ER and LV vs. LR) 
to identify the key phase transition-associated genes. The 
683 common DEGs between EV vs. ER and LV vs. LR 
were subjected to an enrichment analysis for GO annota-
tion terms. The top 20 significantly enriched GO terms 
are shown in Additional file 15: Fig. S6a and Additional 

Table 3  Phenotypic variation of  five growth period traits for  the  two parents and  derived RIL populations in  two 
environments

17CQ, 17 Chongqing; 18CQ, 18 Chongqing; SD, standard deviation; CV, coefficient of variation; DIF, days to initial flowering; DFF, days to final flowering; FP, flowering 
period; MT, maturity time; GP, growth period

Environment Trait Parents RIL population

GH06 P174 Range (days) Mean (days) SD Median Variance CV(%) Kurtosis Skewness

17CQ DIF 147 135 131–161 143.72 6.33 144 40.12 4.41 0.08 − 0.71

DFF 171 171 157–186 173.85 5.04 174 25.44 2.90 − 0.60 0.45

FP 24 36 21–39 30.40 3.82 30 14.61 12.57 0.16 − 0.52

MT 43 41 30–54 40.41 4.10 40 16.78 10.14 0.52 0.73

GP 214 212 205–220 214.24 3.03 214 9.21 1.42 − 0.36 0.00

18CQ DIF 155 149 148–160 152.90 2.59 153 6.70 1.69 0.28 0.02

DFF 170 168 165–179 170.84 2.94 171 8.63 1.72 0.25 − 0.42

FP 15 19 13–23 18.19 2.18 18 4.76 11.99 0.11 − 0.23

MT 39 35 25–43 34.27 3.26 34 10.61 9.51 0.04 − 0.07

GP 209 203 201–212 205.14 3.07 204 9.44 1.50 0.63 − 0.72



Page 8 of 19Wang et al. Biotechnol Biofuels          (2020) 13:134 

Fig. 4  The localization of significant QTLs for five growth period traits on the high-density SNP genetic map in the RIL population. Different colored 
markers represent different traits (red bars: DIF; green bars: DFF; blue bars: FP; khaki bars: FP and purple bars: GP). Map distances are given in cM and 
displayed using the MapChart. For simplicity, only show the markers in the QTL confidence intervals, along with the terminal two markers at each 
end of the QTL-containing chromosomes, the detailed marker information on the genetic linkage map was referred to Liu et al.2013 [65]
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file  16: Table  S10a. Among these terms, the salicylic 
acid biosynthetic process (GO:0009697), response to 
cold (GO:0009409), negative regulation of floral organ 
abscission (GO:0060862), intracellular auxin transport 
(GO:0080162) and long-day photoperiodism, flowering 
(GO:0048574) were involved in the phase transition pro-
cess. To further determine the metabolic pathways in the 
phase transition process, we performed KEGG enrich-
ment analysis (Additional file 15: Fig. S6b and Additional 
file  16: Table  S10b). Circadian rhythm–plant (ko04712) 
and plant hormone signal transduction (ko04075) were 
significantly enriched and participate in plant develop-
ment and flowering processes.

As the second criterion, we searched for DEGs between 
early-flowering and late-flowering lines that result in 
flowering time variation. The 2327 DEGs between LV vs. 
EV and 3727 DEGs between LR vs. ER were subjected to 
GO and KEGG enrichment analysis (Additional file  17: 
Fig. S7). DEGs in the circadian rhythm were enriched 
in both GO and KEGG analysis between LR vs. ER, 

suggesting that the different expression of genes involved 
in circadian rhythm could result in flowering  time 
difference.

Identification of transcription factors and hormone‑related 
flowering genes 
In this study, 50 transcription factor (TF)-encoding 
DEGs, including the basic helix–loop–helix (bHLH; five 
members), ERF (eight members), MIKC_MADS (eight 
members), NAC (three members) and WRKY (four 
members), were identified in the early- and late-flowering 
lines at two developmental stages. Additional file 18: Fig. 
S8a shows the overall expression trend in the four sam-
ples, and most TF families were significantly upregulated 
in the reproductive stages.

In addition, 20 genes in the ABA signaling pathway, 23 
genes in the auxin signaling pathway, five genes in the GA 
signaling pathway, five genes in the cytokinin signaling 
pathway, four genes in the JA signaling pathway and five 

Fig. 5  Heatmap showing expression patterns of DEGs involved in the flowering development including flowering pathway integrator (a), 
vernalization pathway (b), aging pathway (c), non-classified flowering regulators (d), circadian clock (e), GA signaling pathway (f) and photoperiod 
pathway (g). Gene expression levels were transformed with log2 (FPKM + 1)
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genes in the SA signaling pathway were identified in our 
transcriptome data. The genes involved in the SA signal-
ing were upregulated in the reproductive stage. While the 
genes from other hormone signaling pathways have no 
obvious expression trend (Additional file 18: Fig. S8b).

Identification of floral transition‑ and flower 
development‑related genes
According to the annotation of unigenes in Arabidopsis, 
a total of 125 DEGs related to flowering time were identi-
fied in the comparisons LR vs. ER, LV vs. EV, EV vs. ER 

and LV vs. LR (Additional file 19: Table S11). These genes 
mainly included the photoperiod, circadian rhythms, ver-
nalization, GA signaling, aging, flowering time integrator 
and flower meristem identity genes, and the expression 
value of these genes in the four samples is shown in Fig. 5.

In the photoperiod pathway, 36 unigenes homologous 
to EARLY FLOWERING 3 (ELF3), EARLY FLOWER-
ING 4 (ELF4), CONSTANS-like 9 (COL9), cycling DOF 
factor 1 (CDF1) and LATE ELONGATED HYPOCO-
TYL (LHY) were identified. The circadian rhythm, as an 
internal timekeeper, controls daily and seasonal changes, 

Table 4  Candidate genes identified by integrating RNA-seq with linkage mapping or GWAS

B. napus gene 
ID

Ath 
homolog

Gene name Gene 
annotation

GWAS QTL Linkage 
mapping 
QTL

log2(ER/
EV)

log2(ER/
LR)

log2(EV/
LV)

log2(LR/LV)

BnaC04g15640D TOE1 BnaTOE1.
C04

TARGET OF 
EARLY 
ACTIVA-
TION 
TAGGED 1

S14_13322100, 
S14_13322121

– – – − 1.22 –

BnaA03g40160D TOC1 BnaTOC1.
A03

TIMING 
OF CAB 
EXPRES-
SION 1

S3_20114553 q18MT.
A03-2

– − 1.78 – 1.56

BnaC09g05250D TOC1 BnaTOC1.
C09

TIMING 
OF CAB 
EXPRES-
SION 1

S19_30931596 – 1.45 − 1.46 – 2.71

BnaC06g15270D LNK2 BnaLNK2.
C06

NIGHT 
LIGHT-
INDUCI-
BLE AND 
CLOCK-
REGU-
LATED 2

S16_17975794 – – 2.47 – − 3.12

BnaA04g22640D ELF4 BnaELF4.A04 EARLY 
FLOWER-
ING 4

– q18FP.A04 1.73 − 1.04 – 3.24

BnaA05g05560D ELF4 BnaELF4.A05 EARLY 
FLOWER-
ING 4

S5_3021806 – 2.10 − 1.49 – 4.29

BnaA05g05000D AGL6 BnaAGL6.
A05

AGAMOUS-
LIKE 6

– q17DFF.
A05-2

1.99 – – –

BnaC09g48370D GA20OX3 Bna-
GA20OX3.
C09

GIBBERELLIN 
20-OXI-
DASE 3

S19_47135806 – 3.12 – − 4.40 –

BnaC02g36310D ICE1 BnaICE1.C02 INDUCER 
OF CBF 
EXPRES-
SION 1

S12_39314951 – − 2.62 – – –

BnaC09g23670D AGL14 BnaAGL14.
C09

AGAMOUS-
LIKE 14

– q17GP.C09 − 1.48 – – − 2.27

BnaA03g39820D FUL BnaFUL.A03 FRUITFULL S3_20114553 q18MT.
A03-2

2.89 – – 4.10

BnaA05g05010D SOC1 BnaSOC1.
A05

SUPPRES-
SOR OF 
OVEREX-
PRESSION 
OF CO 1

– q17DFF.
A05-2

– – 1.56 1.83
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is an important part of the photoperiod pathway and 
plays a key role in controlling plant flowering [29]. Cir-
cadian clock associated 1 (CCA1) is a key component of 
the Arabidopsis circadian oscillator, and it interacts with 
LATE ELONGATED HYPOCOTYL (LHY) and TIMING 
OF CAB EXPRESSION 1 (TOC1) to inhibit transcription 
of the Evening Complex (EC) proteins ELF4 and ELF3. 
In the circadian clock pathway, two CCA1 genes, three 
TOC1 genes, two pseudo response regulator 7 (PRR7) 
genes and three pseudo response regulator 9 (PRR9) genes 
were included. For the aging pathway, eight unigenes, 
including SQUAMOSA PROMOTER-BINDING-LIKE 
PROTEIN 4 (SPL4), SQUAMOSA PROMOTER-BIND-
ING-LIKE PROTEIN 5 (SPL5), SQUAMOSA PRO-
MOTER-BINDING-LIKE PROTEIN 15 (SPL15) and 
TARGET OF EARLY ACTIVATION TAGGED 1(TOE1) 
were found. Seven homologous genes of the GA signal-
ing pathway were also identified, including GA2 oxi-
dase (GA2ox, three unigenes), GA2 oxidase 1 (GA2ox1), 
gibberellin 20-oxidase 3 (GA20OX3), DELLA protein 
RGA​-like 2 (RGL2), and the GA receptor GA INSENSI-
TIVE DWARF1A (GID1A). Additionally, five unigenes 
were annotated in the vernalization pathway, which 
included the AGAMOUS-like 19 (AGL19), INDUCER OF 

CBF EXPRESSION  1 (ICE1), vernalization5/VIN3-like 
(VEL1) and REDUCED VERNALIZATION RESPONSE 1 
(VRN1). Furthermore, ten floral pathway integrator genes 
related to FLC, FLOWERING LOCUS T (FT), AGA-
MOUS-like 20 (AGL20), SHORT VEGETATIVE PHASE 
(SVP) and TWIN SISTER OF FT (TSF) and ten flower-
ing meristem-identifying genes, such as AGAMOUS-like 
8 (AGL8), AGAMOUS-like 14 (AGL14), AGAMOUS-like 
24 (AGL24) and APETALA 2 (AP2), were all identified in 
our transcriptome database. All these DEGs are impor-
tant resources for the further study of floral transition 
and floral development in B. napus.

Identification of candidates for growth period traits 
by integrating QTLs with DEGs
To further understand the roles of these DEGs in regu-
lating floral transition and flower development, the DEGs 
were integrated with the significant QTLs identified in 
either association analysis or linkage mapping. Therefore, 
the DEGs were considered candidate genes if they were 
located within the confidence interval (CI) of the QTLs 
identified by GWAS, linkage mapping, or both. Accord-
ing to the above criteria, a total of 12 DEGs located in the 

Fig. 6  The putative model of flowering regulatory network of 12 candidate genes associated with flowering time in B. napus. The heatmap 
represents the expression levels in four samples
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CI of 16 significant loci were identified as candidate genes 
of growth period traits. The loci were BnaC04g15640D, 
BnaA03g40160D, BnaC06g15270D, BnaC09g05250D, 
BnaA04g22640D, BnaA05g05560D, BnaA05g05000D, 
BnaC09g48370D, BnaC02g36310D, BnaC09g23670D, 
BnaA03g39820D and BnaA05g05010D. The 12 DEGs 
were known to regulate floral development by affecting 
aging, photoperiod/circadian clock, GA, vernalization, 
flower development and meristem identity and flow-
ering time integrator (Table  4 and Fig.  6). BnaAGL6.
A05, which encodes a MADS-box transcription factor, 
negatively regulates the FLC/MAF clade genes and posi-
tively regulates FT in Arabidopsis [30]. Among them, 
BnaC06g15270D (BnaLNK2.C06), BnaC09g48370D 
(BnaGA20OX3.C09) and BnaA03g39820D (BnaFUL.
A03) were also identified as EDGs between BBCH20 
and BBCH50 (vernalized and nonvernalized) associated 
with flowering time and yield QTLs [27]. In addition, 
an ortholog of the circadian clock pathway, BnaTOC1.
A03 and floral meristem identity gene BnaFUL.A03 were 
identified in both GWAS and linkage analysis [31]. Thus, 
we considered these five genes to be our most promising 
candidate genes for future prospects.

To analyze the polymorphism and explore their rela-
tionship with five growth traits, the sequence variation 

was analyzed in the genomic sequence including the 
complete coding sequence and 2000 bp upstream of the 
ATG translational start codon in the 12 candidate genes 
in the 558 lines based on our resequencing data. Among 
12 genes, seven genes had polymorphic sites: 1, 15, 4, 
5, 1, 3 and 10 SNPs were identified in the BnaFUL.A03, 
BnaELF4.A04, BnaSOC1.A05, BnaELF4.A05, BnaLNK2.
C06, BnaTOC1.C09 and BnaGA20OX3.C09, respectively, 
and formed different types of haplotypes. Detailed haplo-
type information is listed in Additional file 20: Table S12.

The association of each haplotype with five growth 
periods was then analyzed in the GWAS population. We 
compared the phenotypic variations of different haplo-
types for the above agronomic traits (Additional file 20: 
Table  S12, Additional file  21: Fig. S9 and Additional 
file 22: Fig. S10). In general, for BnaELF.A04, accessions 
with BnaELF.A04-Haplc accounted for 94.2% and showed 
a significantly shorter MT period in 2018 and 2019 com-
pared to BnaELF.A04-Hapla. For BnaELF.A05, varieties 
with BnaELF.A05-Hapla accounted for 90.8% and showed 
the shortest FP compared to the other two haplotypes 
in 2017 and 2019. For BnaSOC1.A05, most accessions 
have BnaSOC1.A05-Haplb (97.5%) and exhibited shorter 
DFF and longer MT over three years compared to the 
BnaSOC1.A05-Hapla. For BnaKNK2.C06, most varieties 
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Fig. 7  qRT-PCR validation of the expression patterns of nine candidate genes in four samples. The orange line represents the RNA-Seq results, the 
blue line represents the qRT-PCR results and data are shown as mean ± SEM
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have BnaKNK2.C06-Hapla (93.7%) and showed lower 
DFF and GP than BnaKNK2.C06-Haplb. For BnaTOC1.
C09, accessions with BnaTOC1.C09-Haplc accounted 
for 94.1% and had lower DFF, lower FP and longer MT 
over 3 years. For BnaGA20OX3.C09, the two haplotypes 
did not exhibit significant differences between the five 
growth period traits. Thus, the haplotype BnaSOC1.A05-
Haplb and BnaLNK2.C06-Hapla showed more favorable 
phenotypic traits and may be used for further earliness 
molecular breeding.

Confirmation of candidate gene expression using qRT‑ PCR
To verify the accuracy and reproducibility of the tran-
scriptome analysis, nine candidate DEGS listed in Table 4 
were selected for qRT-PCR analysis. As shown in Fig. 7, 
the expression of nine genes were consistent with the 
RNA-Seq results in the four samples. These results dem-
onstrated the reliability of the RNA-sequencing results.

Discussion
Growth period are important traits that can influence 
crop yield and quality. Identifying the genetic loci for 
growth period traits may help to elucidate the genetic 
basis underlying the growth period and be valuable for 
developing cultivars adapted to different geographical 
regions. Linkage analysis and association mapping are 
the two most common methods used for mapping com-
plex traits. Linkage mapping can exclude false positives 
of associated loci caused by high linkage disequilibrium, 
and association mapping can be used to narrow the con-
fidence interval of linkage analysis when its QTL regions 
are large. The combination of two mapping methods fur-
ther improves mapping efficiency and accuracy [32–34]. 
In the current study, we detected the SNP loci associated 
with five growth period traits (DIF, DFF, FP, MT, GP) via 
GWAS in the natural population in three-year environ-
ments and detected QTLs that influence growth in a RIL 
population over 2 years in B. napus.

A total of 146 SNP loci were found to be associated 
with growth period traits (13 related to DIF, 23 to DFF, 
6 to FP, 19 to MT and 85 to GP), which were detected 
in at least two environments (including BLUP). Among 
these SNP loci, 28 were consistent with at least one QTL 
identified in one or more previous studies. In addition, 
101 candidate genes were identified as flowering orthol-
ogous genes based on the LD block or 300  kb to either 
side of the significant SNPs, most of which were also 
reported in previous studies [14, 22–28]. In particular, 
the flowering time integrator and floral meristem identify 
genes (BnaFLC.C2, BnaFUL.A3, and BnaSVP.A9) were 
reported in at least three studies. These results indicated 
that the results in the present study are notably reliable. 
A total of 83 QTLs were observed relating to DIF, DFF, 

FP, MT and GP by linkage mapping in 2  years. These 
QTLs could explain over 10% of the phenotypic variance 
for DIF, DFF, FP, MT and GP. However, most QTLs were 
only detected in a single-year environment, which indi-
cates that the rapeseed growth period was largely affected 
by environmental variation. Finally, six QTLs were asso-
ciated with growth period traits using both association 
and linkage mapping (Additional file  23: Table  S13). 
S19_17595451 and q17GP.C09 were associated with GP. 
However, the other five QTLs with overlapping confi-
dence intervals were related to different traits in linkage 
analysis and association analysis. The results were also 
reported in Zuo et al. [35].

SNP markers with pleiotropic effects
Some GWAS and linkage mapping studies have indi-
cated that one locus can control multiple highly corre-
lated traits [33, 36]. We detected significant correlations 
between the five growth period traits (Table 2), therefore, 
it is possible that some SNPs can affect these traits simul-
taneously. Five QTLs found in the GWAS and 15 QTLs 
identified in the linkage mapping were co-associated 
with at least two growth period traits, which coincided 
with significant phenotypic correlations among the traits 
(Additional file  24: Table  S14a, b). It has been reported 
that co-mapping of QTLs for correlated traits may result 
from either tight linkage of multiple genes [37] or single 
gene pleiotropy [38]. In our research, we found that a sin-
gle gene can control multiple traits (Additional file  25: 
Fig. S11). This finding further confirmed that co-map-
ping of QTLs caused by single gene pleiotropy. The co-
mapping of QTLs can help breeders identifying favorable 
alleles for multiple traits simultaneously in marker-
assisted breeding [39].

Identification of flowering DEGs
A GO and KEGG pathway enrichment analysis indicated 
that the common DEGs between EV vs. ER and LV vs. LR 
were enriched for circadian rhythm—plant and salicylic 
acid biosynthetic process (Additional file  15: Fig. S6b), 
indicating that circadian rhythm and salicylic acid play 
an important role in the B. napus floral transition, which 
was also reported in the Annona squamosa and Rosa 
chinensis [40, 41]. We also observed significant enrich-
ment for genes involved in the circadian rhythm between 
LR vs. ER, suggesting that the flowering time difference 
between early- and late-flowering lines was primarily due 
to the expression difference of circadian rhythm genes 
(Additional file 17: Fig. S7b, d).

Transcription factors have been reported to play cru-
cial roles in the reproductive development of flower-
ing plants [42]. The MADS-box transcription factor is 
a major group of regulators controlling floral transition, 
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floral organ specification and floral development in flow-
ering plants [43].In the present study, the bHLH, ERF, 
MIKC_MADS, NAC and WRKY transcription factors 
were identified. Most IF genes were upregulated during 
the floral transition of B. napus (Additional file  18: Fig. 
S8a), suggesting their pivotal roles in the induction of flo-
ral transition. Plant hormones, such as auxin, cytokinin 
(CK), abscisic acid (ABA), gibberellic acid (GA), salicylic 
acid (SA), and jasmonic acid (JA), are involved in the flo-
ral transition process and plant flowering [44–46]. The 
effects of GA on flowering have been extensively studied 
in Arabidopsis [47, 48]. 62 DEGs involved in six hormone 
pathways were identified in our transcriptome data, 
which further confirmed the importance of hormones 
in the flowering and flower development process (Addi-
tional file 18: Fig. S8b).

In this study, we also detected 125 flowering and flower 
development-related homologous genes based on BLAST 
analysis using sequences of 306 known flowering genes in 
Arabidopsis. Some of these genes are related to five major 
flowering pathways, including circadian rhythms/pho-
toperiod, vernalization, GA signaling and aging, while 
others encode regulators functioning as flowering inte-
grators or floral meristem identification (Fig. 5 and Addi-
tional file 19: Table S11) [49].

Candidate genes for growth period traits
The integration of QTL mapping and transcriptome 
sequencing is a highly useful and popular strategy for 
discovering candidate genes of complex traits [18]. By 
integrating DEGs from RNA-seq with GWAS and link-
age mapping, 12 genes mainly related to circadian clock, 
hormone, flowering time integrator and flower meristem 
identity were identified as candidate genes regulating 
growth period traits in B. napus.

Of the 12 candidate genes detected in this study, five 
genes are involved in the circadian clock/photoperiod 
pathways: BnaA03g40160D and BnaC09g05250D are 
homologous to TOC1 and interact with LHY, and CCA1 
forms the negative feedback loop of the circadian clock 
[29]; BnaA04g22640D and BnaA05g05560D are homolo-
gous to EARLY FLOWERING 4 (ELF4), which  is a part 
of a corepressor complex consisting of ELF4, ELF3, and 
LUX involved in the transcriptional regulation of APRR9 
and elf4 mutations result in early flowering in non-induc-
tive photoperiods [50]; BnaC06g15270D is homologous 
to NIGHT LIGHT-INDUCIBLE AND CLOCK-REGU-
LATED 2 (LNK2), LNK1 and LNK2 integrate early light 
signals with core oscillator components (TOC1, PRR) to 
keep track of seasonal changes in day length [51]. The 
up-regulation of TOC1 and ELF4 in the late-flowering 
lines (LR) was in accordance with the mutant pheno-
type in Arabidopsis; BnaC02g36310D homologous to 

ICE1 is involved in vernalization pathways. Cold‐acti-
vated ICE1 directly induces the expression of FLC, which 
represses  SOC1  expression, resulting in delayed flower-
ing [52]; BnaC09g48370D is homologous to GA20OX3, 
which encodes a gibberellin 20-oxidase involved in the 
GA pathway. Both GA20ox and  GA  2-oxidase genes 
are regulated by several transcription factors, including 
SHORT VEGETATIVE PHASE (SVP) and SOC1 [53–55]; 
BnaC04g15640D encodes a gene homologous to TOE1, 
which is a type of AP2 transcription factor and the tar-
get gene of miR172. TOE1 and its microRNA regulator 
miR172 play an important role in plant growth and phase 
change in different crops [56–58]; BnaA05g05000D is 
homologous to AGL6 (encoding a MADS-box transcrip-
tion factor). AGL6 regulates flowering time through 
control the transcription of two key regulators of flow-
ering time: FLOWERING LOCUS C (FLC) and FT. The 
agl6-1D mutant, in which AGL6 was activated by the 
35S enhancer, showed early flowering under both long-
day (LD) and short-day (SD) conditions [59]; the floral 
integrator genes play important roles in activating flo-
ral meristem formation genes to induce flowering. Bna-
A05g05010D was identified as a SOC1 paralog, which 
is a floral activator and integrates signals from the pho-
toperiod, vernalization, and autonomous pathways in 
Arabidopsis [60, 61]. Overexpression of SOC1 could 
suppress the late flowering and delayed phase transi-
tions during the vegetative stages [62]; BnaA03g39820D 
was homologous to FRUITFULL (FUL) of Arabidopsis, 
a MADS-box transcription factor negatively regulated 
by APETALA1(AP1), which mediates the vegetative and 
meristem identity transitions by forming FUL-SVP and 
FUL-SOC1 heterodimers. FUL has been reported to con-
nect several flowering pathways as a downstream target 
gene of age, photoperiod, and ambient temperature path-
ways [31]; BnaC09g23670D is homologous to AGL14, 
AGL14 promote flowering transition and participate in 
flower meristem maintenance and determinacy by posi-
tively regulating TERMINAL FLOWER 1 (TFL1) expres-
sion [63, 64].

Conclusions
In this context, we conducted systematic research 
(including GWAS, linkage mapping and gene expression 
analysis) to identify candidate genes regulating growth 
period traits in B. napus. In summary, 146 SNPs and 83 
QTLs associated with the five growth period traits (DIF, 
DFF, FP, MT and GP) were identified by association and 
linkage mapping techniques. Six QTLs were associated 
with growth period traits using both mapping methods. 
Five QTLs found in the GWAS, and 14 QTLs identified 
in the linkage mapping were identified as pleiotropic 
SNPs. RNA-Seq analysis demonstrated that the genes 
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mediated by photoperiod/circadian rhythms, vernali-
zation, GA signaling, aging, flowering time integrator 
and flower meristem identity may regulate floral transi-
tion and flower development in B. napus. An integrated 
analysis of QTLs and DEGs identified 12 candidate genes 
for growth period traits. BnaTOC1.A03 and BnaFUL.
A03 were identified in both GWAS and linkage analy-
sis; BnaLNK2.C06, BnaGA20OX3.C09 and BnaFUL.
A03 have been previously reported. Among 12 genes, 7 
genes have polymorphic sites in the coding sequence 
and 2000 bp upstream of the TSS. According to pheno-
type analysis, the haplotype BnaSOC1.A05-Haplb and 
BnaLNK2.C06-Hapla showed more favorable phenotypic 
traits. Therefore, our data suggest that these genes may 
play important roles as regulators of flowering time and 
growth period in rapeseed.

Materials and methods
Plant material and phenotypic evaluation
A diversity panel consisting of 588 rapeseed inbred lines 
(74 winter types, 428 semi-winter types, and 86 spring 
types) was used for the GWAS analysis in the present 
study [24]. These lines were grown at the Southwest Uni-
versity of Beibei (29°45′N latitude, 106°22′E longitude, 
and an altitude of 238.57 m), Chongqing, China, in 2017, 
2018 and 2019. Each variety was planted in a plot with 
two rows (30-cm line width and 20-cm plant distance), 
and each row had 10 plants. A randomized complete 
block design with two replications was employed.

The RIL populations of 172 RILs derived from 
GH06 × P174 were previously described in Liu et  al. 
[65]. The genetic linkage map contains 9164 SNP mark-
ers covering 1832.9 cM, and 2795 SNPs were applied for 
QTL mapping. The population was planted in the experi-
mental field of Southwest University of Beibei (29°45′N 
latitude, 106°22′E longitude, and an altitude of 238.57 m) 
Chongqing, China, in 2017 and 2018. The planting 
method is consistent with the GWAS population.

Five growth period traits, DIF (the number of days 
from sowing to the date when 25% plants opened first 
flower), DFF (the number of days from sowing to the date 
when 75% plants had stopped blooming), FP (the differ-
ence between DFF and DIF), MT (the number of days 
from DFF to the date when 75% pods were yellow) and 
GP (the number of days from sowing to the pod ripen) 
were recorded in the field trials, respectively [14]. Flow-
ering was scored in winter, semi-winter and spring types 
using the same standard [15, 24, 28]. Analysis of variance 
(ANOVA) was performed using the GLM procedure of 
SAS.

Genome‑wide association analysis
GWAS for the growth period traits were performed using 
Tassel 5.0 software by general linear models (GLM) and 
mixed linear models (MLM) methods. Population struc-
ture, relative kinship, and LD analysis were completed in 
previous studies [24]. A negative log (1/n) was used as a 
threshold for significant association SNPs with traits, where 
n represents the SNP number used in the GWAS [66, 67]. 
Significant markers in the same LD block were viewed as 
one QTL region. The QQ plot and Manhattan plot were 
displayed using qqman [68] and CMplot software.

QTL analysis
Windows QTL Cartographer Version 2.5 (WinQTL-
cart2.5) software was used in QTL mapping via the com-
posite interval mapping method [69]. The logarithm of 
the odds (LOD) threshold for a significant QTL was cal-
culated with 1000 permutations at a significance level of 
p = 0.05. A confidence interval for each QTL was defined 
by LOD change from the peak position. The contribu-
tion rate (R2) and additive effect of a putative QTL were 
also calculated from WinQTLcart2.5. If the phenotypic 
variance explained was larger than 10%, we classified the 
QTL as a major QTL. QTLs were assigned names by add-
ing the prefix of trait abbreviation, and their locations, 
including the chromosome number, were determined 
according to McCouch et al. [70]. If more than one QTL 
was detected on the same chromosome for a trait, QTLs 
were serially numbered. MapChart software was used to 
draw the QTL position [71].

Gene expression analysis
Early-flowering material (18Z134) and late-flowering 
material (18Z88) were selected from the above RIL popu-
lation based on 6 years of field data. The juvenile leaves at 
the vegetative stage (30 days after seeding when six leaves 
fully expanded) and reproductive stage (20 days after flow-
ering when 50% of the flowers are open) were collected, 
respectively, and immediately placed in liquid nitrogen 
and stored at − 80  °C. Total RNA was extracted using 
RNAprep Pure Tissue Kit (Tiangen, China) according to 
the manufacturer’s instructions. RNA was pooled to yield 
four RNA samples, EV (leaves of early-flowering material 
at vegetative stage), LV (leaves of late-flowering material at 
vegetative stage), ER (leaves of early-flowering material at 
reproductive stage) and LR (leaves of late-flowering mate-
rial at reproductive stage). Each sample has two biological 
replications. The sequencing data have been deposited in 
NCBI Sequence Read Archive (SRA, https​://www.ncbi.nlm.
nih.gov/sra) with the accession number PRJNA540020.

DEGs between the two samples were identified based 
on the criteria false discovery rate (FDR) < 0.05 and |log2 
(Fold change) | > 1. Gene ontology (GO) enrichment 

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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analysis of the DEGs was performed using Blast2GO, and 
the significantly enriched GO terms (p < 0.05) were dis-
played using the online tool WEGO (http://wego.genom​
ics.org.cn). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the DEGs was 
performed using the KOBAS2.0 website (http://kobas​
.cbi.pku.edu.cn/home.do). The transcript abundance was 
calculated based on the fragments per kilobase of exon 
model per million mapped reads (FPKM). The log2-
transformed (FPKM + 1) values were used to study gene 
expression.

Candidate gene predication
According to the decay of LD, genes within 300 kb up and 
downstream of the significantly associated SNP loci were 
mined [12, 72]. The QTL intervals were aligned to the B. 
napus reference genomes (http://www.genos​cope.cns.fr/
blat-serve​r/cgi-bin/colza​/webBl​at). Based on the physi-
cal positions of the flanking marker, genes located in the 
QTL confidence interval were extracted. The prediction 
of candidate genes referred to the two conditions: genes 
of known function in B. napus or genes with function-
known orthologs in Arabidopsis. Genes within the con-
fidence interval and meeting one of the above conditions 
were used for gene expression analysis.

Validation of candidate genes by qRT–PCR
For qRT-PCR, the samples used for RNA-seq were used 
to synthesize cDNA using the QuantiTect® Reverse Tran-
scription Kit (Qiagen), and qRT–PCR experiments were 
performed with SYBR qPCR Mix (Bio-Rad) according to 
the manufacturer’s specification. At least three biological 
replicates along with two technical replicates were ana-
lyzed for expression levels. BnActin7 (5′-GGA​GCT​GAG​
AGA​TTC​CGT​TG-3′ and 5′-GAA​CCA​CCA​CTG​AGG​
ACG​AT-3′) was used as an internal control. The 2−ΔΔCt 
method was used to calculate the normalized expression 
of target genes [73]. The candidate gene-specific primers 
are shown in Additional file 26: Table S15.
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