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Abstract

Idiopathic pulmonary fibrosis (IPF) is a lethal, medically refractory
syndrome characterized by intrapulmonary accumulations of
extracellular matrix (ECM) proteins produced by fibroblasts.
Activation, clonal expansion, and differentiation of lymphocytes are
also frequently present in IPF. Activated T cells are known to exert
several effects that promote ECM production, but opposing
homeostatic actions, wherein T cells can inhibit fibrosis, are
less well understood. We found that CD27, a TNF receptor
ubiquitously expressed on naive T cells, is downregulated on CD4
T cells of patients with IPF and that CD70, the sole ligand
for CD27, is present on human pulmonary fibroblasts. We
hypothesized that cognate engagements between lymphocyte
CD27 and fibroblast CD70 could have functional consequences.
Accordingly, a series of subsequent studies were conducted to
examine the possible role of CD27–CD70 interactions in the

regulation of fibrogenesis. Using IB, flow cytometry, RT-PCR, and
kinomic assays, we found that fibroblast CD70 expression was
inversely correlated with cell density and upregulated by TGF-b1
(transforming growth factor-b1). CD70 agonists, including
T-cell–derived soluble CD27, markedly diminished fibroblast
collagen and fibronectin synthesis, and these effects were potent
enough to also inhibit profibrotic actions of TGF-b1 on ECM
production in vitro and in two distinct ex vivo human skin
models. CD70 activation was mediated by AKT (protein kinase B)
and complex interconnected signaling pathways, and it was abated
by prior CD70 knockdown. These results show that the
CD70–CD27 axis modulates T-cell–fibroblast interactions and
may be an important regulator of fibrosis and wound healing.
Fibroblast CD70 could also be a novel target for specific
mechanistically based antifibrosis treatments.
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Disruptions of normal tissue architecture
and organ function by excessive
accumulation of extracellular matrix
(ECM) proteins are a defining feature of
human fibrotic diseases (1–3). This
pathological fibroproliferation is generally
believed to be the end result of disordered
or exaggerated responses to recurrent or
chronic injuries (1–4). Under normal
conditions, and especially in self-limited

injuries, fibrotic wound responses are
appropriately tempered, which limits
the development of scarring. In
other cases, however, such as during
recurrent or persistent infections, chronic
inflammation, or other repetitive tissue
injuries, wound repairs may result in
dysregulation of activated fibroblasts,
resulting in deleterious overproduction of
ECM (1, 2, 4, 5).

The regulation of fibrotic responses
in both health and disease involves a
poorly understood choreography of
diverse interactive cell types and control
mechanisms. Nonetheless, and despite often
wide-ranging differences of clinical
phenotypes, a common theme of nearly all
pathological fibrotic syndromes is the
underlying presence of adaptive immune
activation, even if many of the details
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involved in the immunological modulation
of fibroblasts remain undiscovered (1, 2).

The series of investigations reported in
this article stemmed from an initial
observation that CD27nullCD41 T cells,
corresponding to a repetitively stimulated,
highly differentiated T-cell effector–
memory (Tem) phenotype, which have
previously been shown to have augmented
pathologic effector functions (6–10), are
significantly increased in the circulation of
patients with IPF and several other disease
syndromes characterized by adaptive
immune system activation (6–10).
Moreover, the extent of this T-cell
differentiation, as evidenced by the
proportions of Tem among the peripheral
blood mononuclear cells (PBMNCs) of
patients, is correlated with disease severity
and mortality in individuals with many
disorders, including IPF (6–10). Regardless
of the particular disease syndrome in which

they arise, Tem cells share several common
abnormal phenotypic features, which
characteristically include downregulation of
costimulatory molecule CD28. Thus, a finding
of increased numbers of CD41CD28null cells is
widely used as a specific marker of T-cell
pathogenesis (9, 10). Our discovery that CD27
is also coordinately downregulated with CD28
on the CD4 Tem of patients with IPF led us
to explore potential consequences of these
lymphocyte alterations.

CD27 is a TNF receptor family member
that is almost invariably expressed on naive
CD4 T cells (11, 12). However, activation of
T cells can result in proteolytic cleavage of
their cell surface CD27, with resultant
extracellular release of functionally active
soluble receptor (sCD27) (12). The naturally
occurring ligand for CD27 is CD70, a type II
transmembrane TNF family glycoprotein
that is best known as a transducer for
costimulatory signals among leukocytes (11,
13). CD70 also has a limited distribution
among other cells and tissues, including
human fibroblasts (14) and lung (15).

Cognate interactions between CD27
and CD70 play a critical role in lymphocyte
activation and differentiation (11, 13), but
the functional significance of mesenchymal
CD70 has not been described previously.
Accordingly, we conducted an incremental
series of investigations to explore the possible
participation of the CD27–CD70 axis in the
pathogenesis of fibrotic disorders, including
IPF. We hypothesized that if the CD70 on the
surface of human fibroblasts is functionally
active, engagements of this ligand with
lymphocyte CD27 might be a heretofore
undescribed process by which T cells
interact with and affect activities of these
mesenchymal cells.

The present study details a previously
unknown mechanism for lymphocyte–
fibroblast interactions that appears to be
involved in the homeostatic regulation of
fibrogenesis. In addition to providing
fundamental insights into these biological
processes, the findings we report may also be
actionable in that they indicate that targeting
the CD27–CD70 axis (11) could be a novel
approach for the development of more
effective antifibrotic therapies.

Methods

See also the data supplement for further
methodological details and Tables E1–E3 in
the data supplement for reagent lists.

Patient Blood Specimens
PBMNCs were isolated from patients with
lung diseases, as well as fromhealthy volunteer
control subjects, in the course of previously
detailed studies (6, 16–18). Cell surface CD27
expression was determined by flow cytometry
in randomly selected subpopulations of these
study cohorts (Tables E4–E6).

Fibroblast Cultures
Seed cultures of primary human pulmonary
fibroblasts were a generous gift from Dr.
Veena Antony (19). Fibroblast cultures
were established in Dulbecco’s modified
Eagle medium supplemented with 10%
heat-inactivated FBS, L-glutamine,
penicillin/streptomycin, and amphotericin
B at 378C in a humidified 7% CO2

atmosphere. Fibroblasts at passages 3–9
were inoculated into 24-well plates or
6-well plates (1–23 105 cells/ml) and
incubated for specified times.

Murine fibroblasts were obtained from
outgrowths of mouse lungs freshly harvested
from killed C57B/6 mice. These cells were
cultured using methods identical to those
described for human fibroblasts.

IB, Flow Cytometry, Viability, Cell
Cycle Analyses, mRNA Expression
and CD70 Knockdown
Details of these procedures are described in
the data supplement.

Activation of Fibroblast CD70
Various methods were used to activate CD70,
depending on details of the experimental
design. Pilot studies established the most facile
methods to stimulate adherent plate-bound
fibroblasts for many uses by treatment with
primary anti-CD70 antibodies or CD27 fusion
protein, followed by cross-linking with
secondary antibodies (see Tables E1 and E2).
In some cases, fibroblasts were seeded onto
tissue culture plates that had previously been
coated with anti-CD70 antibodies by
overnight incubation. In some experiments,
TGF-b1 (transforming growth factor-b1) was
added to fibroblast culture media (2 ng/ml) at
the same time as the CD70 activations.

T-cell Conditioned Media Cultures
CD4 T cells were isolated from human
PBMNCs using CD4 immunomagnetic
beads. The purified CD4 T cells
were stimulated with CD3/CD28
immunomagnetic beads and cultured
(53 105 cells/200 ml) in RPMI with 10%

Clinical Relevance

We found that CD27 is downregulated
among highly differentiated T-cell
effector–memory cells in patients with
chronic diseases, such as idiopathic
pulmonary fibrosis, whereas naive
T cells ubiquitously express CD27.
Other studies have shown that T-cell
CD27 interacts with CD70 receptors
on pulmonary fibroblasts, causing
these mesenchymal cells to decrease
their production of extracellular
matrix proteins, such as collagen and
fibronectin, and this effect is potent
enough to antagonize profibrotic
effects of TGF-b1 (transforming
growth factor-b1). We believe that
these findings account for the relative
paucity of fibrosis during acute
immune responses in which naive
CD271 T cells predominate, whereas
chronic immune responses, typically
mediated by greater proportions of
CD27null, tend to result in more
fibrosis due to loss of the CD27–CD70
extracellular matrix inhibition. In
addition to having biological
implications, these findings illustrate
the possibility that stimulation of
fibroblast CD70 with activating
antibodies or soluble CD27 might be a
novel mechanistic approach for
treatment of pathological fibrosis.
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human AB sera. After 48 hours, the T-cell
conditioned medium was collected by
centrifugation, and sCD27 was measured by
ELISA. Near-confluent fibroblasts were
cultured in the presence or absence of 1:10
dilutions of the CD4 T-cell conditioned
medium for 24 hours before the cells were lysed
for immunoblot analyses. In some experiments,
the conditioned medium was heated for 5
minutes at 958C to denature the sCD27.

Kinomic Assays
Pilot studies were conducted to determine the
optimal timing of kinase assays.
Immunoblots of lysates from CD70-
stimulated and unstimulated (isotype)
control fibroblast cultures were incubated
with PY20 antibody (1:10,000 dilution)
overnight at 48C. The greatest global change
of tyrosine phosphorylation occurred
approximately 30 minutes after CD70 cross-
linking (see Figure E1). Four fibroblast lines
were similarly treated, and their lysates were
aliquoted for kinomic assays and
confirmatory IB. Details of these assays,
including analyses of the kinomic data, are
found in the data supplement.

Ex Vivo Fibrosis Models
The ex vivo fibrosis models used were as
follows:

1. Abdominal skin: Human abdominal skin
was obtained from remnants of plastic
surgery procedures performed in adult
patients. After trimming fat from these
specimens, the skin was cut into 1.5-mm
sections and cultured in an air–fluid
interface (20). Intradermal injections of
TGF-b1 (10 ng/skin) and CD27 fusion
protein (5 mg/skin) were performed 1

week before harvest, fixation, and
hematoxylin and eosin staining. Skin
thicknesses at 19 randomly selected
cross-sectional areas in each
specimen were determined by direct
measurements on images and averaged.

2. Human foreskin: Punch biopsies (3-mm
diameter) of human foreskin obtained
during neonatal circumcisions were
incubated in media supplemented with
TGF-b1 (10 ng/ml) with or without
anti-CD70 monoclonal antibody (mAb)
(5 mg/ml) or in media alone (21). After
culture for 6 days, the skin specimens
were harvested, dried, and weighed. The
collagen content was quantitated by
hydroxyproline assay and normalized to
the total dried weight of each foreskin
specimen.

Statistics
Statistical analyses were performed using
Prism version 5.0b software (GraphPad
Software Inc.). Unpaired continuous
variables were compared by Mann-Whitney
U test. Paired tests of continuous values
before and after (or with and without) a
single treatment were carried out with the
Wilcoxon signed-rank test. Associations
between continuous values were examined
by Pearson correlation. A P value less than
0.05 was considered significant.

Study Approval
Written informed consent was obtained
from participants before the deidentified
specimens used in these studies were
obtained under the auspices of an
institutional review board–approved
protocol (UAB IRB-060815011). Animal

studies were conducted under auspices of
the University of Pittsburgh Institutional
Animal Care and Use Committee (no.
16068267).

Results

Expression of CD27 Is Reduced
in Peripheral Blood CD4 T Cells
of Patients with IPF, and CD27
Downregulation Is Associated with a
Decline in Lung Function
We found that CD27 was coordinately
downregulated with CD28 among circulating
CD4 T cells of patients with IPF (n=37;
r=0.92; P, 0.0001) (Figure 1A) and other
chronic lung diseases (n= 105; r= 0.83;
P, 0.0001) (see Figure E2 and Tables
E4–E6). The collinear relationship between
CD27 and CD28 expression is also similar in
subjects with normal lung function (n= 55;
r=0.77; P, 0.0001), suggesting that CD27
and CD28 coexpression reflects a
fundamental process of T cells. Thus, like
CD28, CD27 is also expressed on lesser
proportions of circulating CD4 T cells in
subjects with disease than in healthy control
subjects (n= 55; P=0.03) (Figure 1B).
Moreover, CD27 expression was correlated
with concurrent forced vital capacities
among individual patients with IPF (n= 37;
r=0.39; P, 0.02) (Figure 1C) and
subsequent measures of DLCO (n= 22;
r=0.56; P= 0.006) (Figure 1D).

CD70 Is Expressed on the Surface of
Fibroblasts and Regulated by Cell
Density and TGF-b1
We first used IB of human fibroblast lysates
to test for the presence of CD70 protein. All
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Figure 1. CD27 downregulation on circulating CD4 T cells of patients with idiopathic pulmonary fibrosis (IPF). (A) Correlation between the percentage
of CD271/total CD41 (%CD27) and CD281/total CD41 (%CD28) among patients with IPF (n=37; r=0.92; P, 0.0001). Demographic and clinical
characteristics of these subjects are detailed in Table E4. (B) %CD27 among these subjects with IPF is reduced compared with healthy control subjects
(n=55; *P=0.03). The lowest, second lowest, middle, second highest, and highest lines represent 10th, 25th, median, 75th, and 90th percentiles,
respectively. Mean is denoted by (1). (C) Forced expiratory volumes, expressed as percent predicted values (FVC%p), correlated with concurrent %CD27
among the patients with IPF (n=37; r=0.39; P,0.02). (D) %CD27 is also correlated with DLCO as percent predicted values (DLCO%p) at subsequent
determinations approximately 1 year (11.013.0 mo) after the T-cell assays (n=22; r=0.56; P=0.006). There were fewer subjects with IPF at these later
observations, owing to interval deaths, transplants, or other reasons that precluded DLCO measures. FVC= forced vital capacity.
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normal and IPF fibroblast lines evaluated
by IB were CD70 positive, although
concentrations of the receptor varied
considerably among these preparations
(Figure 2A). We subsequently isolated and
individually tested membrane and cytosol
fractions and found that CD70 was located
in both compartments (Figure 2B). The
presence of cell surface CD70 was also
corroborated by flow cytometry
(Figure 2C).

We next performed experiments to
better understand the observed variability in

human fibroblast CD70 expression.
Among other influences, CD70
expression was highly associated with the
cell cycle, being more prevalent among
the fibroblasts in S (n = 9; P, 0.01) and
G2/M phases (n = 9; P, 0.01) (Figures
2C and 2D). The proportions of CD701

fibroblasts within cultures were also
inversely related to the extent of cell
confluence, whereby the proportion of
actively dividing (i.e., S and G2/M)
fibroblasts is increased by low plating
density (Figure 2E). Isolation and

propagation of fibroblasts that had
previously been segregated into CD70null

subpopulations by cell sorting showed
that expression of this surface molecule
was facultative and highly fluid; many
cells that were initially CD70null later
expressed this receptor when passaged
again (see Figure E3).

We speculated that if the fibroblast
CD70 has physiological relevance,
expression of this ligand might also be
modified by TGF-b1, a potent profibrotic
cytokine that has a singularly important
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b1) (2 ng/ml for 24 h; n=8; *P=0.05). (G) Representative flow cytometry plot showing that CD70 surface expression was increased 24 hours after TGF-b1
stimulation. (H) Flow cytometry quantitation and compilation showed that TGF-b1 stimulation increased CD70 surface expression, expressed as mean
fluorescence intensity (MFI), compared with basal conditions (unstimulated) in primary lung fibroblast lines from 10 healthy human donors and 8 IPF lungs
(*P<0.05 and ns). 7-AAD=7-aminoactinomycin D; NL = healthy human lungs; ns = not significant; unstim=unstimulated.
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role in adaptive wound responses, as well as
by the development of IPF and other
fibroproliferative disorders (1–5).
Incremental assays confirmed that
fibroblast CD70 mRNA and protein
expression was upregulated by TGF-b1
among fibroblast cultures (Figures
2F–2H). Given wide dispersion of
values, the mean fluorescence intensities
(MFIs) of CD70 expressions, determined
by flow cytometry, were not significantly
different between normal and IPF
fibroblasts, either without (596 86 MFI
units vs. 236 12 MFI units, normal vs.
IPF, respectively; P = 0.57) or with
TGF-b1 stimulation (2126 265 MFI
units vs. 1236 129 MFI units, normal vs.
IPF, respectively; P = 0.23) (Figure 2H).
Similarly, the magnitude of the CD70
MFI increases induced by TGF-b1 did not
significantly differ between normal

(4806 780%) and IPF fibroblasts
(6606 1,600%).

CD70 Agonism Decreases Fibroblast
ECM Production
Additional studies explored potential
actions of fibroblast CD70 on ECM
production, which is an important function
of these mesenchymal cells in health and
disease (2–5). Fibroblasts from both normal
and IPF lungs (n= 10 each) decreased their
production of COL (pro–collagen, type I,
a1) and FN (fibronectin) proteins after
incubation with function-stimulating anti-
CD70 antibodies (P< 0.05 for each)
(Figures 3A and 3B). Anti-CD70 antibody
treatment also caused reductions of COL
mRNA (P, 0.001) and FN mRNA
(P, 0.05) (n= 21) (Figure 3C).
Furthermore, these effects were potent
enough to oppose the profibrotic actions of

TGF-b1 in both normal and IPF fibroblasts
(n= 10 each; P, 0.05 for each) (Figures 3A
and 3B).

We corroborated these findings by
treating fibroblasts with a CD27 fusion
protein, which simulates the in vivo natural
ligand of CD70, and found broadly similar
effects on ECM production (n= 6; P= 0.06)
(see Figure E4). These studies were further
extended by testing effects of native sCD27,
which is produced during acute T-cell
responses (12). We generated sCD27
in vitro by activating healthy control naive
CD4 T cells and confirmed the presence of
sCD27 in the culture supernatants by
ELISA after 72 hours and 96 hours of
incubation (P, 0.01 for each) (see Figure
E5). Fibroblasts cocultured with these
sCD271 supernatants decreased their
production of ECM proteins (Figure 3D),
similar to the treatments with anti-CD70
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mAb or CD27 fusion protein. ECM
production was not altered, however, by
incubation with sCD27 that had been
denatured by boiling (Figure 3D).

To further validate that our findings
were specific consequences of CD70
agonism, we performed a series of analogous
experiments using fibroblasts in which
CD70 expression was decreased by prior
treatment with shRNA. ECM production
was markedly diminished in the CD70
antibody–treated fibroblasts that had
reduced expression of this receptor
compared with autologous cell lines that
had instead been transfected with (control)
scrambled sequence constructs (Figure 3E).
The efficacy of the CD70 knockdown was
confirmed by IB (Figure 3F).

CD70-mediated Inhibition of ECM
Production Is Not Due to Fibroblast
Growth Inhibition or Cytotoxicity
To further investigate the mechanism(s) by
which ECM production is inhibited by
CD70 ligation, we evaluated the effect of
anti-CD70 antibody treatments on
fibroblast proliferation, activation, and
viability. Exposure of primary human

fibroblasts to varying durations of anti-
CD70 did not change their [3H]thymidine
incorporation among 11 normal and 5 IPF
fibroblast preparations after incubation for
24 and 48 hours (Figure 4A). We also
confirmed anti-CD70 treatment had no
effect on fibroblast viability in normal and
IPF fibroblast cultures (n= 10 each)
(Figure 4B). Anti-CD70 antibodies
similarly did not alter fibroblast expression
of activation marker CD69 in normal
fibroblasts (n= 8) and IPF fibroblasts
(n= 8). Similarly, human leukocyte antigen
class I expression did not change in these
preparations (P= 0.64 and P= 0.31 for
normal and IPF fibroblasts, respectively)
(Figures 4C and 4D).

Fibroblast CD70 Signaling
To demonstrate that fibroblast CD70
activation results in specific intracellular
signaling events, we examined kinase
signaling of CD70-stimulated and isotype
control–treated pulmonary fibroblasts by
using phosphotyrosine kinase and
serine/threonine kinase arrays. We found
that CD70 cross-linkage resulted in
increases of several kinase activities,

including Met; ephrin family kinases; and
InSR (insulin receptor), ALK (anaplastic
lymphoma kinase), JAK3 (Janus kinase 3),
ROR1 (inactive tyrosine-protein kinase
transmembrane receptor), and Src kinases
(Figures 5A and 5B and Tables E7 and E8).
These kinases interacted in a complex
interactive network clustered around PKA
(protein kinase A) and AKT (protein kinase
B) pathways (Figure 5C). Validation by
focused IB of these fibroblast lysates
(n= 11) confirmed that CD70 activation
resulted in significant increases of
phosphorylated AKT (pAKT) (P= 0.0009)
but not pERK (phosphorylated extracellular
signal-regulated kinase) (P= 0.1) (Figure 6),
which confirmed the kinomic results. CD70
stimulation also did not affect either Smad
or Wnt/b-catenin signaling (see Figure E6).

CD70 Agonism Decreases Fibrosis
Induced by TGF-b1 Ex Vivo
The effects of CD70 agonism on fibrosis
cannot be tested in mice, because CD70 is
not expressed on murine fibroblasts (22). To
examine effects of CD70 agonism in assays
that more closely approximate in vivo
conditions, we used two different ligands of
this receptor in two distinct ex vivo models
of human skin fibrosis (20, 21). CD27
fusion protein treatment significantly
reduced dermal thickness in three distinct
human abdominal skin samples stimulated
with TGF-b1 (P, 0.001) (Figures 7A and
7B). Treatment with anti-CD70 antibodies
also significantly decreased hydroxyproline
(a measure of collagen production) in
20 human foreskin cultures similarly
stimulated with TGF-b1 (P= 0.003)
(Figure 7C).

Discussion

The studies described in this article
stemmed from an initial finding that CD27
expression on circulating CD4 T cells
among patients with IPF is coordinately
regulated with CD28 (6–10) (Figure 1).
CD28, which is a near-ubiquitous
costimulatory molecule on surfaces of naive
or early differentiated T cells, becomes
downregulated (together with CD27)
on human T lymphocytes that have
undergone repeated antigen stimulation
and proliferation, as seen among patients
with a variety of chronic immunological
syndromes, including IPF (6–10).
Subsequent studies to examine the potential
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Figure 5. Signal transduction induced by fibroblast CD70 ligation. (A and B) Kinomic profiling using whole-chip peptides showed that CD70 ligation
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significance of the CD27 downregulation
included our confirmation of a previous
report that CD70, the unique ligand for
CD27, is present on human primary human

lung fibroblasts (14). Incremental
investigations then showed that human
fibroblast expression of CD70 is
upregulated by TGF-b1 and downregulated

by increased cell density (Figure 2).
Functional assays demonstrated that
fibroblast CD70 ligation inhibited
production of ECM proteins that are
central in the development of fibrosis
(Figures 3 and 7). We also showed that the
reduction of fibroblast ECM production
attributable to CD70 ligation is specifically
dependent on the presence of this receptor
(Figure 3E) and that CD70 stimulation
results in activation of discrete, complex
signaling pathways (Figures 5 and 6).

These data highlight a mechanism that
links fibrotic wound healing with T-cell
responses. According to this paradigm,
fibroblast ECM production would be
comparatively inhibited during acute
inflammation due to fibroblast CD70
activation, in turn a consequence of high
CD27 expression and sCD27 secretion by
the newly activated CD4 T cells that
predominate in these particular immune
responses. Conversely, however, CD70
inhibition of ECM production would be less
operative during chronic inflammation,
which is characterized by greater
proportions of well-differentiated CD4 Tem

cells that do not express or secrete CD27.
A relative paucity of fibroblast CD70-
mediated ECM inhibition because of
the CD27 downregulation on Tem cells
could also contribute to maladaptive
consequences in other afflictions that are
accompanied by persistent or recurrent
T-cell activation and differentiation, such as
obesity, chronic infections, and various
autoimmune syndromes (1–4, 23). ECM
production might also be enhanced by the
CD70 downregulation that occurs with
crowding (Figure 2E) among the dense
collections of fibroblasts that reside in the
defining lesions (fibroblast foci) of IPF and
several other fibrotic diseases (5).

Earlier characterizations of CD70
focused on the expression and function of
this receptor among activated leukocytes,
especially those in germinal centers, tonsils,
skin, and gut (24); in hematological
malignancies (25–27); and in
autoimmune diseases such as systemic
lupus erythematosus and rheumatoid
arthritis (28, 29). CD70 molecules contain a
putative casein kinase I substrate motif
(-SXXS-) that can initiate intracellular
signaling cascades in common with other
TNF members that transduce signals (30)
and as we observed in assays in the present
study (Figures 5 and6). Various studies
have shown that leukocyte CD70 activation
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C
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of pAKT (Ser473) after CD70 stimulation but variable results with pERK (Thr202/Tyr204).
(B) Densitometric analyses of images from IB of 14 fibroblast lines treated with either anti-CD70 antibody
or isotype control IgG showed significant increases in pAKT (P=0.0009) but not pERK (P=0.1).
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may regulate cell cycle entry, alter B-cell
IgG production (31), and augment natural
killer and T-cell–mediated cytotoxicity (32,
33). However, our findings indicate that
effects of CD70 agonism are very cell
specific in that this receptor does not
mediate cycling or activation of pulmonary
fibroblasts (Figure 4). Moreover, ERK
signaling appears to be a prominent
consequence of CD70 engagement in
leukocytes (31–33), whereas this pathway

was not significantly involved in CD70
signaling among the fibroblasts in the
present study (Figure 6).

Human pulmonary fibroblast CD70
was recently noted to be a costimulatory
molecule for T-cell activation (via
engagements with CD27 on T-cell surfaces)
(14). However, neither the regulation of
CD70 expression nor effects mediated by
this receptor in fibroblasts have been
explored. To the best of our knowledge, the

present study is a novel demonstration that
CD70 is functionally active in fibroblasts
and, in particular, involved in their
regulation of ECM production. Other
unique demonstrations in the present study
include showing that T-cell expression
of CD27 and CD28 is tightly linked
in IPF (Figure 1A) and other chronic
inflammatory lung diseases (Figure E2), as
well as the finding that CD27 expression is
a correlate of current and future pulmonary
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function parameters in patients with IPF
(Figures 1C and 1D).

The importance of T-cell–fibroblast
interactions has long been recognized in
conditions of homeostasis, as well as in
disease states (2, 4, 34). Soluble factors
secreted by fibroblasts, such as indolamine,
fibroblast growth factor, prostaglandin E2,
type I IFN, IL-6, IL-7, and chemokines that
include CCL21, CXCL12, and CXCL13
influence T-cell responses by altering
lymphocyte signaling and/or promoting
T-cell trafficking to loci of inflammation
(35–37).

Moreover, lymphocyte–fibroblast
interactions are bidirectional, and several
T-cell functions that influence these
mesenchymal cells have also been
described (37, 38). Depending on
circumstances, CD4 T cells can produce
soluble cytokines that variously inhibit
fibroblast ECM production (e.g., IFN-g
and IL-10) (39, 40) or are profibrotic
(e.g., IL-4, IL-13, and TGF-b1) (1, 2, 4).
Direct contact with activated T-cell
membranes (41) or T-cell CM (42) has
also previously been found to inhibit
fibroblast production of collagen. Of note,
however, these preceding studies did not
identify a particular ligand/receptor
mechanism that accounted for these
effects, in contrast to the present findings
that show the CD27–CD70 axis is a

potent and specific mediator of
T-cell–fibroblast interactions (Figure 3).

In contrast, IB and flow cytometry
studies of mouse fibroblasts failed to detect
CD70 expression (data not shown), and
these results are substantiated by other
reports (22). As a consequence,
CD27–CD70 effects cannot easily be tested
in vivo in a facile laboratory animal. The
presence of a negative feedback mechanism
that limits fibrogenesis during acute and
transient adaptive immune responses
(i.e., CD27–CD70 interactions that
inhibit ECM production) seems likely to be
highly adaptive in a long-lived organism
that has delayed reproductive capacity
(i.e., humans) to prevent needless
accumulation over several years of
potentially deleterious fibrotic lesions.
However, the evolutionary development of
processes that limit immune-associated
fibrosis may be less imperative in organisms
with shorter lifespans and much earlier
development of reproductive potential (and
greater fecundity), which might account
for the lack of functional, ECM-
inhibiting CD70 on mouse fibroblasts. We
circumvented the absence of an applicable
rodent in vivo fibrosis model by use of
redundant human skin ex vivo assays
(Figure 7). In addition to these and/or
perhaps other analogous ex vivo models,
future studies requiring demonstration of

in vivo effects (e.g., for preclinical tests of
therapeutic CD70 agonists [11]) could
possibly use human–murine chimeras,
transgenic animals, or higher-level
organisms (e.g., primates) whose fibroblasts
express CD70 (22).

We believe that these are seminal
descriptions of a homeostatic mechanism
that plays an important role in the
regulation of human fibrosis and wound
healing. The T-cell–fibroblast interactions
shown in the present study are also
almost certainly not limited just to IPF,
but are probably operative, too, in myriad
fibroproliferative syndromes that are
associated with inflammation (1) and
cause untold morbidity and mortality in
modern societies (2–4, 23). Moreover, the
findings of the present study are likely not
merely arcane, but could be actionable by
illuminating the potential for targeting
CD70 to decrease (or perhaps even
reverse) ECM production and fibrosis
(Figure 7). Antihuman CD70 mAb
preparations are in early clinical trials for
malignant diseases (11), and it may be
possible to make relatively minor
modifications of those agents to
repurpose them for antifibrosis
treatments. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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