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Abstract

While ketones are among the most versatile functional groups, their synthesis remains reliant upon 

reactive and low abundance starting materials. In contrast, amide formation is the most-used bond 

construction in medicinal chemistry because the chemistry is reliable and draws upon large, 

diverse substrate pools. A new method for the synthesis of ketones is presented here that draws 

from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel 

terpyridine catalyst couples N-alkyl pyridinium salts with in-situ formed carboxylic acid fluorides 

or 2-pyridyl esters under reducing conditions (Mn metal). The reaction has broad scope, as 

demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups 

with an average yield of 60 ± 16%. This approach is capable of coupling diverse substrates, 

including pharmaceutical intermediates, to rapidly form complex ketones.
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The ketone functional group plays a central role in organic synthesis: it is present in many 

target molecules (natural products, drugs, materials), and is also a key intermediate in the 

synthesis of C-C bonds and alcohols.[1] However, the synthesis of ketones continues to rely 

upon methods that are limited in functional group compatibility and use starting materials of 

low abundance (Scheme 1). Ketones are most often synthesized by the addition of an 

organometallic reagent to an aldehyde followed by oxidation[1a] or, more recently, the 

coupling of an organometallic reagent to an activated ester.[2,3] This latter strategy is useful 

because there are many more alkanoic acids than aliphatic aldehydes, yet the organometallic 

coupling partner has limited availability and functional group compatibility.

In contrast, amide bond formation is among the most reliable coupling reactions.[4] A recent 

analysis ranked it as the most used reaction in medicinal chemistry, accounting for 25% of 

all reactions used in drug discovery. This is driven, in part, by the large numbers of amines 

and carboxylic acids that are commercially available.[5] A ketone synthesis that could utilize 

these substrate pools would dramatically increase easily available chemical space. In this 

vein, Matsuo recently reported an exciting advance: the cross-coupling of N-

aroylsuccinimides with alkylpyridinium salts [6] This approach worked for benzoic acid 

derivatives, but was not useful for the larger alkanoic acid substrate pool.

We show here how recent developments in our two research groups can be combined to 

achieve a general synthesis of dialkyl ketones from alkyl amines and alkyl carboxylic acids 

(Scheme 1). On one hand, cross-electrophile[7] approaches to ketone synthesis have been 

developed to eliminate the need for organometallic reagents by coupling of activated esters 

(-Cl, -SPy, -OCO2R) with alkyl halides[8] or, recently, a second carboxylic acid activated as 

an N-hydroxyphthalimide ester.[9] On the other hand, deaminative cross-couplings[10] of 

alkyl pyridinium salts have rapidly progressed, including cross-electrophile couplings with 

aryl halides.[11] We show here how these advances can be combined to form ketones from 

amines and carboxylic acid derivatives.[12,13]

The main challenge to realizing this transformation was achieving high cross-selectivity 

without resorting to a large excess of one coupling partner. Previous cross-electrophile 

couplings of alkyl pyridinium salts with aryl halides had shown that this balance of reactivity 

and selectivity could be challenging to achieve.[11] Based upon the hypothesis that the 

ketone product forms from the coupling of an acylnickel(II) intermediate with an 

pyridinium-salt-derived alkyl radical (Scheme 1),[8i,12e,14] we sought an acyl donor that 

would react quickly with the nickel catalyst, would not be easily reduced to form a radical,
[15] and could be isolated or formed in situ.

Examination of activating strategies for carboxylic acids led us to acyl fluorides.[16] Acyl 

fluorides have several advantages: they can be made in situ (an advantage over N-acylimides 

or imides[17]), the liberated fluoride does not interfere with productive catalysis (a problem 

for thioesters[8d,8g]), and they can be purified if needed (unlike anhydrides or acid chlorides).

After systematic screening of different ligands, solvents, additives and reaction 

temperatures, we found optimal conditions for coupling an acyl fluoride with a primary alkyl 

pyridinium salt (Table 1): NiCl2(dme), L5, and Mn in NMP at 60 °C. These conditions 
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provided ketone product 1 in 79% isolated yield (entry 1, Table 1). While 62-65% yields 

were obtained with electron-rich bipyridine ligands (L1 and L2, entries 3-4), terpyridine and 

electron-poor bipyridine ligands were not effective for this transformation (See Tables S2.1-

S2.4 in Supporting Information). In contrast to our previous reports [8d, 9b], the analogous 

S-2-pyridyl thioester (entry 7) or 2-pyridyl ester (entry 8) provided a low yield of product 1 
and primarily formed the deaminative alkyl dimer 1,4-diphenylbutane. A lower yield was 

observed when switching the reductant from Mn to Zn (entry 9). This could be attributed to 

slower reduction of the catalyst[18] or direct reduction of pyridinium salts by Mn being 

important for product formation (entry 10).[19] Finally, purified acid fluoride could be 

replaced by in-situ-generated acid fluoride (entry 2). Among several methods tested, fluoro-

N,N,N′,N′-bis(tetramethylene)formamidinium hexafluorophosphate (TFFH) with 1,8-

bis(dimethylamino)naphthylene (proton-sponge) was the most useful.[16e] While in-situ 
activation of the carboxylic acid was successful, we obtained low yields with an unpurified 

pyridinium salt (22% NMR yield of 1 as in Table 1, entry 2).

We found that secondary alkyl pyridinium salts required modified conditions (Table 2 and 

Tables S2.5-S2.7 in Supporting Information). These secondary alkyl reagents typically 

undergo more facile C─N bond cleavage, making formation of dihydropyridine byproduct 

even more competitive.[11a] To avoid this byproduct, these changes were made: 1) using 2-

pyridyl esters instead of acyl fluorides; 2) changing the solvent to THF and lowering the 

temperature; 3) switching the ligand to L4 (entry 2). The use of NiBr2(dme) and a slight 

increase in the amount of pyridinium salt, from 1.0 to 1.5 equiv, further increased the yield 

to 72% (entry 4).

The scope of these conditions is broad, as demonstrated by the 35 examples in Table 3. The 

majority of these examples used in-situ activation of the carboxylic acid, but in some cases 

purification of the product from proton-sponge-derived side products was difficult and pre-

formed acyl fluorides were used. Pyridinium salts of unbranched and α-branched amines 

coupled well, but salts of tertiary carbinamines are not suitable substrates.[20] Primary, 

secondary, and tertiary carboxylic acids coupled in high yield, but a particularly hindered 

tertiary carboxylic acid, abietic acid, and α-amino acids coupled in low yield (see 

Supporting Information Table S5 for additional low-yielding substrates). Although not a 

focus of this study, in a preliminary result, a prototypical aryl carboxylic acid, naphthoic 

acid, could be coupled via its acid fluoride to give 35 in 41% yield, but a general solution to 

aroyl acids will require further optimization.[21] Finally, α-alkoxy carboxylic acids, a 

common motif found in cetirizine and other bioactive compounds,[22] could be coupled with 

slightly modified conditions (29, 30).

Highlights of the functional group tolerance include basic amines (4, 19, 20, 21, 27, 28, 29, 

30, 32), pyridine (2), cis-alkene (34), and even a dihydropyridine (6) that could deactivate a 

metal catalyst by coordination or be prone to oxidation under photoredox catalysis[23] or 

electrochemical conditions.[24] Acidic N-H bonds of Boc-β-alanine (14), a urea (31) or an 

N-aryl amide (33) as well as esters (5-9, 12, 25-27) and ketones (10, 11, 13) were tolerated, 

but would pose a problem for methods based upon organomagnesium or organolithium 

reagents.[2] Conveniently, the chemistry can be run preparatively on the benchtop (740 mg of 

19) and generally uses a 1:1 or 1:1.5 ratio of starting materials.
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Although we have not yet studied the reaction mechanism, the similarities to other cross-

electrophile coupling reactions[8i,12e,14] suggest an analogous mechanism: initial oxidative 

addition of the acyl fluoride to nickel(0)[16e] followed by radical addition to the resulting 

acylnickel(II) intermediate (Scheme 1). The resulting acyl-alkyl nickel(III) species could 

reductively eliminate ketone product. Formation of alkyl radicals from N-alkylpyridinium 

salts can be mediated by nickel or arise from direct reduction with manganese.
[6, 10a, 10i, 11a, 11b, 11e] Another possibility is the reduction of an acylnickel(II) intermediate 

to form an acylnickel(I) species that can then react with pyridinium salts.[16g,25]

The ability to use carboxylic acids and amines as a substrate pool is valuable because these 

are two of the largest pools of commercially available alkyl fragments.[5] This flows from 

the reliance of medicinal chemistry on amide bond formation.[4] Indeed, alkyl amines are 

unique in that there are more listed for sale than reported in the literature![26] In some cases 

this translates to lower prices (see analysis in the Supporting Information), but it also means 

that complex amines and acids can be repurposed as starting materials, such as a mosapride 

intermediate (19-21, 27-29, 32), amlodipine (6), cetirizine (30), an atorvastatin intermediate 

(33 and a side-chain fragment in 7), biotin (31), and lithocholic acid (32). The ability to 

leverage these pools to make ketones instead of amides opens up new areas of chemical 

space with minimal effort, adding another dimension to the medicinal chemist’s toolbox.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
How to make ketones from amine and carboxylic acid derivatives.
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Table 1.

Optimal conditions for primary pyridinium salts.

Entry[a] Change in condition from scheme G 1 (%)[b]

1 None F 82 (79)

2[c] In situ formation of acyl fluoride F 75

3 L1 instead of L5 F 62

4 L2 instead of L5 F 65

5 L3 instead of L5 F 53

6 L4 instead of L5 F 41

7 Different G SPy 4

8 Different G OPy 11

9[e] Zn instead of Mn F 5

10[d] No nickel F 0

11[d] No ligand F 0

12[e] No Mn reductant F 0

[a]
Pyridinium salt (0.125 mmol, 1 equiv), acyl fluoride (0.125 mmol, 1 equiv), NiCl2(dme) (0.0125 mmol, 10 mol %), ligand (0.0125 mmol, 10 

mol %), Mn (0.1875 mmol, 1.5 equiv) was stirred in NMP (0.8 mL) at 60 °C for 24 h.

[b]
GC yield vs 1,3.5-trimethoxybenzene standard. Isolated yield in parentheses.

[c]
Carboxylic acid (0.125 mmol, 1 equiv), TFFH (0.125 mmol, 1 equiv), 1,8-bis(dimethylamino)naphthylene (0.125 mmol, 1 equiv), NMP (0.8 

mL).

[d]
Significant amount of acyl fluoride recovered.

[e]
Both starting materials recovered.

G = Activating Group.
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Table 2.

Optimal conditions for secondary pyridinium salts.

Entry[a] Change in condition from scheme G 8 (%)[b]

1 None F 14

2[c] L4 instead of L5 in THF OPy 61

3[c] As entry 2, NiBr2(dme) instead of NiCl2(dme) OPy 66

4[c] As entry 3, 1.5 equiv of pyridinum OPy 72

[a]
Pyridinium salt (0.125 mmol, 1 equiv), acyl fluoride or 2-pyridyl ester (0.125 mmol, 1 equiv), NiCl2(dme) (0.0125 mmol, 10 mol%), ligand 

(0.0125 mmol, 10 mol%), Mn (0.1875 mmol, 1.5 equiv) was stirred in corresponding solvent (0.8 mL) at 60 °C for 24 h.

[b]
GC yield vs 1,3.5-trimethoxybenzene standard.

[c]
Reaction conducted at r.t.

G = Activating group.
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