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Changes in gene expression drive novel phenotypes, raising interest in how gene expression evolves. In contrast to the static

genome, cells modulate gene expression in response to changing environments. Previous comparative studies focused on

specific conditions, describing interspecies variation in expression levels, but providing limited information about variation

across different conditions. To close this gap, we profiled mRNA levels of two related yeast species in hundreds of condi-

tions and used coexpression analysis to distinguish variation in the dynamic pattern of gene expression from variation in

expression levels. The majority of genes whose expression varied between the species maintained a conserved dynamic pat-

tern. Cases of diverged dynamic pattern correspond to genes that were induced under distinct subsets of conditions in the

two species. Profiling the interspecific hybrid allowed us to distinguish between genes with predominantly cis- or trans-reg-

ulatory variation.We find that trans-varying alleles are dominantly inherited, and that cis-variations are often complemented

by variations in trans. Based on these results, we suggest that gene expression diverges primarily through changes in expres-

sion levels, but does not alter the pattern by which these levels are dynamically regulated.

[Supplemental material is available for this article.]

New phenotypes emerge from mutations that change protein
function or protein expression. Between closely related species,
protein sequences remain highly conserved while gene regulatory
regions vary, suggesting that changes in gene expression play
key roles in early evolutionary divergence (King and Wilson
1975). In support of that, modifying the expression of a single, dif-
ferentiation-promoting gene during organism development
can give rise to novel body morphologies (Warren et al. 1994;
Prud’homme et al. 2006). Although transcription programs of
closely related species are in large conserved (Gilad et al. 2006;
Paris et al. 2013;Wong et al. 2015), understanding the basicmech-
anisms of regulatory variation is of considerable interest (Yvert
et al. 2003; Wittkopp et al. 2004, 2008; Landry et al. 2005;
Tirosh et al. 2006, 2009; Yanai and Hunter 2009; McManus et al.
2010; Goncalves et al. 2012; Shi et al. 2012; Combs et al. 2018).

A hallmark of gene expression is its ability to adapt to chang-
ing demands.Widespread changes in gene expression occur when
internal or external conditions change, allowing organisms to
adapt and modify their cellular response. Therefore, expression
levels measured at one condition provide limited information
about expression levels at other conditions. Furthermore, determi-
nants of expression level are often different from determinants of
dynamic gene regulation. The former depends on the efficiency of
the general transcriptional machinery, which is influenced, for ex-
ample, by the presence of a TATA box or the nucleosome organiza-
tion along the promoter (Basehoar et al. 2004; Tirosh and Barkai
2008). The latter depends on the binding of specific transcription
factors (TFs) to the gene promoter. The common observation is
that two genes can be expressed at a very different level, but at
the same time be regulated by the same set of TFs and follow pre-
cisely the same pattern of dynamic changeswhen compared across
conditions. Conversely, two genes can be expressed at a very sim-

ilar level in most conditions, but change in expression in opposite
directions owing to small environmental fluctuations, indicating
the genes are subject to different regulation.

The ability to separately control expression level and expres-
sion dynamics implies that evolution can work on these two prop-
erties independently. Distinguishing between these two axes of
divergence is fundamental for understanding the mechanisms of
evolution. We reasoned that analysis of regulatory evolution, on
a genomic scale, requires an extended comparative data set that
surveys a large number of expression profiles obtained under a
wide range of conditions. Following this reasoning, we profiled
mRNA levels of two closely related budding yeast species and their
interspecific hybrid under hundreds of conditions, which include
different media and genetic perturbations, and devised computa-
tional approaches for distinguishing variations in expression levels
from variations in coexpression, which resemble variations in reg-
ulatory dynamics. We further describe the cases of variation in dy-
namic regulation and provide insights into their mode of
inheritance and the potential mechanism underlying this
divergence.

Results

A compendium of comparative transcription profiles

The budding yeasts Saccharomyces cerevisiae and Saccharomyces par-
adoxus emerged as a model for studying interspecies variation in
gene expression (Tirosh et al. 2009; Emerson et al. 2010; Artieri
and Fraser 2014; McManus et al. 2014; Metzger et al. 2016; Yue
et al. 2017; Weiss et al. 2018). The two species diverged approxi-
mately five million years ago, contain the same set of genes at a
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conserved synteny, and show 90% and 80% sequence identities at
coding and noncoding regions, respectively (Scannell et al. 2011).
Further, the two species can readilymate to form viable hybrids. In
the context of comparative analysis, hybrids provide a key tool for
classifying the genetic basis of interspecies variation: the two hy-
brid alleles are subject to the same trans environment so that differ-
ences in their expression must result from gene-linked differences
(cis effects). Any further differences between the parents that are
lost in the hybrid are attributed to variation in upstream, diffusible
factors (trans effects) (Wittkopp et al. 2004, 2008; Tirosh et al.
2009, 2010; Emerson et al. 2010; McManus et al. 2010; Dori-
Bachash et al. 2011; Goncalves et al. 2012; Shi et al. 2012; Artieri
and Fraser 2014; Metzger et al. 2016; Combs et al. 2018).

Previous studies described interspecies variation in gene ex-
pression when compared at individual conditions. We extended
this analysis by generating a large collection of comparative tran-
scription profiles surveying a wide array of conditions (Fig. 1A;
Supplemental Table S3). The larger fraction of our data set compris-
es a time course of transition from rich (YPD) to nitrogen-depleted
media, in which we sampled wild-type (WT) strains, as well as
strains that were individually deleted in 46 transcription factors
(Supplemental Table S1). In addition, we profiledWT cells in three
time-course experiments: progression through the cell cycle (sam-
pled every 5 min for 3 h), transition to phosphate-depleted media
(sampled every 15 min for 6 h), and progression along the growth
curve onYPD (sampled every hour for a day). In total, we generated
530–570 expression profiles for each of the two species and the hy-
brid (Supplemental Table S3). The aforementioned experimental
conditions were sampled with repeats and result in 462 samples
that are comparable between species. Quality controls for the
RNA-seq data set are detailed in Supplemental Note 1, Supplemen-
tal Figures S8–S10, and Supplemental Tables S4 and S5.

We first aimed to evaluate global features of our data set rele-
vant to comparative studies: the number of differentially expressed

genes, the genetic basis of the variations (cis or trans), and their
dependency on the environment. Consistent with previous re-
ports (Tirosh et al. 2009; Artieri and Fraser 2014; McManus et al.
2014), about 1100 genes significantly differed in expression level
between the two species at each individual condition, with fold
change >2 and P-value <0.05 (Fig. 1B; Supplemental Fig. S1A,B).
A large fraction (640 of 1100, 58%) of these variations remained
significant in the hybrid, indicating their origin in cis-actingmuta-
tions. To avoid errors in the estimation of the trans effect, wemade
the computation via a cross-replicate comparison (Supplemental
Fig. S1C; Fraser 2019). On the average condition, 640 genes
showed a significant greater than twofold change between the hy-
brid alleles (cis effect) and 500 genes showed same-magnitude trans
effect. Cis and trans effects can act in the same direction, being up-
regulated in a certain species and in its corresponding allele in the
hybrid (reinforcing interaction) or in opposite directions (compen-
sating interaction). We find that the two types of interactions are
equally likely and relatively infrequent: on average, reinforcing in-
teractions appeared in 60 genes and compensating interactions ap-
peared in 70 genes (Supplemental Fig. S1D).

Some variations in expression level were consistent across
conditions, whereas others were specific to a subset of conditions,
as shown in Figure 1C. In general, cis effects were more reproduc-
ible across conditions (Fig. 1D; Supplemental Fig. S1B), consistent
with previous reports (Smith and Kruglyak 2008; McManus et al.
2010; GTEx Consortium 2017). Genes that contain a TATA box
in their promoter tend to vary in expression over evolutionary
time (Tirosh et al. 2006; Landry et al. 2007; Hagai et al. 2018).
We find that both cis and trans effects were highly enrichedwithin
TATA box–containing genes (Supplemental Fig. S1E).We conclude
that when considering each condition individually, the pattern of
expression divergence described by our data is consistent with pre-
vious reports and different subsets of genes often vary in different
conditions.
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Figure 1. Generating a compendium of comparative transcription profiles. (A) Experimental scheme. The transcription profiles of S. cerevisiae (S. cer),
S. paradoxus (S. par), and the interspecific hybrid were measured in four experiments (Methods; Supplemental Table S3). Overall, 1636 samples were ac-
quired, composed of 530–570 samples per species. The “YPD to low nitrogen” experiment was divided into three time points, each comprising 130 sam-
ples per species. (B) Hundreds of genes vary in expression level between species in each individual condition. Differentially expressed genes between species
(overall), between hybrid alleles (cis), and in trans (overall-cis) were defined via DESeq2 per experiment (log2 fold change >1, adjusted P-value < 0.05).
Presented here is the distribution of genes that pass the fold change threshold in each condition and pass the P-value threshold in at least one experiment.
(C) Examples of cis- and trans-varying genes: steady cis effect (TDH3), steady trans effect (CYC1), condition-dependent cis effect (ARG5,6), and condition-
dependent trans effect (RPL11A). Shown are the log2-transformed expression levels of the indicated genes in the species and hybrid alleles, as measured in
all samples in our data set. Samples were sorted according to expression levels in S. cerevisiae in TDH3, ARG5,6, and RPL11A, and by S. paradoxus in CYC1.
(D) Consistency of cis and trans effects across conditions. Shown are log2 fold changes in cis (left) and trans (right) of the top 200 cis- and trans-affected genes.
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Quantifying species similarity in gene regulatory dynamics

by comparing coexpression patterns

Our main goal in generating this large compendium of compara-
tive expression profiles was to assess changes in the dynamic pat-
tern by which gene expression is regulated, that is, the pattern by
which its expression varies upon genetic and environmental per-
turbations. To perform this analysis, we first considered the gene
expression level across all conditions. Comparing this pattern
directly, however, introduces differences that arise not only from
changes in the transcriptional network, but fromdifferences in en-
vironmental sensing acting upstream to the network (Supplemen-
tal Note 2; Supplemental Fig. S11). We therefore decided to
measure the similarity in dynamic regulation of orthologs by com-
paring their coexpression pattern with all other genes in the ge-
nome, a measure we term RC (Fig. 2A). Coexpression reports on
the regulatory relationships of genes within the transcriptional
network. Genes that are coexpressed will show a similar pattern
of induction or repression across conditions and will therefore
show the same pattern of correlation with other genes in the ge-
nome. Genes that are coexpressed with a similar set of genes in
the two specieswill receive a high RC similarity score. Indeed, coex-
pression is often preferred when analyzing dynamic regulation
within a given species (Hughes et al. 2000; Segal et al. 2003; Ihmels
et al. 2005a; Li et al. 2017) because it is less sensitive to random
noise affecting the two genes being compared, or to the precise
set of conditions in which expression was measured. We applied

our coexpression analysis on external gene expression data sets
and found thatmost of the genes (87%–96%) had positive RC score
with our S. cerevisiae data set, with consistent coexpression of gene
modules, confirming relative invariance of thismeasure to the pre-
cise data set used (Supplemental Note 3; Supplemental Fig. S12).

To test our measure of regulatory similarity, we first consid-
ered the ribosomal protein-coding genes, which both species co-
induce during rapid growth. Two genes of this group, RPL1A and
RPL1B, were highly coexpressed in each species in the measured
conditions (Fig. 2B). Therefore, RPL1A received a high regulatory
similarity score between species (RC =0.87) (Fig. 2C). Similarly,
RPL1B received RC=0.84 (Supplemental Table S7). Examining
the RC score of all orthologs, we find that half of the orthologs
were assigned regulatory similarity scores higher than 0.65 (Fig.
2E). Still, the absence of genes with RC>0.9 suggests a systematic
bias caused by diverging genes; indeed, 10% of the orthologs
have low to negative similarity scores (RC <0.2 in 479/4772 genes).

We reasoned that some of these low similarity scores result
from real divergence in the dynamic regulation of the respective
gene between the two species, but others may result from low ex-
pression levels or inconsistent coexpression pattern of the gene
within each species. To control for these possibilities, we consid-
ered two control measures for the reliability of the coexpression
pattern in each species (Fig. 2D). First, we ran a bootstrapping anal-
ysis on the subset of each species separately, which we refer to as
data set control. For each species, we split the expression profiles
subset into two random parts, generate coexpression vectors for
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Figure 2. Gene coexpression as a measure of regulatory similarity. (A) RCmeasures regulatory similarity between species. First, the pairwise correlation of
gene i with all other expressed genes is measured per species. Then, the correlation of these coexpression vectors is measured, termed RC. (B) Ribosomal
protein genes are highly coexpressed in both species. Shown are log2-transformed expression levels of the indicated genes in S. cerevisiae and in S. para-
doxus across conditions. Pearson correlation coefficients are indicated. (C) RPL1A is regulated similarly in both species. Presented are coexpression vectors of
RPL1A in S. cerevisiae (x-axis) and in S. paradoxus (y-axis), each vector comprised of 4772 genes, correlation of these (RC) is indicated. The RC value is written
in the top left of the scatter plot. (D) Within data set controls. Two within data set controls were defined per species, as shown. First, data set control is
obtained by splitting the set of conditions into two random subsets and measuring the gene regulatory similarity (RC) between them. Second, nearest
neighbors (NN) are defined as the pair of genes with the most similar coexpression vectors. (E) Distribution of regulatory similarity scores. Shown is the
cumulative distribution of the indicatedmeasures. As NN and data set control were defined per species, herewe present themean score of the two species.
(F ) Control RC correlates with comparative RC. Each dot represents the RC score of a single gene, between species (y-axis) and the mean data set control of
the two species (x-axis). Black line is x= y.
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each gene in each half, and compute the correlation between these
vectors. We repeated this process for 10 permutations, the average
of these is the RC of data set control (Fig. 2D, top). Second, wemea-
sure the correlation of coexpression vectors within each species to
define the nearest neighbors (NN), namely, pairs of genes with the
most similar coexpression vector (Fig. 2D, bottom). As expected,
these two control measures are highly correlated (R =0.91)
(Supplemental Fig. S2A). Thus, although in the between-species
comparison half of the orthologs received a similarity score lower
than 0.65, half of the data set control or NNs scores were above
0.79 and0.93, respectively (Fig. 2E). Both controls andcomparative
measureswerenotdictatedby thegeneexpression levelor dynamic
range, because lowly expressed genes did not typically show low
similarity scores (Supplemental Fig. S2B,C). In general, genes re-
ceiving a low control score also received a low similarity score in
our between-species comparison (Fig. 2F). However, a small num-
ber of genes deviate from this trend by presenting a low to negative
comparative score, and a high control score (394 genes with RC be-
tween species <0.2 and RC data set control > 0.5) (Supplemental
Table S7). Therefore, such cases most likely indicate regulatory
divergence of these genes between species. Together, this suggests
that although the majority of orthologous genes showed a high
similarity score, interpreted as conserved regulation, variation
can still be detected in a significant number of genes.

Variation in regulatory dynamics is distinct from variation

in expression levels

Our analysis provided us with two measures of expression diver-
gence: the common measure that quantifies the difference in ex-
pression levels, as measured in each individual condition, and
another measure that quantifies differences in the pattern of
gene regulatory dynamics across conditions. These two measures
are related, because changes in the pattern of gene induction will
modulate expression levels in respective conditions. Yet, these
twoparameters canalsobemodulated independently, for example,
through regulatory mutations that affect absolute induction levels
but do not alter the identity of the regulating factors. We therefore
wished to characterize the extent to which these properties are re-
lated in our data set. To this end, we compared the divergence in
median expression level to divergence in gene dynamic regulation.

This analysis revealed that the two properties are distinct, showing
no correlation (R=0.011, P-value=0.4) (Fig. 3A). This lack of corre-
lation was observed for both cis- and trans-variations (R =−0.02, P-
value= 0.17 [cis], R = 0.08,P-value<1×10−10 [trans]) (Fig. 3B,C) and
was further supported by examining specific expression modules.
Stress-induced genes, for example, varied in expression levels
(log2 fold change=1.11±0.8mean± SD) butmaintained invariant
regulatory dynamics in the two species (RC =0.81±0.09). In
contrast, genes coding for the mitochondrial ribosomal proteins
were expressed at similar levels by the two species (log2 fold chan-
ge =0.62±0.34), yet they showed low regulatory similarity (RC=
0.29±0.34) (Fig. 3A; Supplemental Fig. S3A).

When testing individual conditions, we found no enrich-
ment of regulatory variation within the top 100 cis or trans effects,
compared with a set of 100 random genes (Fig. 3D). Together, we
concluded that divergence in regulatory dynamics is largely decou-
pled from divergence in expression levels.

Classifying variation in dynamic regulation

into cis and trans effects

We next set out to define the genetic basis of variation in regulato-
ry dynamics. Because both cis and trans effects are likely to influ-
ence this property, we expected that within the hybrid, the two
alleles would show higher similarity than between the parents,
as only cis-acting effects can lead to variation in this uniform trans
environment. Thiswas indeed the case: regulatory similarity scores
between the hybrid alleles are typically higher than the regulatory
similarities between species (90% of the genes are above the diag-
onal) (Fig. 4A). This trend was not attributable to better control
measures in the hybrid compared to its parents (Supplemental
Fig. S4A).

Toclassifydynamicallyvaryinggenes into cisand trans effects,
we considered both between-species and between-hybrid-alleles
similarity scores. Genes that show low to negative similarity score
between species (RC between species < 0.2) and high similarity
score between hybrid alleles (RC hybrid>0.5) were classified as reg-
ulatory trans effects (184 genes) (Fig. 4A). Genes with low to nega-
tive similarity between hybrid alleles (RC hybrid<0.2) but high
data set control score (RC data set control > 0.5) were classified as
regulatory cis effects (106 genes) (Fig. 4B). Of note, this finding
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Figure 3. Variation in regulatory dynamics is distinct from variation in expression levels. (A) Regulatory similarity is independent of changes in expression
level. Presented are between-species RC scores per gene as a function of the absolute of log2 fold change in expression level between species (median of the
462 comparable samples). Expressionmodules: stress induced andmitochondrial ribosomal proteins (MRP) are indicated in color. Modules were defined in
Ihmels et al. (2002). The correlation between the measures is R = 0.011, P-value = 0.4. (B,C) Regulatory similarity is independent of cis and trans effects.
Same as in A, presented are RC as a function of themedian cis effect (B) or trans effect (C). Cyan line is themean RC value per bin. The correlation coefficients
betweenmeasures are R =−0.02, P-value = 0.17 (B), and R=0.08, P-value < 1 ×10−10 (C). Color represents density. (D) Differentially expressed genes show
a conserved regulatory similarity. We considered the top 100 cis- and trans-varying genes in expression level at each comparable sample andmeasured the
fraction that shows low regulatory similarity (<0.5). Shown are the respective distributions compared to a control in which random genes were picked per
comparable sample. ANOVA test for the three distributions result in P-value = 1 ×10−113, ANOVA test for the cis- and trans-distributions result in P-value =1 ×
10−12. This analysis was repeated for different regulatory similarity thresholds as shown in Supplemental Figure S3B.
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that a larger fractionof regulatory variation result from trans effects,
as compared to cis effects, remained when relaxing the threshold
defining regulatory varying genes (Supplemental Fig. S4B).

Having this classification of regulatory cis and trans effects, we
asked whether these effects show tendency for increased variation
in expression level. We first considered the median cis or trans ef-
fect on expression level across all conditions (Supplemental Fig.
S4C,D). Overall, regulatory trans effects did not show tendency
for higher divergence in expression level (Supplemental Fig.
S4C). Regulatory cis effects did show tendency for increased cis
(but not trans) variation in expression level, yet with small effect
size (P-value=3×10−3, rank sum statistic = 2.9) (Supplemental
Fig. S4D). We observed the same result when considering the
different experimental conditions: genes that diverge in cis in
their expression level in at least one experiment were enriched
with regulatory cis-variation (hypergeometric P-value=4×10−6),
but the same trend was not observed for trans-variation (hypergeo-
metric P-value =0.07). We concluded that, overall, genes that vary
in dynamic regulation are distinct from the ones that vary in ex-
pression level.

Patterns of trans-dependent regulatory variation

Considering the prominence of trans effects among genes of low
regulatory similarity, we decided to first focus on trans-varying
genes. Vacuolar transporter chaperone 3 (VTC3) is an illustrative
example for a trans-varying gene. VTC3 orthologs show negative
regulatory similarity,whereas thehybrid alleles remainhighly sim-
ilar (Fig. 5A). When tested within the hybrid, the pattern of coex-
pression displayed by the two alleles was similar to the one seen in
S. paradoxus anddifferent from that found in S. cerevisiae. To under-
stand the trans-variation acting on VTC3, we examined the genes
that show the highest correlation to it. These genes were all phos-
phate-responding genes in both species (Fig. 5B), suggesting that
their direct regulator, Pho4, is still active, but differentially regulat-
ed in the two species. Indeed, PHO4 deletion affectedVTC3 expres-
sion in a condition- and species-specific manner (Fig. 5C): in the
absence of phosphate, Pho4 shows species-conserved activity,
but in rich conditions, it is activating the expression of its targets
in S. cerevisiae but not in S. paradoxus. Therefore, while Pho4 is ac-
tivating a similar set of targets in both species, it is likely activated

by different signals in the two species
(Fig. 5D). Such differences can arise
from differences in growth niche or
because of the strong selection on S. cere-
visiae during its domestication.

The high similarity of the hybrid al-
leles with one of the parents was surpris-
ing to us, because we expected that
combining differentially regulated trans-
acting factors within the same genome
would result in additive or synergistic ef-
fects rather than dominant effects.
Examining all trans-diverging genes, we
found this dominance to be general: in
the majority of cases (161/184, 87%),
the hybrid alleles were either paradoxus-
like or cerevisiae-like (Fig. 5E; for a list of
genes, see Supplemental Table S8).
Overall, cerevisiae-like regulation was
more abundant, as the number of genes
showing a cerevisiae-like pattern within

the hybrid was double than these showing paradoxus-like domi-
nance (106 cerevisiae-like, 55 paradoxus-like).

The widespread dominance of trans-dependent regulatory
divergence suggests that allelic variants are compensated when
combined in the hybrid. One case in which such compensation
is expected would be when a TF becomes inactive in one species.
This may result from a mutation that inactivates or impairs the
regulator’s activity in the conditions surveyed. In this case, both
hybrid alleles will be regulated similarly to the dominant species.
As a way to examine this, we used our control measure of NN sim-
ilarity. This measure quantifies the degree to which a specific gene
is coexpressed with (at least) one other gene in the genome. We
reasoned that when a principle regulator becomes inactive, co-
regulation within its module will be lost as well, resulting in a
low NN similarity. Consistent with our expectation, NN similari-
ties that are lower than 0.85 were found for 51% of trans-diverging
genes, compared to 23% of all genes (Fig. 5F). Further, in the
vast majority of cases, the dominant species did maintain the
higher NN similarity (71% of paradoxus-like genes, 91% of cerevi-
siae-like genes) (Supplemental Fig. S5A). Therefore, these cases of
low NN similarity in the recessive species likely result from re-
duced activity of the direct regulator, at least in the conditions
measured (for examples of specific genes, see Supplemental Fig.
S5B,C).

Impaired regulation therefore appears to explain a large frac-
tion of regulatory trans-divergence. We next examined cases of
trans-divergence that are not explained by this mechanism, name-
ly, cases in which the two orthologs are both regulated (as indicat-
ed by high NN similarity) yet show high interspecies divergence.
Such cases could result from at least two scenarios. First, a gene
could be regulated by the same TF in both species, but the respec-
tive TF may be activated by different signals in each species. This
case appears to explain the divergence ofVTC3 as discussed above.
Second, the gene could be primarily regulated by one TF in one
species and by another TF in the other species. To distinguish be-
tween these possibilities, we asked whether the nearest neighbors
are shared between species (Fig. 5G). As expected for VTC3, the
NNs are shared between species (Fig. 5G, orange arrow), as well
as in other Pho4-regulated genes. Other groups showing this
behavior were associated with functions such as iron transport
and fatty-acid synthesis in the S. paradoxus dominance class or
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Figure 4. Regulatory dynamics vary mainly in trans. (A) Defining trans-varying genes. Plotted are RC

scores between hybrid alleles as a function of RC scores between species for all genes. Black line is x=
y. Genes in the red rectangle vary in trans (184 genes). Indicated genes vary in trans (VTC3, CHA1)
and in cis (LSO2) and are discussed in subsequent figures. Color represents density. (B) Defining cis-vary-
ing genes. Plotted are RC scores between hybrid alleles as a function of RC scores of the mean hybrid data
set control. Genes in the red rectangle vary in cis (106 genes).
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mitochondrial translation and cell wall maintenance in the S. cer-
evisiae dominance class (Supplemental Table S8). Genes that share
no nearest neighbors between species are therefore expected to
change their primary regulating TF, such as CHA1 that is discussed
in the next section (Fig. 5G, blue arrow). To conclude, genes that
preserve strong regulation in both species, and their trans effect
is not explained by loss of regulation, often change their nearest

neighbor and are therefore expected to change their primary
regulator.

CHA1 expression is species- and condition-dependent

The most extreme variation in dynamic regulation was observed
for the gene CHA1 (Fig. 4A), a catabolic L-serine and L-threonine

A

B C D

E F G

Figure 5. Trans-variations in dynamic regulation are inherited dominantly. (A) VTC3 is an example of a trans-varying gene. Scatters of coexpression vectors
between species, between hybrid alleles, between S. cerevisiae and hybrid-cerevisiae, and between S. paradoxus and hybrid-paradoxus. Each dot represents the
coexpression of VTC3with a single gene across conditions; RC scores are indicated. Genes that are highly coexpressed with VTC3 in both species are marked
with a dashed red circle. (B) Pho4 activates a similar set of targets. VTC3’s highest coexpressing genes are listed. Most are shared in both species; these are
known targets of Pho4 (Springer et al. 2003). (C) Pho4 is activating the expression of VTC3 in different conditions in the two species. Shown is log2 fold change
(pho4Δ/WT) in gene expression of VTC3 in the indicated conditions. (D) A scheme describing Pho4 regulatory divergence. Pho4 activates the same target
genes in both species, but due to different signals in each species. (E) Trans-variations in dynamic regulation are inherited dominantly. The RC scores between
each species and its corresponding hybrid allele are shown, of trans-diverging genes (color, 184 genes) and of all genes (gray). Color code indicates the RC

score between species. The solid black line is x= y, the dashed lines are diagonal ± 0.2, and the colored dots that pass the dashed lines represent genes that are
regulated dominantly, similarly to one of the species; below the lower dashed line: cerevisiae-like (106 genes); above the upper dashed line: paradoxus-like (55
genes). Orange and blue arrow heads indicate the RC scores of VTC3 and CHA1, respectively. (F) Half the trans-diverging genes lost regulation in one of the
species. The RC scores of each gene with its NN in each species are shown. The dashed line is RC=0.85, and genes below it are referred to as genes with im-
paired regulation. Color code as in E. (G) Cross-species NN similarities vary between genes. Cross-species NN similarities are shown. The x-axis is the similarity
of a gene in S. cerevisiae to the gene’s NN as defined in S. paradoxus; the y-axis is the similarity of a gene in S. paradoxus to the NN as defined in S. cerevisiae. In
the scheme on the top, the circles represent genes and the arrows represent in which species the similarity was calculated (S. cerevisiae in pink, S. paradoxus in
light blue). Color code as in E. Genes that preserve high correlation with their NN (RC>0.85 in F) are indicated with a red circle.
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deaminase that is known to be transcriptionaly induced in the
presence of these amino acids in S. cereivisiae (Bornaes et al.
1993). This divergence in CHA1 regulation was mapped to a trans
effect, because within the hybrid, regulation of the two alleles was
highly similar and cerevisiae-like (Fig. 6A). We noted that in S. cer-
eivisae, CHA1 expression is maximal in rich conditions (YPD) and
is down-regulated in response to nitrogen depletion (Fig. 6B), as
also seen in external data sets (Supplemental Fig. S6A). In contrast,
the expression of CHA1 in S. paradoxus is basal under rich condi-
tions (YPD) and it is not repressed upon nitrogen depletion. We
find that in both species and the hybrid, the gene ismildly induced
in late stages of the experiment (16 h in lownitrogen) (Fig. 6B) and
on entry into stationary phase (Supplemental Fig. S6B), indicating
a complex regulation. Although S. paradoxus is an autotroph, the S.
cerevisiae strain used in this study (BY) is auxotroph to several ami-
no acids. These do not include serine and threonine; therefore, we
expect that our results regarding CHA1 expression are not an arti-
fact of the strain auxotrophy.

In S. cerevisiae induction of CHA1 depends on the transcrip-
tion factor Cha4 (Bornaes et al. 1993; Holmberg and Schjerling
1996). Our nearest neighbor analysis (described above) suggested
that the primary TF regulating CHA1 had changed between spe-
cies, because the genes most correlated with CHA1 varied between
the species (Fig. 5G, CHA1 is indicated by a blue arrow). We there-
fore hypothesized that changes in Cha4, whether in expression or
activity, could account for the CHA1 regulatory variation. Indeed,
deleting CHA4 caused a significant reduction in CHA1 expression
in both S. cerevisiae and the hybrid. In contrast, in S. paradoxus,
CHA1 expression was only mildly reduced on CHA4 deletion
(Fig. 6C). In addition, the expression of CHA4 itself is twofold low-
er in S. paradoxus (log2 fold change=0.8–1, P-value<2× 10−5)
(Supplemental Fig. S6C). We therefore suspect that Cha4 is not ac-
tivating the expression of CHA1 in S. paradoxus under rich condi-
tions, perhaps owing to its lower levels. Contrary to what we
expected, another Cha4 target in S. cerevisiae, MMF1, maintained
a positive coexpression connection with CHA1 also in S. paradoxus
(Fig. 6A). Therefore, in our interpretation, the Cha4 module did

not disappear completely in S. paradoxus, but CHA1 gained an al-
ternative regulation in S. paradoxus that is recessive in the hybrid.

Patterns of cis-dependent regulatory divergence

In the preceding section, we analyzed the dominant basis of regula-
torydivergence that is generatedby trans-actingmutations.Next,we
focusedon thegeneswhose regulatorydivergencewasmapped to cis
effects, showing lowregulatory similaritybetween the twohybrid al-
leles. Illustrative examples are the genes LSO2 (Fig. 7A) and PGM1
(Supplemental Fig. S7). In S. cerevisiae, LSO2 is a ribosome-associated
gene (Wang et al. 2018). Examining the promoter ofLSO2, wenoted
that the S. cerevisiae allelehas gained abinding site for Sfp1, the prin-
ciple TF regulating ribosomal protein and ribosomal biogenesis
genes (Fig. 7B). Consistent with the differential presence of these
binding sites, we find that the S. cerevisiae LSO2 allele is coexpressed
with genes coding for ribosomal proteins, whereas the LSO2 allele
coming from S. paradoxus is not coexpressed with these genes (Fig.
7C) but is coexpressed with the amino acid biosynthesis module,
suggesting an alternative regulation (Fig. 7C).

The lack of regulatory similarity between LSO2 hybrid alleles
was suppressed when comparing the parental species (Fig. 7A), in-
dicating a compensating effect acting in trans. Examining the full
set of cis effects, we found compensatory trans effects to be prom-
inent among genes showing cis-variation. Specifically, we observe
that inmost cases of cis effect (82 of 106 genes), regulatory similar-
ity between the species was higher than regulatory similarity be-
tween the two hybrid alleles (Fig. 7D). Furthermore, although
only ∼1% of genes showed species-hybrid difference >0.2, 50%
of cis-varying genes showed such an effect. This observation is dif-
ferent from our observation of cis-trans variations in expression
levels (Supplemental Fig. S1D) in which we find a similar number
of compensating and reinforcing interactions (70 and 60 genes, re-
spectively). Studies in mice (Goncalves et al. 2012) and flies
(Landry et al. 2005; McManus et al. 2010) report that compensato-
ry interactions are an order of magnitude more abundant than re-
inforcing interactions on gene expression level. Our results do not

B

A

C

Figure 6. CHA1 expression is species- and condition-dependent. (A) CHA1 dynamic regulation is varying in trans. Scatters of coexpression vectors of the
indicated comparisons, similar to Figure 5A. (B) CHA1 is down-regulated on nitrogen depletion in S. cerevisiae but not in S. paradoxus. Log2-transformed
expression levels of CHA1 in the indicated species and conditions are shown. Expression data of all strains (deletion strains andWT) that were sampled in the
indicated conditions are presented. (C) CHA1 expression is reduced upon CHA4 deletion in S. cerevisiae but not in S. paradoxus. Log2 fold change values
(cha4Δ/WT) in gene expression of CHA1 in the indicated conditions are presented.
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agreewith previous results in thematter of cis-trans interactions on
expression level but do show this trend among genes that vary in
dynamic regulation.We conclude that cis-dependent dynamic reg-
ulatory variations are often accompanied by additional compen-
sating trans effects.

Finally, we analyzed cis-diverging genes for their mode of in-
heritance (dominant or additive), level of regulation (correlation
with their NN), and the identity of NN (common or different).
Unlike trans effects, cis effects were not biased toward dominant in-
heritance (33 cerevisiae-like, 26 paradoxus-like, 47 additive) (Fig. 7E,
Supplemental Table S9). Similar to trans effects, half the cis-diverg-

ing genes lost regulation in one of the alleles (58%) (Fig. 7F), al-
though this did not hold for the most extreme cis-diverging
genes that did maintain tight regulation of both alleles, as indicat-
ed by high NN similarities. Of note, unlike trans effects, in cis ef-
fects the identity of the NN changed (Fig. 7G), consistent with
the expected change in the primary regulating TF.

Discussion

Understanding how gene expression evolves is a major challenge.
In this work, we distinguished two properties of gene expression:

E F

B

A

C D

G

Figure 7. Cis-variations in dynamic regulation are often compensated by trans effects. (A–C) LSO2 is an example for a cis-varying gene. Scatters of coex-
pression vectors of the indicated comparisons, similar to Figure 5A. (B) S. cerevisiae LSO2 promoter contains a Sfp1 motif. A segment of a sequence com-
parison of the promoters from the indicated species is shown. (C ) Enrichment of ribosomal protein-coding genes, and of amino acid biosynthesis genes,
within the top 100 LSO2 correlating genes in the different genetic backgrounds. (D) Cis-variations are compensated by trans-variations. Histogramof the RC

difference (between species – between hybrid alleles) for all genes and for cis-varying genes (106 genes). (E) Cis-variations are not typically dominant. The
RC scores of cis-diverging genes (color, 106 genes) and of all genes (gray) of the comparison between each species and its corresponding hybrid allele are
shown, as in Figure 5E. Color code represents regulatory similarity between hybrid alleles. (F ) Half the cis-diverging genes lost regulation in one of the alleles.
The RC scores of each gene with its NN in each species are shown, similar to Figure 5F. Color code as in E. (G) Cis-variation involves a change in the nearest
neighbor. Cross-species NN similarities are shown, as indicated by the scheme at the top, similar to Figure 5G. Color code as in E.
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transcript abundance and dynamic regulation. It is a common ob-
servation that within an organism, genes that are subject to a sim-
ilar regulation can still be expressed at widely different levels. This
ability to independently control the level and regulation of gene
transcription implies that both can be subject to evolution.

Previous studies that compared gene expression between re-
lated species considered only a few conditions and therefore could
only address variation in expression levels (Yvert et al. 2003;
Wittkopp et al. 2004, 2008; Landry et al. 2005; Tirosh et al.
2006, 2009; Yanai and Hunter 2009; McManus et al. 2010;
Goncalves et al. 2012; Shi et al. 2012; Combs et al. 2018).
Whether this variation results from changes in condition-specific
regulation or from differences in the capacity of the general tran-
scriptional machinery remain unresolved. By generating a com-
pendium of comparative data, in which we surveyed a diverse set
of conditions, we distinguished variation in expression level
from variation in dynamic regulation. Our major finding is that
these two variation types are distinct. In particular, the majority
of genes whose abundance vary between the species did maintain
a conserved regulatory pattern.

We based our measure of regulatory similarity on gene coex-
pression. This measure is commonly used for defining coregula-
tion within individual genomes (Hughes et al. 2000; Segal et al.
2003; Li et al. 2017) and was previously used for comparing core
modules in more distant species (Ihmels et al. 2005a,b; Tsaparas
et al. 2006; Thompson et al. 2013). It is beneficial in our context
as it minimizes differences in environmental perception, which
are upstream to the transcription network.

To gain insight on the mechanistic basis of regulatory varia-
tion, we used an interspecific hybrid. A large fraction of regulatory
variation observed between the species was lost when comparing
the two hybrid alleles. This indicates the prominence of trans ef-
fects in regulatory variation, which is in agreement with results
from other experimental systems (Yvert et al. 2003; McManus
et al. 2010; Albert et al. 2018; Liu et al. 2019; Sanchez et al.
2019).We expected that the trans effects will show additive or syn-
ergistic interactions within the hybrid. Hypothetically, if the regu-
latory variation was coded on a single transcription factor,
activating it in a different set of conditions, the hybrid would
have both types of allelic variants (and hence, both types of regu-
lation) and would show an additive effect. In contrast to this ex-
pectation, we found that the vast majority of trans effects are
being inherited in a dominant way, regulated in practically an
identical pattern in the hybrid to one of the parents.We can there-
fore deduce that the trans-variation is coded upstream to the direct
TF on possibly all regulators of the regulatory network. Dominance
of trans effects was observed previously in multiple organisms,
both on expression levels (Lemos et al. 2008) and transcription fac-
tor binding (Wong et al. 2017). In our case, half the trans effects are
explained by limited activity of a TF in the recessive parent. This
may provide a mechanistic explanation for the phenomenon of
genome asymmetry that was reported before in a variety of organ-
isms (Lemos et al. 2008; Feldman et al. 2012; Ren et al. 2019),
whereby the phenotypic manifestation of some traits, including
gene expression patterns, favors one genome over the other rather
than being intermediate. In this sense, we found twice as many
genes with a cerevisiae-like regulation than genes with a para-
doxus-like regulation in the hybrid. This result is consistent with
our observation that the hybrid growth phenotype is more similar
to that of S. cerevisiae than S. paradoxus (Lupo et al. 2020).

We quantify regulatory similarity using a correlation-based
measure, whereas variation in transcript abundance is measured

in units of read counts. It is therefore difficult to conclude which
of these properties change in a more prominent way. Our analysis
of the data, however, suggests that cases in which genes have lost
or gained regulation by specific TFs are rather rare, and that most
variations result from altered activity of a common regulator.
Overall, our data suggest that the massive divergence in transcript
abundance masks a highly conserved transcription network.

Methods

Yeast strains

Yeast stains in this study were constructed on the background of
S. cerevisiae S288c and S. paradoxus CBS432 (OS142) and their hy-
brid. Strains are listed in Supplemental Table S2. In this study,
we expression profiled only diploid yeast cells. Transcription fac-
tors that were deleted are listed in Supplemental Table S1. All trans-
formations were done using the standard LiAc/SS-Carrier/PEG
transformation method.

Experimental conditions

Four types of time-course experiments were performed in this
study: (1) transition fromYPD to low-nitrogenmedium, (2) cell-cy-
cle time course, (3) growth curve, and (4) transition to phosphate
starvation. These are described in full detail in the following
sections.

Transition from YPD to low-nitrogen medium

In short, yeast cultures were grown to logarithmic phase in YPD,
sampled for RNA purification after 6 h of growth, then washed
and transferred to low-nitrogen medium. The cultures were sam-
pled again at times of 1 h and 16 h following the transition. The
experiment was performed in a 96-well plate to allow high-
throughput sampling of multiple strains. In full detail, agar-grown
yeast colonies were pinned to liquid starters, grown to stationary
phase for 24 h, then diluted in 1.5 mL YPD in 2-mL deep-well
plates. These plates contained one glass bead per well for proper
mixing of the culture. In these experiments, each half plate con-
tained a technical repeat of the same culture: one half was used
for optical density (OD600) measurements, and the other was
used for cell harvesting for RNA purification. The cultures were
grown for 6–8 h in a 30°C shaker reaching to OD600 of 0.1–0.6 (log-
arithmic phase), then sampled and washed once, resuspended in
low-nitrogen medium and grown in the same conditions, and
sampled at 1 h and 16 h post medium shift. Cells were harvested
in 0.5-mL culture, centrifuged at 4000 rpm for 30 sec; supernatant
was removed using multipipette vacuum, and pellets were imme-
diately frozen in liquid nitrogen and stored in −80°C.

Low-nitrogen medium

For the low-nitrogenmedium,we used a 0.67%yeast nitrogen base
without amino acids and ammonium sulfate (Bacto-YNB), 2% D-
glucose, 0.05 mM ammonium sulfate, 20 mg/L Urcail, 20 mg/L
Histidine, and 100 mg/L Leucine.

Cell cycle time course

Yeast starters were grown in YPD overnight at 30°C to stationary
phase and were inoculated to fresh medium to OD600 of 0.005 in
100 mL in a 500-mL flask, then grown overnight. When reaching
OD600 of 0.1–0.2, hydroxyurea (HU) was added to the media to a
final concentration of 0.2 M for an additional 2 h. To remove
HU from the media, the cells were washed twice by centrifugation
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(4000 rpm for 1 min) and resuspended in fresh YPD at equal vol-
ume and temperature. Then, the culture was returned to a bath or-
bital shaker. Cells were collected at the following time points:
before HU, at 5, 10, 20, 30, 60, and 120 min in HU, and every 5
min after release for 3 h—in total, 43 time points for each strain.
For RNA, samples of 1.5 mL were taken and centrifuged for 10
sec in 13,000 rpm, the supernatant was removed, and the pellets
were immediately frozen in liquid nitrogen. For DNA staining (to
assess proper synchronization, data shown in Lupo et al. 2020),
samples of 1.5 mL were taken and centrifuged for 10 sec in
13,000 rpm and resuspended in cold 70% ethanol. Samples were
kept in 4°C. This experiment was carried with two independent bi-
ological repeats for each strain.

Growth curve

Overnight starters of yeast were diluted in 50 mL YPD in 250-mL
flasks and grown in a bath orbital shaker overnight (12 h) at
30°C. The time course started when the cultures reached OD600

of 0.4–0.5 and were sampled for OD600 measurements in RNA ex-
traction at the following time points: 0, 80, 125, 170, 215, and 260
min, and 5.1, 6.1, 7.1, 8.1, 9.1, 10.1, 11.1, 23.2, and 32.5 h after
start.

Transition to phosphate starvation

Overnight starters of yeast were diluted in 100 mL Synthetic
Complete medium (SC) in 500-mL flasks and grown in a bath or-
bital shaker overnight (12 h) at 30°C. When the cultures reached
OD600 of 0.2, they were sampled for RNA extraction, then washed
twice in SCmedium lacking Pi (phosphate-depleted) and inoculat-
ed to thatmedia. For the next 6 h, the cultures were sampled every
15min for RNA extraction. At the end of the time course, the three
cultures (WT strains of S. cerevisiae, S. paradoxus, and the hybrid)
had completed 1.5 rounds of mitotic divisions. The experiment
was repeated on a small scale to include pho4Δ strains of the two
species and hybrid.

RNA extraction and sequencing

RNA was extracted using a modified protocol of nucleospin
96 RNA kit. Specifically, cell lysis was done in a 96-deep-well
plate by adding 450 μL of lysis buffer containing 1 M sorbitol
(Sigma-Aldrich), 100 mM EDTA, and 0.45 μL lyticase (10
International units/μL). The plate was incubated for 30 min at
30°C to break the cell wall, then centrifuged for 10 min at 3000
rpm, and the supernatantwas removed. From this stage, extraction
proceeded as in the protocol of the nucleospin 96 RNA kit, only
substituting β-mercaptoethanol with DTT. cDNA was prepared
from the RNA extracts, barcoded using Tn5-mediated tagmenta-
tion protocol, and sequenced using Illumina NextSeq.

Library preparation and sequencing

Libraries were prepared as described in Voichek et al. (2018).
Poly(A) RNA was selected for by reverse transcription with a bar-
coded poly(T) primer. The barcoded DNA–RNA hybrids were
pooled and fragmented by a hyperactive variant of the Tn5 trans-
posase (courtesy of Ido Amit). Tn5 was stripped off the DNA by
treatment with SDS 0.2% followed by SPRI cleanup, and the
cDNA was amplified and sequenced with Illumina NextSeq 500
with 50-bp reads.

Dual-genome alignment pipeline

Sequenced reads were mapped against the concatenated genomes
of S. cerevisiae S288c and S. paradoxus CBS432 (Yue et al. 2017).

Mapping was performed with STAR 2.4.2a (Dobin and Gingeras
2015) with the following parameters: ‐‐sjdbOverhang 60
‐‐scoreGap -10. The alignments were divided into genomes based
on the alignment scores (attribute AS:I in SAM format). Uniquely
mapped reads were assigned to the ortholog with the better score.
If there is no difference in the scores between the two genomes and
the alignment is unique in the S. cerevisiae genome, then the align-
ment to the S. cerevisiae genome is kept and assigned as indistin-
guishable (and the same was done for the S. paradoxus genome).
Counting was performed on the transcript end site (TES) of each
gene. The TES was defined between −500 and +200 bases relative
to the stop codon. The reads were counted using htseq-count,
with the following parameters: ‐‐stranded yes and ‐‐mode union
(https://htseq.readthedocs.io/en/master/). Count tables, divided
to each of the genomes, are available in Supplemental Tables
S10–S12. Mapping statistics (Supplemental Table S4) and percent-
age of mapping to each genome and erroneous mapping
(Supplemental Table S5) are discussed in Supplemental Note 1.

Data filtering

On average, libraries were covered by 3 million reads, resulting in
an average of 47 reads per gene. Samples with less than 150,000
reads were filtered out. Reads of conserved genes that were deter-
mined as indistinguishable were assigned to each sample and
were divided equally between the two genomes in the hybrid
samples.

Data normalization and differential expression analysis

Read counts were normalized and analyzed for differential expres-
sion via DESeq2 (Love et al. 2014) in R 3.6.3 (R Core Team 2020).
Genes with reads counts fewer than five were filtered out. Read
counts were given as input to DESeq2 with the following design:
“∼ gb,” in which gb stands for genetic background (S. cerevisiae,
S. paradoxus, hybrid-cerevisiae, hybrid-paradoxus). Supplemental
Table S3 was used as the summarized experiment matrix. This de-
sign enabled differential expression analysis between species and
between hybrid alleles (cis effect). Analysis of trans effect was car-
ried out using another design: “∼ F+ species + F:species.” In this de-
sign, F represents generation, so parent samples are assigned as F0
and hybrid samples are assigned as F1, and species is either cerevi-
siae or paradoxus. Differential expression was determined via like-
lihood ratio test (test = “LRT”) focusing only on the interaction
term (reduced = F+ species). For both designs, results went through
log2 fold change shrinkage using ashr (Stephens 2017) method.
DESeq2 results are listed in Supplemental Table S6.

Regulatory similarity by coexpression (RC)

Pairwise correlationmatrices for all genes in the genomewere com-
puted per data set, in which each row is referred to as a coexpres-
sion vector. Regulatory similarity is the correlation between
orthologous correlation vectors as

RC
i = corr(�g cer

i , �g par
i )

where RC
i is the regulatory similarity of the ith gene; �g cer

i is the coex-
pression vector of the ith gene in S. cerevisiae; and similarly for �g par

i .
We filtered out genes that express in < 10% of the samples (result-
ing in 4791 genes), and coexpression vectors that compose of low
correlation coefficients (|R| > 0.2 for less than 100 genes), resulting
in 4772 genes in the analysis. Regulatory similarity scores are listed
in Supplemental Table S7.
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Data set control

Data set control is a bootstrapping analysis done to evaluate the re-
liability of coexpression pattern in each species. For each species,
we split the expression profiles subset into two random parts, gen-
erated coexpression vectors for each gene in each half, and report-
ed on the correlation between these vectors. We repeated this
process for 10 permutations; the average of these is the RC of
data set control.

Nearest neighbors

Wedefine nearest neighbors as pairs of geneswith themost similar
coexpression vector. NNs were defined for each species separately.
Starting from a pairwise correlation matrix, we computed the cor-
relation between the rows of this matrix, resulting in the second
correlation matrix. Nearest neighbors are the maximal value of
each row of the second correlation matrix. Cross-species NNs
were defined with a more relaxed criterion, in that we took the
gene giving the maximal correlation value in species A out of the
top five nearest neighbors of species B.

Enrichment for functional groups

Enrichment analysis was done through applying a hypergeometric
test to a list of genes against functional gene groups. Functional
groups include expression modules (Ihmels et al. 2002), environ-
mental stress response (Gasch et al. 2000), GO slim, transcription
factors targets (MacIsaac et al. 2006), KEGG pathways, expression
levels, burst size (Newman et al. 2006), and TATA-containing pro-
moters (Basehoar et al. 2004) OPN and DPN (Tirosh and Barkai
2008).

Promoter analysis

Promoters were defined as intergenic regions upstream of the start
codon of a gene. Sequences were obtained from the genome se-
quences of S. cerevisiae and S. paradoxus (Yue et al. 2017).
Sequences of distant species were obtained from Yeast Gene
Order Browser (YGOB) (Byrne andWolfe 2005). TF bindingmotifs
were obtained from the YeTFaSCo database (De Boer and Hughes
2012).

Data access

The RNA-sequencing data generated in this study have been sub-
mitted to the NCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession number PRJNA592756.
Tables of read counts per gene, per sample, following the initial
computational pipeline, are available in Supplemental Tables
S10–S12. Code used for the analysis of regulatory similarity is
available at GitHub (https://github.com/GatKrieger/comparative
Coexp). All code is also available as Supplemental Code.
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