Skip to main content
. 2020 Jul 27;11:706. doi: 10.3389/fgene.2020.00706

TABLE 2.

Performance comparison between SSRMMD and other software programs for identifying genome-wide SSR feature loci.

Software Thread Rice (Zhenshan97, ∼0.39 Gb)
Cotton (TM1, ∼2.29 Gb)
Wheat (CS, ∼14.23 Gb)
Number Time (m:s) Mem (Mb) Number Time (m:s) Mem (Mb) Number Time (m:s) Mem (Mb)
SSRIT 1 111,960 5:53 131.55 384,488 34:45 343.04 1,345,128 210:47 2,503.85
MISA 1 111,905 5:50 205.52 384,400 35:31 382.60 1,343,830 212:45 4,195.61
GMATAa 1 111,905 7:28 85.48 384,400 42:15 361.72 1,343,831 254:46 1,739.50
PERF 1 111,960 8:49 211.60 384,488 52:32 522.91 1,345,128 320:36 3,325.42
Kmer-SSR 1 111,960 14:08 123.05 384,488 83:14 169.00 1,345,128 516:19 1,028.44
Kmer-SSR 12 111,960 5:28 321.95 384,488 28:20 353.96 1,345,128 205:19 1,251.40
SSRMMD 1 111,960 4:49 139.38 384,488 28:36 421.95 1,345,128 175:19 2,404.68
SSRMMD 6 111,960 1:08 466.19 384,488 6:46 1,044.88 1,345,128 43:40 5,972.30
SSRMMD 12 111,960 0:49 731.02 384,488 4:28 1,717.92 1,345,128 27:05 11,248.89

Note. SSRMMD, Simple Sequence Repeat Molecular Marker Developer; SSR, simple sequence repeat. aBecause GMATA and Kmer-SSR could not simultaneously mine different types of motifs in one task, these two programs were multiply performed to identify SSRs, then the time was added, and memory peak was selected as the maximum among all tasks.