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Abstract

Purpose of review—Osteoarthritis is a major source of disability, pain and socioeconomic cost 

worldwide. The epidemiology of the disorder is multifactorial including genetic, biological and 

biomechanical components, some of them detectable by MRI. This review provides the most 

recent update on MRI biomarkers which can provide functional information of the joint structures 

for diagnosis, prognosis and treatment response monitoring in osteoarthritis trials.

Recent findings—Compositional or functional MRI can provide clinicians with valuable 

information on glycosaminoglycan content (chemical exchange saturation transfer, sodium MRI, 

T1ρ) and collagen organization (T2, T2*, apparent diffusion coefficient, magnetization transfer) in 

joint structures. Other parameters may also provide useful information, such as volumetric 

measurements of joint structures or advanced image data postprocessing and analysis. Automated 

tools seem to have a great potential to be included in these efforts providing standardization and 

acceleration of the image data analysis process.

Summary—Functional or compositional MRI has great potential to provide noninvasive imaging 

biomarkers for osteoarthritis. Osteoarthritis as a whole joint condition needs to be diagnosed in 

early stages to facilitate selection of patients into clinical trials and/or to measure treatment 

effectiveness. Advanced evaluation including machine learning, neural networks and 

multidimensional data analysis allow for wall-to-wall understanding of parameter interactions and 

their role in clinical evaluation of osteoarthritis.
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INTRODUCTION

Osteoarthritis is a debilitating disease that causes pain and affects mobility; degeneration of 

joint structures is a major manifestation of the disease process. Over more than a decade a 

number of MRI-based biomarkers for collagen and proteoglycan content in articular 

cartilage affected by osteoarthritis were developed. These compositional (often referred to as 

functional or biochemical) markers are related to collagen content and organization [1,2], 

proteoglycan content [3–5] and mechanical properties [6,7] and they can also predict focal 

cartilage and meniscus disruption [8]. T2 relaxation constant mapping is a well investigated 

technique reflecting the combination of water content and collagen matrix organization 

[1,9,10]. Proteoglycans with covalently attached glycosaminoglycan (GAGs) can be 

potentially assessed with T1ρ (relaxation in rotating frame) [4], glycosaminoglycan chemical 

exchange saturation transfer (gagCEST) [3] and sodium MRI [11]. All these GAG-specific 

contrast-free techniques are preferred over conventional delayed Gadolinium Enhanced MRI 

of Cartilage (dGEMRIC) [12] as the Federal Food and Drug Administration recently warned 

about gadolinium-based contrast agents which can be potentially harmful for patients due to 

gadolinium deposition in central nervous system structures [13]. Some joint structures such 

as ligament, tendons and subchondral bone tendons are characterized by ultrashort 

relaxation rates resulting in loss of magnetic resonance (MR) signal in conventional MRI 

images. Ultra-short echo time techniques are able to either acquire signal directly from these 

structures [14] of even calculate T2* and T1ρ relaxation to describe the collagen fibres 

organization [15,16]. Diffusion weighted imaging and diffusion tensor imaging also provide 

an important information about cartilage status by calculating apparent diffusion coefficient 

[17] and diffusion tensor map [18], respectively. Modern computer science approaches are 

pushing the field further by implementing machine learning algorithms for image 

postprocessing and multidimensional data analysis for searching the relations between 

various biomarkers. Osteoarthritis as a complex multifactorial joint disease which is 

characterized by structural alteration including GAG loss and collagen remodelling, but is 

also accompanied by volumetric changes. Here, the deep learning approach helps to 

automatically segment joint structures such as cartilage and meniscus which is a typically 

extremely demanding task in terms of man-power [19■]. All these modern methods have a 

common goal: to establish quantitative MRI biomarkers as reproducible and reliable 

indicators of joint structures suffering from osteoarthritis. This review summarizes the most 

recent findings and improvements in the field of MRI-based biomarkers for osteoarthritis 

assessment and their usage for diagnosis, prognosis and treatment monitoring.

T2 MAPPING

The transversal relaxation constant, T2, in cartilage reflects the interaction of water 

molecules and the extracellular matrix on a molecular level. Anisotropy of tissue results in 

different T2 values from deep to superficial cartilage layers depending on the collagen fibre 

orientation. Previously, T2 was validated as a marker for osteoarthritic alterations in cartilage 

[20], as a physiological indicator of loading induces changes in cartilage [21] and also as a 

biomarker for monitoring the patients after surgical treatment of cartilage lesions [22]. 

Advances in MR hardware, mostly in increasing main magnetic field strength, accompanied 

with the challenges such specific-absorption limitations and special radiofrequency coils 
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need, initiated using novel MR sequences for T2 mapping, such as triple-echo and double-

echo steady-state-based approaches [22,23]. T2 can be also exploited as a predictive marker 

for focal lesion development which may result in osteoarthritis. Kretzschmar et al. [24] 

investigated T2 mapping for early osteoarthritis changes in cartilage of 57 patients and they 

showed that both diffuse and focal changes of cartilage composition precede the 

development of cartilage lesions. Evaluation of T2 in cartilage can be further enhanced and 

standardized using human-independent machine learning techniques. Pedoia et al. 
demonstrated the machine learning capabilities using whole Osteoarthritis Initiative (OAI) 

Dataset (>4000 individuals). Their results showed that feature learning from T2 maps has a 

great potential in uncovering information that can prospectively help to better diagnose 

osteoarthritis [25■■]. This concept can be extended and further improved by combining 

other features with quantitative MR, such as biomechanical parameters. In another study of 

Pedoia et al. [26■■], it was shown that the integrated parameter set of demographic, clinical 

information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 provides an 

information about their cross-interactions and may serve as a robust early predictor of 

cartilage lesion progression. A combined network of morphological MRI, biomechanics and 

quantitative MRI is depicted in Fig. 1.

T1ρ MAPPING

T1ρ is sensitive to low-frequency interactions of macromolecular protons and bulk water as 

well as early biochemical deterioration of cellular matrix [16]. T1ρ imaging of connective 

tissues affected by osteoarthritis may provide a more systematic assessment of this disease. 

In the previous studies the correlation was found between both proteoglycan-specific 

methods like gagCEST [27] and collagen-specific methods like T2 [28]. Atkinson et al. [29] 

demonstrated using a complex meta-analysis that increased T1ρ and T2 values in cartilage 

may serve as a risk factors for osteoarthritis. Higher signal-to-noise ratio increases the 

accuracy of T1ρ calculation, using higher field strengths, for instance; Wyatt et al. [30] found 

T1ρ at 3 and 7 T significantly higher in the lateral femoral condyle and patella in patients 

with osteoarthritis; however, more regions were significant at 7 T compared with 3 T. The 

recent meta-analysis demonstrates that T1ρ provides more discrimination than T2 for 

osteoarthritis [31]. Advances in MRI techniques and image postprocessing allow for 

detecting more than a single component of T1ρ in connective tissues which may help to 

better understand the osteoarthritis pathogenesis in the future [32,33■].

GLYCOSAMINOGLYCAN CHEMICAL EXCHANGE SATURATION TRANSFER

Glycosaminoglycan-specific chemical exchange saturation transfer (gagCEST) is a recently 

developed technique, which provides information about the amount of GAG in articular 

cartilage. It is based on selective saturation of the exchangeable hydroxyl protons of GAG, 

which exchange with water protons [3]. The feasibility of using gagCEST for GAG content 

determination has been previously validated by number of studies [27,34,35]. Further 

development aims towards faster clinical MRI acquisition methods and more quantitative 

acquisition and analysis routines [36]. Stability and feasibility of gagCEST imaging to 

detection of early cartilage damage was investigated by Brinkhof et al. [37■■]; they 

developed a 7-min gagCEST protocol and used it to calculate intraclass correlation 
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coefficient (ICC) to show high reproducibility in the medial femoral condyle (ICC = 0.87) 

and in the lateral femoral condyle (ICC = 0.97) and they also found statistically significant 

change in GAG between damaged and healthy cartilage. In terms of technical development, 

Windschuh et al. [38] investigated the effects of a frequency drift on gagCEST contrast in 

the human knee at 7 T and suggested a retrospective correction method that can eliminate 

errors. This technique is illustrated in Fig. 2. The water T2, and thus the frequency width of 

the water peak, may impact the extent of the so-called spillover effect in CEST. Peterson et 
al. [39■■] demonstrated that T2 substantially influences gagCEST which is obvious 

especially in femoral cartilage with a wide range of T2 and showed this effect to be more 

pronounced at 3 T compared with 7 T as the gagCEST effect is weaker at lower field 

strength.

SODIUM MRI AND PET/MAGNETIC RESONANCE

Sodium MRI is another technique which has potential to noninvasively determine GAG 

content in human articular cartilage; however, it requires special radiofrequency hardware 

(dedicated coils, ultra-high field scanners) and complicated postprocessing [40]. Despite 

that, the number of studies was performed demonstrating a high sensitivity and 

reproducibility of sodium MRI in detecting GAG content levels in cartilage either in 

osteoarthritis [5,41] or in cartilage repair [42,43]. In a recent study, Madelin et al. [44■■] 

used two sodium MR sequences (radial three-dimensional and fluid suppression by adiabatic 

inversion recovery) to investigate whether they can detect the sodium volume changes in 

patients with osteoarthritis after 16 months. A significant decrease of measured apparent 

sodium concentration in cartilage using IR in both femoral condyles and patella proved the 

sensitivity of sodium MRI to detect subtle changes of GAG concentration. Fluid suppression 

in sodium MRI was also investigated by Xia et al. [45] they developed quadrupolar jump-

and-return pulse sequence to suppress the fluid signal from the artery and enhance the 

contrast of knee cartilage in vivo. Another modern approach towards the advanced 

evaluation of osteoarthritic alterations in joints is the hybrid PET/MRI scanning. Wandler et 
al. [46] investigated the potential of 18F-fluoro-deoxyglucose uptake pattern within the 

shoulder cartilage and they found out it can be is associated with signs and symptoms of 

osteoarthritis or bursitis. Kogan et al. [47] used PET/MR to assess the metabolic activity in 

osteoarthritis and concluded that PET/MR may detect metabolic abnormalities in 

subchondral bone, which appear normal on MRI. In another study by Savic et al. [48], 

significant cartilage and bone interactions were demonstrated in osteoarthritis of the knee 

joint using simultaneous [18F]-sodium fluoride PET/MR.

CARTILAGE VOLUMETRIC MEASUREMENTS

Cartilage tissue loss is a hallmark of osteoarthritis. Thinning and cartilage/bone deformation 

can be manually assessed from high-resolved morphological MR images, however, this 

approach requires enormous workload. There are many techniques for automated cartilage 

segmentation which were developed in recent years, including intensity-based [49] and 

edge-based [50] approaches, deformable models [51], clustering [52] and atlas/graph-based 

methods [53]. Machine learning has vast ranging applications including automated 

segmentation of cartilage allowing for reliable segmentation using convolutional neural 
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networks (CNN) [19■,54–56]. In addition to knee cartilage, other joints have been 

segmented using automated techniques such as hip cartilage [57], shoulder [58], bones [59] 

or even wrist cartilage [60]. The logical translation of automated cartilage segmentation is 

the use for quantitative MR assessment which is also often related to tedious manual 

segmentation. Hesper et al. [61■■] found automated hip cartilage segmentation for 

dGEMRIC assessment to be reliable and reader-independent approach for assessment of 

biochemical cartilage status. Norman et al. used a CNN-based approach for automated T1ρ 
assessment demonstrating the ability to quantify, in a longitudinally repeatable way, 

relaxometry and morphology in a single session [55].

ADVANCES IN IMAGE POSTPROCESSING

Machine learning is more and more employed in extracting the predictive or diagnostic 

value from the existing multidimensional patient data. Up-to-now, there were many attempts 

to developed patient-specific prediction models for knee osteoarthritis by analyzing 

multivariable ‘big data’ using either conventional statistical approach [62] or machine 

learning [63]. To classify early stages of osteoarthritis is also of interest for machine 

learning; Ashinsky et al. [64] used such an approach to predict early symptomatic 

osteoarthritis by combining T2 mapping and clinical outcome variables and they found the 

classification accuracy to be 0.75 ± 0.9%. Lazzarini et al. [65] proposed five highly 

predictive small models that can be possibly adopted for an early prediction of knee 

osteoarthritis where all the models showed high performance (area under curve >0.7). 

Sodium imaging was also tested with various machine learning to classify osteoarthritis 

patients with accuracy ranging from 63 to 78% [66]. Du et al. [67■■] suggested a novel 

approach to predict knee osteoarthritis combining four machine learning methods and the 

clinical data. In general, selecting the best variables to incorporate into prediction models 

can be a complex task owing to the great number of variables to choose from [68].

Quantitative MR analysis can be extended using texture analysis techniques, typically 

feature extraction from grey-scale co-occurrence matrix (GLCM). Texture analysis provides 

a reliable tool for assessing knee osteoarthritis with more sensitive detection of cartilage 

degeneration compared with the simple mean T2 or T1ρ value in an identical region of 

interest. As cartilage is a complex-shaped complex organ, original texture analysis suggested 

by Haralick [69] needs to be modified. Peuna et al. [70■■] developed a cartilage-specific 

GLCM analysis algorithm taking into account-specific cartilage features such as curvature 

and angulation. Joseph et al. [71] studied osteoarthritis patients using conventional T2 maps 

and texture analysis; they found out individuals at risk for osteoarthritis have both higher and 

more heterogeneous T2 values than controls and that individuals with cartilage abnormalities 

have elevated cartilage T2 parameters compared with individuals without abnormalities (Fig. 

3) [71]. Heilmeier et al. [72■■] analyzed more than 300 individuals from the OAI and 

according to their findings combined clinical score, quantitative MR and texture can help 

predict the patient’s individual risk for an incident total knee replacement 4–7 years later.
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CONCLUSION

Functional compositional MR techniques provide an important extension to clinical, 

morphological and biochemical assessment of osteoarthritis diagnosis and progression 

staging. There are still remaining issues to be addressed such as lack of standardization and 

tedious image postprocessing; however, the clinical value of quantitative magnetic resonance 

imaging is undeniable already in the presence. Future challenges include advancements in 

imaging techniques, searching relationships between various markers by machine learning 

and multidimensional data analysis, and parameter validation using large freely available 

database such as the OAI.
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KEY POINTS

• Advances in image-processing, image reconstruction and data analysis yield 

better understanding of MRI-based markers for joint structure status.

• Quantitative MRI provides noninvasive markers for osteoarthritis diagnosis 

and prognosis.

• Recent developments allow for faster magnetic resonance scanning, reliable 

cartilage and meniscus segmentation and complex multidimensional data 

analysis.
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FIGURE 1. 
Combined network of morphological MRI, biomechanics and compositional MRI. The 

network shows a gradient with severe patients appearing in the lower right (marked with 

dashed black circles) and less severe in the upper left based on Kellgren–Lawrence grading. 

Reproduced with permission [26■■].
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FIGURE 2. 
Cropped M0 images superimposed with glycosaminoglycan chemical exchange saturation 

transferM0 contrast in patellar and femoral cartilage from identical measurements from a 32-

year-old healthy volunteer, acquired at t = 5 min (a, d, g, j), t = 17 min (b, e, h, k), and t = 29 

min (c, f, i, l). The glycosaminoglycan chemical exchange saturation transferM0 contrast of 

data using the standard B0 correction (a, b, c) shows an increase over time, whereas the 

dynamic WASABI (simultaneous mapping of water shift and B1) correction (d, e, f) and the 

dynamic WASABI/phase correction method (g, h, i) provide a stable contrast. The last row 

represents data from the same individual acquired 1 month later (j, k, l). Reproduced with 

permission [38].
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FIGURE 3. 
Representative T2 maps from an individual from the control cohort (left) and an individual 

from the incidence cohort (right). Cartilage T2 maps are median-filtered with a 3 × 3 kernel 

for visualization. Both individuals have no cartilage abnormalities and no pain; however, the 

individual from the incidence cohort has elevated mean T2 (39.12 versus 33.39 ms), elevated 

grey level co-occurrence matrix variance (311.63 versus 190.50), elevated grey-scale co-

occurrence matrix contrast (466.16 versus 266.82), and elevated grey-scale co-occurrence 

matrix entropy (7.17 versus 6.80). Reproduced with permission [71].
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