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‘Covert consciousness’ is a state in which
consciousness is present without the capacity for
behavioural response, and it can occur in patients
with intraoperative awareness or unresponsive
wakefulness syndrome. To detect and prevent this
undesirable state, it is critical to develop a reliable
neurobiological assessment of an individual’s level
of consciousness that is independent of behaviour.
One such approach that shows potential is measuring
surrogates of cortical communication in the brain
using electroencephalography (EEG). EEG is
practicable in clinical application, but involves
many fundamental signal processing problems,
including signal-to-noise ratio and high dimensional
complexity. Symbolic analysis of EEG can mitigate
these problems, improving the measurement of
brain connectivity and the ability to successfully
assess levels of consciousness. In this article, we
review the problem of covert consciousness, basic
neurobiological principles of consciousness, current
methods of measuring brain connectivity and the
advantages of symbolic processing, with a focus
on symbolic transfer entropy (STE). Finally, we
discuss recent advances and clinical applications of
STE and other symbolic analyses to assess levels of
consciousness.

© 2014 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2014.0117&domain=pdf&date_stamp=2014-12-29
mailto:uclee@med.umich.edu

1. Introduction

Understanding the mechanism and measurement of human consciousness is a fundamental
pursuit across multiple scholarly disciplines. One of the persistent challenges resulting from
our incomplete understanding is the inability to discriminate clearly between conscious and
unconscious states in individuals who have lost the capacity for behavioural responsiveness. The
presence of conscious experience coupled with the absence of responsiveness is often referred
to as ‘covert consciousness’. Although breakthroughs in neuroimaging have demonstrated the
possibility of assessing levels of consciousness in behaviourally unresponsive patients, this
technology is expensive and cumbersome. Furthermore, neuroimaging modalities are simply not
feasible for the real-time detection of consciousness in the operating room setting, where—often
due to the effects of paralytic drugs administered by anaesthesiologists—covert consciousness
has been repeatedly documented to occur. As such, neurophysiological techniques involving
the electroencephalogram (EEG) have been an active area of research for detecting covert
consciousness in patients with unresponsive wakefulness syndrome (formerly referred to as the
‘vegetative state”) as well as in patients undergoing surgery with intended general anaesthesia.
Unfortunately, the raw EEG is a complex signal that does not have a clear and invariant signature
across unconscious states. One current dilemma is how to simplify techniques of EEG analysis
while grounding them in the neurobiology of consciousness. Symbolic analysis is one method
that has been explored to achieve this balance. In this article, we review the problem of covert
consciousness, basic principles of the neurobiology of consciousness, the measurement of cortical
connectivity with a form of symbolic analysis known as symbolic transfer entropy (STE), and
recent advances in assessing levels of consciousness using other measures based on symbolic
analysis.

2. Consciousness versus responsiveness

We are privy to one and only one case of subjective experience: our own. Therefore, all remaining
assessments of conscious experience are inferred from behavioural activity and behavioural
responsiveness. Imagine walking down the street and saying hello to a neighbour who is walking
past you. Although you cannot definitively establish that your neighbour is conscious, you
would nonetheless infer the presence of conscious experience based on her activity (walking), her
responsiveness (waving and saying hello back to you), and your past experience in which your
own responses (such as waving) were coupled with a conscious experience of an environmental
stimulus (such as someone saying hello). Conversely, we make inferences of unconsciousness
based on lack of behavioural responsiveness. If a friend were lying on a couch with his
eyes closed and did not respond to a question you posed, you might conclude that he was
sleeping. If you wanted to distinguish between the relatively reversible physiologic state of
sleep and the relatively irreversible pathologic state of coma, you might jostle your friend to
assess his responsiveness. Movement and awakening would confirm that the observed state was
sleep, while unresponsiveness to vigorous shaking and noxious stimuli might suggest a more
ominous situation. In short, we rely on behavioural assessments to make inferences of both
consciousness and unconsciousness because we cannot directly access or measure consciousness
in others.

Although responsiveness generally works well as a surrogate for consciousness in everyday
life, pharmacologic interventions or pathologic events can generate conditions for covert
consciousness by creating unbridgeable chasms between experience, intent and response. One
common example of the pharmacologic dissociation of consciousness and responsiveness is
unintended awareness during surgery. In 1-2/1000 surgical patients—and up to 1/100 high-risk
patients—undetected consciousness and memory formation may occur in the operating room
setting [1,2]. The incidence of undetected conscious experience without memory formation is
significantly higher [3], as consciousness becomes dissociated from responsiveness owing to
the effects of paralytic drugs. The suppression of voluntary movement is tantamount to the
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elimination of the primary behavioural measure of consciousness. The experience of awake
paralysis—especially coupled with the pain of surgery—can be psychologically devastating [4,5],
which motivates prevention of these events.

The pathologic and sometimes irreversible dissociation of consciousness and responsiveness
is observed in neurologically impaired patients who have suffered, for example, a stroke or
traumatic brain injury. The possibility of covert consciousness in what has classically been termed
the vegetative state was illustrated dramatically in an influential case report of a woman who,
despite a clinical diagnosis consistent with pathologic unconsciousness, was able to demonstrate
brain activation patterns in response to volitional tasks that were similar to those of awake healthy
controls [6]. This case led to neuroimaging paradigms intended to detect covert consciousness
in those with diagnoses of unresponsive wakefulness syndrome, among other conditions [7].
The need for brain-based rather than behaviour-based diagnoses of pathologic unconsciousness
is critical given the high percentage of misdiagnoses (between, for example, vegetative and
minimally conscious states) [8].

As noted, functional neuroimaging is an expensive, time-consuming and cumbersome
technology that lacks practicality for bedside diagnoses of pathologic states of unconsciousness
and lacks feasibility for real-time intraoperative use to prevent awareness during anaesthesia.
As such, the fields of neurology and anaesthesiology have focused more intensely on EEG as
a diagnostic tool for these conditions. However, the use of EEG protocols to diagnose covert
consciousness has been controversial in neurology [9-13], and the use of processed EEG in
anaesthesiology has not demonstrated superiority to more traditional pharmacologic metrics
in the prevention of intraoperative awareness [14,15]. The potential for successful detection
of consciousness in the absence of responsiveness depends on a clearer understanding of the
neurobiological principles of conscious experience.

3. Consciousness and neural communication

In order to distinguish between conscious and unconscious states in individuals who may lack
normal responsiveness, we need to understand how the brain generates conscious experience
as opposed to mere wakefulness. The neuroscientific mechanisms of consciousness remain
opaque, although a number of prominent theories are being actively considered, including global
neuronal workspace theory [16], predictive coding [17], higher-order representationalism [18] and
integrated information theory [19]. Although these theoretical frameworks are clearly distinct,
many involve some form of ‘communication’—i.e. an exchange of information—across the brain,
as opposed to the isolated function of a particular neural region that is solely responsible for
conscious processing. The requirement for communication between specific neural structures in
the generation of consciousness becomes obvious when we consider the nature of our experience
and the nature of brain function. The nature of our experience is that it is singular but complex,
which is often referred to as the unity of consciousness. For example, we do not experience an
object’s colour independently of its shape or its movement or its spatial location. Rather, these
visual features are bound or synthesized into a single percept that is furthermore integrated
with other sensory modalities. By contrast, we have known at least since the nineteenth century
that the brain is subdivided into discrete neural populations that serve specific functions.
As such, the unity of consciousness seems to be at odds with the division of labour in the
brain. Since the late twentieth century, the question of how the brain synthesizes discrete and
specialized cognitive processing into a singular experience has been known as the cognitive
binding problem [20,21]. In the twenty-first century, this line of investigation has evolved to
the integrated information theory [19,22,23], which asserts that (i) the capacity of a system
to be conscious is directly proportional to its ability to synthesize functionally discrete and
specialized neural processing subsystems (in the case of the brain) and (ii) the complexity of
integrated information cannot be causally reduced to its individual parts. The past work on
the binding of neural information and integrated information theory differ in that the former
proposes a necessity relationship to consciousness (i.e. binding is necessary for consciousness),
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while the latter proposes an identity relationship to consciousness (i.e. integrated information
is consciousness). In either case, it should be clear that disrupting the process of information
synthesis in the brain would be sufficient for unconsciousness, although the precise mechanism
of disruption required for unconsciousness is currently unknown. While certain patterns of
neural communication continue to persist in unconscious states, including sleep [24], anaesthesia-
induced unconsciousness [25] and seizure [26], the ‘unbinding’ of patterns associated with neural
representation has been argued to be the proximate cause and minimally sufficient condition
for physiologic, pharmacologic and pathologic states of unconsciousness [27]. Therefore, the
measurement of neural communication across the brain, a prerequisite for integration, holds
promise as a method of assessing levels of consciousness. As discussed, EEG holds the
most practical promise for assessing consciousness in the clinical domain, which means that
corticocortical communication would be the primary target of measurement. In the following
sections, we discuss the symbolization of EEG signals as well as recent advances in assessing
depressed levels of consciousness using symbolic processes.

4. Computational techniques for estimating cortical communication with
electroencephalography

Estimating connectivity between two brain regions is a non-trivial task, with many potential
problems caused by characteristics of the EEG itself and the limitations of the connectivity
methods employed. Broadly, these methods have been classified as being measures of
either functional or effective connectivity [28]. Functional connectivity measures the statistical
covariation between signals recorded in different brain regions, while effective connectivity
refers to the influence that one neural system exerts over another, at either a synaptic or
a population level [28]. In this paper, we will focus on the methods that estimate effective
connectivity from EEG, including measures of directed connectivity that have been used to
assess level of consciousness [29,30]. Techniques that have been recently employed to estimate
effective connectivity can be further divided into two categories: model-based approaches and
information-theoretic approaches. Within model-based approaches, the most popular methods
are dynamical causal modelling (DCM) [31] and Granger causality (GC) [32]. These two methods
estimate the effective connectivity by generating a specific model for the processes underlying
the observed data. DCM assumes a bilinear state space model with nonlinear interactions [31,33]
and requires a priori knowledge about the underlying connectivity and comparisons of several
competing models with respect to the observed data. However, as a priori knowledge about
potential connectivity configurations in the brain may not always be available, the application
of DCM to exploratory analyses is limited. GC is a linear regression model that quantifies the
information transfer relationship between a source and a target signal. The past of the source
signal is used to predict the future of the target signal; if its inclusion improves the prediction
beyond what is known from the past of the target signal alone, the source signal is said to ‘Granger
cause’ the target signal. However, this method is vulnerable to producing spurious results as a
result of its linear interpretation, sensitivity to noise and band pass filtering [34,35], and inaccurate
inferences in cases where two signals are mutually influenced by a third independent source [36].
These limitations make both DCM and GC non-ideal for assessing effective connectivity in EEG
data. Transfer entropy (TE) is a popular information-theoretic approach with a broad range of
applications that addresses many of these limitations [37]. While this measure is still susceptible
to producing spurious results due to a source that mutually influences the signals of interest, TE
is not dependent on a priori knowledge of brain connectivity patterns, is able to detect nonlinear
relationships and is robust for a wide distribution of interaction delays [38]. TE is a nonlinear
extension of GC and is equivalent to GC for jointly multivariate Gaussian variables [39]. The
concept of TE is illustrated in figure 1. TE offers a model-free estimation of the direction and
strength of connectivity between two signals, quantifying the degree of dependence of the target
signal (Y) on the source signal (X) or vice versa. TE can be defined as the amount of mutual
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Figure 1. Schematicillustration of TE. TE measures the influence of source signal X on target signal ¥ and is based on information
theory. The information transfer from signal X to ¥ is measured by the difference of two mutual information values IIYEXP, VP
and /[YF; YP1, where X*, Y* and Y* are, respectively, the past of source and target signals and the future of target signal. The
difference corresponds to information transferred from the past of source signal X to the future of target signal Y* and not from
the past of the target signal itself. The average overall vector points measure the information transferred from the source signal
to the target signal. (Courtesy of Lee et al. [29].)

information between the past of X (XP) and the future of Y (YF), when the pastof Y (YP)is already
known, i.e.
TEx-y =1(Y5 X IY") = HOYF|YP) - HOYFIXP, YD), (4.1)

where H(YF|YT) is the entropy of the process YF conditional on its past.
The probability distributions of XP, YP and YF can be written explicitly as

(4.2)

FiyP P
TExoy = PO, Y¥, X7 log, [W}

P(YF|YP)
and I[Y5XP, YP1=1(YF; YP) + TEx_. . (4.3)

Equation (4.3) shows that the TE represents the amount of information provided by the additional
knowledge of the past of X describing the information between the past and the future of Y. As
TE is by definition sensitive to all orders of correlations, it is able to detect unknown nonlinear
interactions, in contrast with linear and model-based methods. However, TE is limited by its
sensitivity to the bin size (though non-binning strategies to estimate TE exist, e.g. [40]), its need
for large amounts of data in order to produce a reliable probability, and the presence of more
embedding parameters. Furthermore, TE is parsimonious in choosing samples of the source,
target and conditional signals, which limits its performance in the presence of data with high
dimensional dynamics [41] and also introduces the difficult process of optimizing the embedding
dimensions of the multivariate space and the delays of interactions [42,43].

5. Interventional methods for assessing causal relationships

Another popular set of approaches in information and network sciences to study the causal
relationships between subsystems are interventional methods [44,45]. In the context of these
methods, causal influence refers to the extent to which the source signal has a direct influence
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Figure 2. The symbolization of two EEG signals. The amplitudes of source and target signals, X and ¥, are symbolized with the
ranks of vector components in ascending order. In this example, the embedding dimension is m = 3and the time delay t =1.
Thus, the vector components are symbolized with 0, Tand 2. For instance, X2 = (1,6,2) is symbolized to (0,2,1) in ascending
order. The grey shaded parts are X" (=X?), Y*(=Y?) and Y¥(=Y?), corresponding to the pasts of source and target EEG signals
and the future of target EEG signal, respectively. Here, § = 3is the interaction delay between the source and target EEG signals.
(Courtesy of Jordan et al. [49].)

on the future of a target signal [44], i.e. ‘if I change the present of the source signal with an
intervention, to what extent does that alter the future of the target signal?” By contrast, TE is
a measure of observed (conditional) correlations. TE refers to the amount of information that a
source signal adds to the future of a target signal, i.e. ‘if I know the present of the source signal, how
much does that help to predict the future of the target signal?” Given that causal interactions can
serve the purposes of information transfer, storage and/or modification in a system, and TE only
detects information transfer, TE may not accurately measure the underlying causal structure in all
situations. In other words, non-zero TE signifies the presence of a causal relationship, but zero TE
does not guarantee its absence [46]. However, as we typically do not have the ability to perturb
specific brain signals in humans to measure the direct causal effects (though this is attempted
more coarsely with interventions such as transcranial magnetic stimulation (TMS) [47]), the
interventional method is somewhat limited in its application to assessing level of consciousness
based on EEG.

6. Symbolic transfer entropy

To mitigate the disadvantages of TE, Staniek & Lehnertz [48] modified the method with a
symbolization process. In symbolic transfer entropy (STE), each vector for YF, X and YT in
equation (4.2) becomes a symbolized vector point. For instance, a vector Y' consists of the
ranks of its components Y'=[y1,v2,...,Ym], where Yi =Yt-mx (1) 18 replaced with the rank in
ascending order, S [1,2,...,m] for j=1,2,...,m. Here, m is the embedding dimension and
is the time delay. The symbolization process for the source and target EEG are illustrated in
figure 2. STE is defined in the same way as equation (4.2), but embedded vector points are
replaced with symbolized vector points. In comparison with TE, STE has the advantage of
requiring no binning and no advanced estimator of the probability density function. Furthermore,
the total possible number of vectors is significantly reduced by using ranked vector elements,
making the estimation of probability relatively robust to a higher-dimensional dataset. Recently,
Kugiumtzis [50] introduced a corrected version of STE by replacing the ranked vector with the
rank of sample as the future of Y (YF)in equation (4.1), which measures the direct analogue to TE
using ranks. Further improvements to the original STE equation were introduced by extending
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it to multivariate time series; the resulting partial TE equations account for the influences of
confounding variables from the other observed time series [51,52]. In addition to STE, other
methods of mitigating the disadvantages of TE include binless estimation techniques, which do
not require the selection of a bin size and work well for relatively small datasets [40,53].

7. Symbolization of electroencephalography

In general, symbolization involves the transformation of an experimental signal into a series of
discrete symbols that are processed to extract important information about the system dynamics.
The common approach to symbolization is to partition the range of the original experimental
data into a finite number of regions. Each region is associated with a specific symbolic value
and uniquely mapped to a particular symbol depending on the region. The number of symbols
and symbolization strategy are selected based on how much of the original information is
retained in the sequence of symbols, and the sensitivity of the results to the choice of partition
requires careful evaluation [54-56]. In broad applications, symbolization of experimental data
provides better efficiency when finding and quantifying information from a system, reducing
sensitivity to measurement noise and increasing the efficiency of numerical computations [57].
However, symbolization also removes significant amounts of information from the data, resulting
in the potential for failure to detect the presence of information transfer [58,59]. Furthermore,
the output of the symbolization process is characterized by several important limitations: (i)
the generating partitions that are used to guarantee the uniqueness of the mapping are difficult
to identify in noisy data, and thus data such as experimental neurophysiological signals may
not be accurately represented, and (ii) symbolization relies only upon the relative differences
between data points, and information associated with absolute differences between data points
are ignored.

In the original presentation of STE, the degree of consistency between the symbolic process of
ranked vector elements and the original system was not discussed. The ranked vector elements
method was supported with its successful application to permutation entropy, which provided
similar results using generating partitions for the interval map and a similar pattern with the
Lyapunov exponent in a chaotic system [48]. As a result, STE is a measure mainly focused on
the practical task of detecting the direction of information transfer relationships between two
noisy systems. Further theoretical explanation for symbolization with ranked vector elements is
required to quantify robustly the performance of this measure.

8. Parameter selection in multiscale symbolic transfer entropy

STE applied to EEG data exhibits a multiscale structure because of the multiscale properties
inherent in spatio-temporal brain function. The multiscale nature of EEG-based STE creates the
problem of needing to select a representative scale to produce a single value of STE for a given set
of EEG data. The selection of a representative scale (and, in turn, the selection of appropriate
embedding parameters) is critically important when comparing effective connectivity based
on EEG with different spectral properties, which is often the case across varying levels of
consciousness. For example, compared to EEG recorded during conscious wakefulness, the
spectral characteristics of EEG recorded during ketamine-induced unconsciousness exhibit
increases in gamma and delta power (corresponding to short- and long-term dynamics) and
decreases in alpha power (corresponding to mid-range dynamics) [29]. Such spectral shifts
result in distinct changes in the pattern of information transfer between frontal and parietal
brain regions in both short- and long-term scales. Consequently, it would be impossible to
choose a single scale that produces STE values that are truly representative of both states of
consciousness. In order to circumvent this problem, Lee et al. [29] calculated STE for different
states of consciousness by systematically searching a broad parameter space for the parameter set
(embedding dimension (dg), time delay (r) and prediction time (§)) that produced the maximum
information transfer for each individual state of consciousness. By taking the maximum STE,
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all processes become non-parametric, i.e. without the need to make a subjective decision about
embedding parameters. The prediction time was determined by the time lag resulting in maximal
cross-correlation, assuming that the time lag represented the interaction delay between the source
and target signals. The authors found that this parameter selection method yielded a consistent
pattern of change of STE in EEG between consciousness and unconsciousness induced by a
diverse group of anaesthetics. However, it is worth while noting that this parameter selection
method may not work for all types of complex systems. Further study is required for choosing
the appropriate parameter set.

9. Bias and normalization of symbolic transfer entropy

The different temporal and spectral characteristics of EEG recorded across varying states of
consciousness can produce different biases in STE, which may be difficult to disentangle from
components of the STE value that reflect the true underlying effective connectivity of the dataset.
One method of removing the bias of STE for a given EEG dataset is the shuffled data method [58].
In this method, one or more datasets are shuffled such that the randomized data retain the same
signal characteristics as the original, but the existing relationship between the set of signals is
eliminated. Specifically, this can be accomplished by scrambling the temporal order of samples
or segments in a time series. When estimating the bias in STE between two EEG signals, this
shuffling process is applied only to the source signal (X), leaving the target signal (Y) intact. The
STE with the shuffled source signal (Xghuff)’ STE%‘_)“ff}ed =HYFY")—H (YF|X£huff, YP), estimates
the bias caused by the signal characteristics of the source signal (X). Furthermore, a bias can
also be caused if the target signal (Y) exhibits high autocorrelation. This can be addressed by
normalizing the STE as follows:

STEx_,y — STESuffled
H(YF|YT)
NSTE is normalized STE (dimensionless), in which the bias of STE is subtracted from the original
STE and then divided by the entropy within the target signal, H (YF)YP). By this definition, NSTE
represents the fraction of information in the target signal Y not explained by its own past and

explained by the past of the source signal X [58].

Papana & Kugiumtzis [51] tested several types of surrogate data and corrected transfer
entropies (mean conditional probability of recurrence, TE, effective TE, STE and corrected
versions with surrogate data) to remove the bias from information transfer measures. They also
examined the direction and strength of coupling with different settings of dynamic complexity,
data length, noise levels and embedding dimensions, concluding that these potential factors give
bias in both directions depending on their combination. However, among the tested information
transfer measures, the corrected STE with surrogate data showed the best performance in
detecting direction and strength of coupling as well as minimization of bias [51].

NSTEy_,y =

[0, 11. (9.1)

10. Statistical analysis for false positive symbolic transfer entropy connections

While NSTE is an unbiased estimator of effective connectivity that is robust against different
signal characteristics, there is still a potential for it to be influenced by false positive information
transfer. To mitigate this problem, permutation and time shift tests can be applied to evaluate
the significance and the linear mixing effect, respectively, on connectivity. The permutation test
is a non-parametrical statistical significance test that is used to assess whether test statistics
of two groups are interchangeable [38,42]. The null hypothesis is that there is exchangeability
between the test statistics (e.g. NSTE) of the original and shuffled EEG datasets. If NSTE
values of the original EEG are significantly different from those of the shuffled EEG, a non-
spurious measurement is supported. The time shift test evaluates the possibility of false positive
connectivity due to an instantaneous linear mixing effect [38,42]. When instantaneous noise is
linearly mixed with X and Y signals, a time shift to the past of X will increase the ability to
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Figure 3. Inhibition and recovery of frontal—parietal STE. The schematic diagrams in the top row represent the changing
asymmetry between feedback and feed-forward STE over the five states. The feedback STE from frontal to parietal electrodes is
preferentially inhibited and recovers across states. The feedback and feedforward STE are denoted with striped and solid bars,
respectively, for each state. Error bar denotes the standard error (*p < 0.005, **p < 0.01, ***p < 0.001, n = 18 patients).
(Courtesy of Ku et al. [30].)

predict Y because the instantaneous noise in shifted X appears in the future of Y. Thus, one should
observe an increase in NSTE. If NSTE values for the original data are not significantly larger than
those for the shifted data, then the hypothesis of an interaction between X and Y is not supported.
Applying both of these tests to NSTE measures ensures that the resulting estimate of effective
connectivity is an accurate representation of the influence of one EEG signal on another.

Alternatively, instead of statistically detecting the linear mixing or instantaneous information
transfer, methods have been developed to directly remove confounding simultaneous effects from
TE (or NSTE) [60].

11. Assessment of consciousness using symbolic analysis

Recently, several advances in detecting changing levels of consciousness have been made by
applying symbolic analysis techniques to EEG signals. Ku ef al. [30] were the first to apply STE to
measure cortical communication for the purposes of assessing levels of consciousness in humans.
In their study, the authors recorded EEG from eight electrodes placed over the frontal and parietal
regions of 18 surgical patients receiving general anaesthesia with propofol or sevoflurane. STE
was used to assess the effective connectivity from frontal to parietal electrodes (i.e. feedback
or reentrant connectivity) and from parietal to frontal electrodes (i.e. feedforward connectivity)
during baseline consciousness, anaesthetic induction, unconsciousness and recovery states. The
authors demonstrated that the dominant feedback connectivity in the baseline conscious states
was inhibited after induction, resulting in a reduced asymmetry of feedback and feedforward
connections while patients were unconscious. Feedback dominance returned upon recovery of
consciousness (figure 3). The results of this study suggested that inhibition of frontoparietal
connectivity, as measured by STE, is one neurophysiological correlate of general anaesthesia in
surgical patients.

o 53 B



—
S
=

B1 B2 B3 Al A2 A3 Bl B2 B3 Al A2 A3 Bl B2 B3 Al A2 A3
i i i i i i A ——t——t———— A ——————

S

z#HﬁﬁﬁMﬁ@ﬁ#@% J
£ ﬁﬂ#ﬁ%ﬁﬁﬁﬁiﬁiﬁﬁiﬁi z
d )0 '4: (e) )]

asymmetry
o
553
S

(=]
%)
=]
o
=0
fln
-y
=
ek
=]
=
=S
i»—-—«
S = N W s W
BV e N

I
|
|
|
|
|
|
|
e
e
£
s
—I
|
|

-0.10 v

012 3 45 6 78 910 0 2 4 6 8 10 12 14 0O 2 4 6 8 10 12 14
time (min) time (min) time (min)

Figure 4. A common neural correlate of anaesthetic-induced unconsciousness. The inhibition of asymmetry between the
feedback (FB, red triangles) and feedforward (FF, blue squares) connectivity is a common feature found across three
heterogeneous anaesthetics. The FB/FF connections (a—c) and their asymmetry (d—f) in the frontal—parietal network are shown
for (a,d) ketamine (n = 30), (b,e) propofol (n = 9) and (c,f) sevoflurane (n = 9). The means and standard errors are denoted
in each window. Anaesthetic administration is highlighted with blue shade. Six substates (B1, B2, B3 in baseline state and A1, A2
and A3 in anaesthesia) for the statistical tests are denoted. Each substate consists of ten 10 s long EEG epochs; time scales differ
between ketamine and propofol/sevoflurane because data were collected in different studies. (Courtesy of Lee et al. [29].)

Lee et al. [29] applied NSTE to EEG collected from 30 surgical patients induced with ketamine,
an anaesthetic with markedly distinct molecular and neurophysiological properties compared
with propofol and sevoflurane. Despite ketamine exhibiting distinct spectral changes, ketamine
reduced the feedback dominance observed during the baseline consciousness (figure 4). The novel
finding of a consistent communication breakdown pattern across these diverse and major groups
of anaesthetics suggests that using STE to measure connectivity in the frontoparietal region could
be useful in monitoring brain states in surgical patients. Importantly, commercially available
processed EEG monitors designed for assessment of intraoperative level of consciousness are
typically insensitive to ketamine (and similar anaesthetics such as nitrous oxide), as their
algorithms usually depend on a slowing EEG frequency. As such, symbolic analysis was able
to achieve something that has long been elusive with more conventional analytic techniques [61].

While these studies demonstrated a consistent correlation between loss of feedback processing
and loss of consciousness, it is unclear whether or not these changes in effective connectivity
are related to a functional disconnection between anterior and posterior brain structures, or
whether they merely represent an epiphenomenal marker of unconsciousness. To address this
gap, Jordan et al. [49] simultaneously recorded functional magnetic resonance imaging (fMRI)
and high-density EEG in 15 subjects undergoing propofol-induced loss of consciousness. STE was
used to calculate the effective connectivity between all permutations of frontal, parietal, temporal
and occipital electrodes, and these measures were then correlated with changes in the functional
connectivity of the resting-state network. Consistent with previous studies, but without a priori
assumptions, the authors found that the maximum decrease in STE occurred between frontal
and parietal electrodes. Functional correlation in higher-order frontoparietal networks was also
significantly decreased. Furthermore, the observed propofol-induced decrease in functional
connectivity of the anterior default mode network was significantly correlated with the decrease
in STE between frontoparietal and frontooccipital electrode pairs—all other correlations between
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functional connectivity changes and STE changes were insignificant. This study demonstrated
that observed changes in information exchange in frontoparietal networks, as measured by STE,
directly correlate with changes in the spatio-temporal coherence of spontaneous fluctuations
in fMRIL.

Technical aspects of STE in the assessment of consciousness have also been explored using
empirical data. Untergehrer et al. [62] assessed frontoparietal connectivity in EEG recorded from
15 male volunteers during consciousness and propofol-induced unconsciousness. The authors
investigated the effect of varying parameters embedded in STE; two parameters were fixed
(embedding dimension m =5 and time delay v = 5) while transfer time was varied systematically
from 25ms (8 =5) to 250 ms (§ = 50). Consistent with previous findings, feedback connectivity
was decreased during propofol-induced unconsciousness. However, the values of STE varied in
the range of transfer times in both conscious and unconscious states, and exhibited different
dynamics. During unconsciousness, maximum information transfer values occurred within
significantly shorter time intervals than during consciousness. The results of this empirical
study demonstrated the need to consider carefully the parameter selection in STE calculations,
as discussed theoretically in the section regarding parameter selection. Notably, time intervals
that maximize STE between source and target signals are linked to the physical interaction
delay between them. Thus, in finding the maximum STE, we may inversely estimate the actual
interaction times between two brain regions in conscious and unconscious states [63].

While the focus of this review has been STE, other types of symbolic analysis have been used
to assess levels of consciousness. Notably, Casali et al. [59] applied the Lempel-Ziv measure of
algorithmic complexity to analyse EEG response to TMS during physiological, pharmacological
and pathological loss of consciousness. The authors estimated the primary electromagnetic
sources of scalp EEG activity in response to TMS-evoked cortical currents and used the Lempel-
Ziv complexity to evaluate the information content of corticocortical causal interactions. The
algorithm systematically evaluates a set of five symbols used to represent the amount of non-
redundant information contained in the data. From the output of this symbolic analysis, the
authors calculated the perturbational complexity index (PCI) as a measure of an individual’s
level of consciousness. PCI values ranged from 0.44 to 0.67 in 32 healthy awake individuals
and were reduced to 0.18-0.28 during non-rapid eye movement (NREM) sleep and to 0.12-
0.31 during anaesthetic-induced unconsciousness (figure 5). Furthermore, PCI values also clearly
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reflected the level of consciousness of patients who suffered brain injury and were thus at risk for
covert consciousness. The values systematically increased for patients in the following conditions:
unresponsive wakefulness syndrome (0.19-0.31), minimally conscious state (0.32-0.49), recovery
from coma (0.37-0.52) and locked-in syndrome (0.51-0.62, which is consistent with values in
healthy awake individuals).

King et al. [64] have also applied symbolic analysis techniques to this population. They
developed a ‘weighted symbolic mutual information” measure that demonstrated the ability to
discriminate among patients in a vegetative state, minimally conscious state and conscious state,
as well as healthy controls. Long-range connections were particularly susceptible to decreases
in mutual information across brain regions. This study is interesting because it demonstrates a
similar set of findings to the PCI approach, but with a non-perturbational technique.

12. Conclusion

Techniques involving symbolic analysis have proved successful in discriminating clearly between
states of consciousness and unconsciousness where conventional techniques of EEG analysis
have failed. In particular, the use of STE has revealed a consistent disruption of frontoparietal
information processing by three molecularly and pharmacologically distinct anaesthetics.
Application of STE has also resulted in novel insights into longstanding problems related to
consciousness, such as the potential for a neurobiological explanation of near-death experiences.
Borjigin et al. [65] found that cardiac arrest stimulates a transient but dramatic surge in cortical
communication, estimated using STE analysis of EEG recorded in an animal model.

PCI and weighted symbolic mutual information measures appear to distinguish levels of
consciousness in patients with neural injury. Further work is required to assess the most robust
and computationally efficient method for clinical use. A particular challenge for symbolic analysis
will be the real-time (versus off-line) application to EEG as well as the ability to detect the
stability of a given level of consciousness. For example, PCI values are comparable across slow-
wave sleep, anaesthetic-induced unconsciousness and unresponsive wakefulness syndrome, yet
these states vary considerably with respect to reversibility in the context of a noxious stimulus.
Comparisons of different symbolic measures may also shed light on competing theories of
consciousness. For example, PCI and weighted symbolic mutual information are rooted in distinct
frameworks of consciousness (integrated information theory and global neuronal workspace
theory, respectively), yet both have the ability to discriminate among similar pathological states;
the implications of this must be carefully considered. In conclusion, symbolic analysis of EEG has
resulted in interval advances in the last half-decade in terms of assessing levels of consciousness
and promises to be a helpful tool for future investigation and clinical application.
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