Skip to main content
. 2020 Aug 3;15(8):e0236493. doi: 10.1371/journal.pone.0236493

Table 3. Parameters of the proposed patch-wise U-net model.

No Layer name Type Output Shape No. of Parameters Connected to
1 input_1 Image 128×128×1 0 -
2 conv2d_1 2D Convolution 128×128×64 640 input_1
3 conv2d_2 2D Convolution 128×128×64 36928 conv2d_1
4 max_pooling2d_1 Max Pooling 2D 64×64×64 0 conv2d_2
5 conv2d_3 2D Convolution 64×64×128 73856 max_pooling2d_1
6 conv2d_4 2D Convolution 64×64×128 147584 conv2d_3
7 max_pooling2d_2 Max Pooling 2D 32×32×128 0 conv2d_4
8 conv2d_5 2D Convolution 32×32×256 295168 max_pooling2d_2
9 conv2d_6 2D Convolution 32×32×256 590080 conv2d_5
10 max_pooling2d_3 Max Pooling 2D 16×16×256 0 conv2d_6
11 conv2d_7 2D Convolution 16×16×512 1180160 max_pooling2d_3
12 conv2d_8 2D Convolution 16×16×512 2359808 conv2d_7
13 up_sampling2d_1 Up Sampling 2D 32×32×512 0 conv2d_8
14 conv2d_9 2D Convolution 32×32×256 524544 up_sampling2d_1
15 concatenated_1 Concatenate 32×32×512 0 conv2d_6
conv2d_9
16 conv2d_10 2D Convolution 32×32×256 1179904 concatenated_1
17 conv2d_11 2D Convolution 32×32×256 590080 conv2d_10
18 up_sampling2d_2 Up Sampling 2D 64×64×256 0 conv2d_11
19 conv2d_12 2D Convolution 64×64×128 131200 up_sampling2d_2
20 concatenated_2 Concatenate 64×64×256 0 conv2d_4
conv2d_12
21 conv2d_13 2D Convolution 64×64×128 295040 concatenated_2
22 conv2d_14 2D Convolution 64×64×128 147584 conv2d_13
23 up_sampling2d_3 Up Sampling 2D 128×128×128 0 conv2d_14
24 conv2d_15 2D Convolution 128×128×64 32832 up_sampling2d_3
25 concatenated_3 Concatenate 128×128×128 0 conv2d_2
conv2d_15
26 conv2d_16 2D Convolution 128×128×64 73792 concatenated_3
27 conv2d_17 2D Convolution 128×128×64 36928 conv2d_16
28 conv2d_18 2D Convolution 128×128×4 260 conv2d_17