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Abstract

Purpose of review—Median survival after the diagnosis of brain metastases has historically 

been on the order of months. With the recent development of immune checkpoint inhibitors, 

intracranial activity and durable responses have been observed in brain metastases on multiple 

phase 2 clinical trials, which have primarily been conducted in patients with melanoma. Immune-

related adverse events related to checkpoint inhibitor therapy of brain metastasis can present 

unique challenges for the clinician and underscore the need for a multidisciplinary team in the care 

of these patients. The goal of this review is to address the current knowledge, limitations of 

understanding, and future directions in research regarding immune therapy trials and neurologic 

toxicities based on retrospective, prospective, and case studies.

Recent findings—Immune therapy has the potential to exacerbate symptomatic edema and 

increase the risk of radiation necrosis in previously irradiated lesions. Neurologic toxicities will 

likely increase in prevalence as more patients with brain metastatic disease are eligible for immune 

therapy.

Summary—An improved understanding and heightened awareness of the unique neurologic 

toxicities that impact this patient group is vital for mitigating treatment-related morbidity and 

mortality.
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INTRODUCTION

As systemic therapies improve, patients are living longer, but intracranial late relapses are 

increasing, even among traditionally noncerebrotropic cancers. Local therapies like surgery 

or radiation are effective for single or oligometastases but do not address systemic disease, 

distant central nervous system (CNS) disease, minimize recurrence risk, or impact survival. 

Systemic chemotherapies for brain metastases have been limited due to concerns regarding 

CNS drug penetration and historical low efficacy.

Immune checkpoint inhibitors (CPIs) have revolutionized oncology by activation of host 

antitumor immune responses. CPIs are large mAbs theoretically incapable of crossing the 

blood–brain barrier (BBB). However, two main hypotheses explain intracranial CPI activity: 

first, antitumor T cell are primed and activated at extracerebral sites and home into the brain; 

and second, tumor neovessels are leaky, as indicated by postcontrast imaging enhancement, 

and drugs may penetrate through nonintact areas of the BBB to stimulate tumor infiltrating 

lymphocytes (TILs).

Food and Drug Administration-approved CPIs include the cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) inhibitor ipilimumab, programmed cell death protein 1 

(PD-1) inhibitors nivolumab, pembrolizumab, and cemiplimab, and programmed death 

ligand-1 (PD-L1) inhibitors durvalumab, atezolizumab, and avelumab. CPIs are approved in 

multiple cancers, but initial studies excluded patients with untreated brain metastases 

(lesions that have not been irradiated) due to concerns of intracranial activity and 

exacerbation of neurologic inflammation and symptoms. In the last 5 years, early phase 

clinical trials began proactively enrolling these patients. This review focuses on the unique 

neurologic complications arising from CPI use in brain metastasis treatment and highlights 

critical areas needing further research.

Activity and toxicity of immune checkpoint inhibitors in brain metastases

Intracranial metastasis prognosis is worse than for extracranial disease, with a median 

overall survival (mOS) of 4–11 months [1,2]. Most CPI trials have required prior local brain 

metastasis treatment, at least 4 weeks of brain metastasis stability without new lesions, and 

exclude patients needing corticosteroids to control symptoms. As durable responses in 

extracranial disease emerged, we questioned whether CPIs were effective in untreated brain 

metastases.

Checkpoint inhibitor activity and toxicity

High-dose IL-2, approved in the 1990s, had significant toxicities and response rates of 5.6–

14% in renal cell carcinoma (RCC) and melanoma brain metastases (MBMs) [3–5]. 

Expanded access ipilimumab in melanoma (NCT00495066) permitted enrollment of 

untreated, asymptomatic brain metastases [6]. Several prospective phase 2 trials have since 

evaluated CPIs for untreated brain metastases. Although most studies evaluated MBMs, a 

few trials include non-small cell lung cancer (NSCLC) (NCT02085070 and NCT02681549 

[7,8■,9]) and RCC (NIVOREN GETUG AFU 26 [10,11]) brain metastases. Table 1 
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summarizes results of prospective CPI trials; Table 2 summarizes ongoing CPI trials for 

untreated brain metastases.

Intracranial complete or partial response to single agent CPI in patients not on steroids 

ranges from 16% with anti-CTLA-4, 26% with anti-PD-1 [8■,12], and 55% with 

combination anti-CTLA-4 and anti-PD-1 [13■■,14■■] in MBMs. Intracranial responses 

were 13.3% with anti-PD-1 in RCC based on preliminary data [11]. Neurologic adverse 

events increased from 24% with single agent anti-PD-1 to 36% with combined anti-CTLA-4 

and anti-PD-1 therapy [13■■,14■■]. Table 3 summarizes neurologic adverse event data 

from CPI trials for untreated brain metastases.

Although most trials require patients be asymptomatic from their untreated brain metastases, 

a handful of studies, NCT00623766 (CA184–042) [12], NCT02320058 (CheckMate-204) 

[13■■], NCT02374242 (ABC) [14■■], NCT03175432 (BEAT-MBM) [15], and 

NCT03563729 (MEMBRAINS) [16], allow smaller, symptomatic cohorts and corticosteroid 

use. Concurrent corticosteroids and CPIs have worse outcomes, either reflecting more 

aggressive disease or a dampened immune response. mOS for asymptomatic, CPI-treated 

patients ranges from 7 to 18.5 months; survival decreases for symptomatic patients to 3.7–

5.1 months [12,14■■].

One concern with immune therapy is the prolonged time to initial response. In 

CheckMate-204, the median time to intracranial response was 2.3 months [13■■]. The risk 

of rapid disease progression in the brain for the 43–75% of patients unresponsive to CPIs is 

a critical concern. Furthermore, possible pseudoprogression makes early response 

assessments difficult [17].

Combination checkpoint inhibitor and radiation therapy activity

Multimodality therapy through combination CPI and stereotactic radiosurgery (SRS) in 

MBMs results in synergistic responses with decreased distant intracranial failure compared 

with SRS alone or SRS and targeted therapy [18]. Two retrospective series of combination 

SRS and ipilimumab demonstrated improved mOS compared with SRS alone (15–21.3 

versus 4.9–6 months, n = 110), which was independent of the administration order (P = 

0.58) [19–21], provided both were given within 4 weeks [22]. Responses were higher with 

combination SRS and anti-PD-1 than with anti-CTLA-4 [22]. Intracranial control rates 

(defined as complete, partial, or stable responses) were improved with combination CPI and 

SRS compared with SRS alone at 1 year (60 versus 11.5%); this was highest with combined 

anti-PD-1, anti-CTLA-4, and SRS [18]. A retrospective series in NSCLC failed to show 

improved OS with combination SRS and anti-PD-1 compared with chemotherapy, 

suggesting that survival improvements may not be universal across tumor types, but lesions 

more than 500 mm3 regressed faster, demonstrating that multimodal treatment remains best 

if fast responses are needed [23■].

Prospective trials are now evaluating the benefit of adding radiation to CPIs. A phase 1 trial 

of MBMs treated with ipilimumab and either whole brain radiotherapy (WBRT) or SRS 

showed intracranial progression free survival was similar at 2.53 and 2.45 months, 

respectively, but mOS was only 8 months with WBRT versus more than 10.5 months with 
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SRS [24]. The optimal administration sequence of ipilimumab and SRS for MBMs is being 

investigated by NCT02097732 [25]. The GEM Study (NCT02115139) and NCT02107755 

are, respectively, evaluating the effects of ipilimumab combined with WBRT or SRS [26,27]. 

Studies of nivolumab with SRS or WBRT along with combination ipilimumab and 

nivolumab with either SRS or WBRT are also ongoing, Table 2 [28,29].

Several studies have shown that intracranial and extracranial disease responses to CPIs were 

largely concordant in MBMs [7,8■,13■■]. In a retrospective series, MBM patients treated 

with ipilimumab and SRS had similar OS to ipilimumab-treated patients without brain 

metastases [30], suggesting that brain metastasis prognosis is improving. However, 

multimodality therapy increases risks for neurologic toxicity. As durability of responses 

improve, there is heightened concern regarding WBRT-induced cognitive dysfunction. SRS 

is the preferred method for definitive treatment of fewer brain metastases, but radiation 

necrosis is increasing with combined therapy [31].

Complications of immune therapy in treatment of brain metastases

CPI-related neurotoxicity reporting is variable, as many common immune-related adverse 

events are often not mentioned, and available data are mainly from MBM trials. Thus, 

evaluating the true clinical impact of neurologic adverse events is difficult. Complications 

can be classified as due to an excessive tumor-associated inflammatory response, 

autoimmune, or paraneoplastic.

Immune-related neurologic sequelae in checkpoint inhibitor-treated brain metastasis 
patients

An excessive inflammatory response can cause symptoms due to mass effect from vasogenic 

edema, radiation necrosis, or pseudoprogression. Symptoms depend on the brain area 

impacted. Seizures were the initial symptom in 40% of MBM patients [32] but may also be 

aggravated by CPIs, resulting in prophylactic antiepileptic drug use in some trials [7].

Symptomatic edema has been variably reported, with incidence ranging from 2% in 

CheckMate-204 [13■■] to 36% with combined ipilimumab and SRS (NCT01703507) [24] 

(Table 3). Baseline edema volume does not impact anti-PD-1 response in melanoma and 

NSCLC patients [33]. However, symptomatic edema often necessitates CPI interruption, 

high-dose corticosteroids, and additional local therapy with surgery or radiation. One 

retrospective study found 9.1% of brain metastasis patients required corticosteroids after 

diagnosis; response to steroids was associated with improved prognosis (4.3 versus 1.6 

months when steroid unresponsive) [32]. Dexamethasone, the preferred corticosteroid due to 

BBB penetration and relative lack of mineralocorticoid activity, provides a cost-effective and 

rapid means of decreasing edema and/or dampening the CPI-stimulated immune response. 

Corticosteroids should not be used for imaging changes alone, at the lowest possible dose to 

achieve symptomatic relief, and tapered as quickly as possible to allow for subsequent 

therapy and to avoid adverse effects from prolonged use. Corticosteroid-sparing strategies 

include targeting vascular endothelial growth factor (VEGF) with bevacizumab, which has 

been used to treat glioma-associated edema. A small case series retrospectively evaluated 12 

bevacizumab-treated MBM patients and showed bevacizumab allowed rapid steroid tapering 
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and permitted faster CPI resumption [34]. However, bevacizumab side effects can include 

intracranial hemorrhage, hypertension, gastrointestinal bleeding, and delayed wound 

healing. There is a critical need for alternative steroid-sparing, antiedema agents.

Combination SRS and CPIs have synergistic effects presumably due to increased T-cell 

priming from radiation-induced tumor cell death and antigen release. However, radiation 

necrosis is a growing problem arising from multimodality therapy. Radiation necrosis is 

difficult to distinguish from tumor recurrence radiographically and often requires definitive 

biopsy or longitudinal imaging, as cases with growth followed by spontaneous regression are 

believed to be radiation necrosis. Affected areas manifest radiation-induced changes 

including necrosis, hyalinized vessels, and an immune infiltrate. A retrospective study of 

115 CPI-treated and SRS-treated patients demonstrated increased symptomatic radiation 

necrosis [hazard ratio (HR) 2.56, 95% confidence interval (CI) 1.35–4.86], particularly in 

MBMs (HR 4.02, 95% CI 1.17–13.82) [35]. Other studies cite an incidence of 7–29% 

[21,36,37] with a mean time to development from SRS of 11.2–14.9 months [37,38]. Timing 

and sequence of SRS and CPI did not impact symptomatic radiation necrosis [39]. Higher 

radiation necrosis rates reported in clinical trials could be due to close radiographic 

monitoring and inclusion of asymptomatic cases. Other radiation necrosis risk factors 

include radiation dose and treated lesion size. Symptomatic radiation necrosis is treated with 

corticosteroids or surgery. Bevacizumab has been used based on anecdotal evidence in 

gliomas as a steroid-sparing alternative or for those who failed conservative management 

[40]. Small case series demonstrated hyperbaric oxygen can decrease steroid dependence 

[41]. Figure 1a and b includes representative examples of vasogenic edema and radiation 

necrosis.

Pseudoprogression involves a transient enlargement of existing lesions or appearance of new 

lesions mimicking tumor progression, which resolves spontaneously on serial imaging. Anti-

PD-1-induced pseudoprogression occurs in 7% of melanoma cases [42■]. 

Pseudoprogression is attributed to inflammation, including macrophages and activated 

microglia, reactive astrocytes, and hemorrhage [17].

Central nervous system autoimmunity in checkpoint inhibitor-treated brain metastasis 
patients

CNS autoimmune toxicities due to CPIs are rare but include encephalitis, aseptic meningitis, 

multiple sclerosis, and myasthenia gravis. These may result from an underlying autoimmune 

disease or occur de novo, but the incidence does not appear to be higher in patients without 

brain metastasis and is overall rare. No prospective CPI studies for patients with known 

autoimmune disease and untreated brain metastases exist.

Paraneoplastic syndromes in checkpoint inhibitor-treated brain metastasis patients

Paraneoplastic syndromes, such as cerebellar degeneration, limbic encephalitis, and 

encephalomyelitis, result from cross-reactivity of the antitumoral response with off-target, 

cancer cell-secreted proteins. There have been cases of melanoma-associated retinopathy 

and chronic inflammatory demyelination polyneuropathy as well. In preclinical models, 

anti-CTLA-4-induced paraneoplastic cerebellar degeneration can occur [43]. Case reports of 
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limbic encephalitis [44] or cerebellar ataxia [45] resulting from anti-PD-1 therapy exists in 

patients without brain metastases. The incidence of paraneoplastic symptoms is not 

increasing due to CPIs; there are no reports of neurologic paraneoplastic syndromes in brain 

metastasis patients on CPI therapy [46].

Paucity of biomarkers in identifying those at risk of neurologic toxicity

No definitive biomarkers exist to identify those at risk for neurologic toxicity. The 

relationship between PD-L1 or TILs in brain metastases and neurologic sequelae, edema or 

radiation necrosis, is unknown. Biomarker development and advanced imaging techniques 

could potentially mitigate the need for invasive diagnostic procedures and is an area of 

critical unmet need.

Cellular and molecular mechanisms of edema

Unlike extracranial tumor microenvironments, the brain has specialized cells that regulate 

BBB permeability, Fig. 1c. The brain was once thought to be immune-privileged, as the 

unique BBB tightly regulated passage of molecules and cells into the brain parenchyma. 

CPIs are believed to activate T cells, priming them for targeting extracranial and intracranial 

disease. In brain metastases, cytokines released by tumor cells or the microenvironment 

promote brain T-cell homing. Robust brain immune responses are linked with improved 

survival [47].

The BBB is defined by specialized interendothelial tight junctions [48–50]. A complex 

neurovascular unit maintains BBB tight junction integrity and is comprised of endothelial 

cells, basement membrane, pericytes, astrocytes, microglia, and interneurons [51]. 

Dysfunction or loss of any of these cells have been shown to cause edema, wherein fluid and 

intravascular proteins extravasate into the cerebral parenchyma. Tumor or immune cell-

secreted cytokines and chemokines, such as VEGF, basic fibroblast growth factor, and 

leukotrienes are implicated in increased glioma BBB permeability [52,53]. Less is known 

regarding BBB permeability factors in brain metastases.

It is unclear what role resident microglia or monocyte-derived macrophages play in edema 

or radiation necrosis, as traditional immunohistochemical markers are unable to distinguish 

these populations. Is it also unclear what role tumor-secreted factors used during tumor 

extravasation play in edema [54■]. A better understanding of the brain tumor 

microenvironment and how it responds to metastatic disease would potentially provide novel 

targets to treat neurologic toxicities.

Cellular and molecular mechanisms of radiation necrosis

SRS is an effective local therapy for treating brain metastases which spares surrounding 

benign brain tissue, thus limiting long-term cognitive sequelae commonly seen with WBRT. 

SRS local control rates range from 50.5 to 84% at 1 year [55,56]. However, in a large series 

of 271 SRS-treated brain metastases, the incidence of radiation necrosis was 34% at 24 

months, with a median time to development of 10.8 months, and greater risk with lesions 

more than 1 cm [57]. Little is known regarding the pathogenesis of radiation necrosis, but it 

has been hypothesized to be caused by radiation-induced vascular damage leading to 
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ischemia and subsequent necrosis and glial loss, a result of oligodendroglia damage, or 

autoimmune against glial antigens and other cell components released during radiation 

injury [58].

CPI likely exacerbates ongoing CNS inflammation at prior radiation sites and contributes to 

increased radiation necrosis with multimodality treatment. Our current understanding of 

radiation necrosis is based on late stages of inflammation. Developing an animal model to 

study the early steps in radiation necrosis formation is an area of critical interest, as it would 

permit evaluation of early inflammatory responses and provide pharmacologic targets to 

negate this late neurologic complication.

Metabolic profiling found increased metabolism markers in tumors, whereas radiation 

necrosis samples had elevations in fatty acid products and antioxidants [59]. There is a 

critical need to develop accurate, noninvasive imaging technology to differentiate tumor 

recurrence and radiation necrosis, as they can appear similar on MRI. Several ongoing trials 

are evaluating novel PET tracers, using differences in tumor metabolic activity or radiation 

necrosis-associated inflammation to distinguish the two pathologies.

CONCLUSION

Cancer patients are living longer due to better systemic treatments, but the CNS can be a 

common site of tumor recurrence. Patients who present with brain metastases at the time of 

stage IV disease diagnosis are living longer due to CPIs. Awareness and optimal treatment of 

CPI-induced neurologic symptoms is an emerging priority.
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KEY POINTS

• The incidence of neurologic events in brain metastasis patients treated with 

checkpoint inhibitors (CPIs) varies by study; these adverse events require 

uniform reporting and should encompass all adverse event grades. Based on 

available data, the incidence of neurologic adverse events does not appear 

higher in brain metastasis patients treated with CPIs than in patients without 

brain metastases.

• Vasogenic edema and inflammation can worsen symptoms and might affect 

our ability to determine early radiographic response.

• Corticosteroids, a standard treatment for vasogenic edema and inflammation, 

likely impede antitumor immune responses and are associated with numerous 

toxicities. Alternative methods for controlling edema are needed that are not 

immune-suppressive. Combination vascular endothelial growth factor and 

antiprogrammed cell death protein 1 inhibitors are the subject of an ongoing 

trial at our institution (NCT02681549).

• Radiation necrosis incidence is higher in patients treated with multimodality 

therapy (CPIs and stereotactic radiosurgery) compared with patients who do 

not receive CPIs. The mechanism of radiation necrosis is unknown and 

requires further research, as mediators may be pharmacologically targetable.

• Biomarkers and improved imaging modalities are needed to differentiate CPI 

intracranial failure from radiation necrosis.

Tran et al. Page 12

Curr Opin Neurol. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02681549


FIGURE 1. 
Brain metastasis-associated vasogenic edema and radiation necrosis. (a) Contrast enhanced 

(left) and flair (right) images depicting a lesion associated with vasogenic edema before and 

after initiation of checkpoint inhibitor therapy. (b) Lesion treated with stereotactic 

radiosurgery before (left), poststereotactic radiosurgery after initiation of pembrolizumab 

(middle), and after development of radiation necrosis while on pembrolizumab (right). 

Corresponding pathology of the growing, enhancing lesion demonstrated radiation necrosis 

by hematoxylin and eosin staining, with characteristic areas of paucicellular treatment-
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related necrosis (*), vessel hyalinization (white arrows), and immune infiltration (black 

arrow). (c) The blood–brain barrier in metastatic disease. The blood–brain barrier is 

comprised of specialized interendothelial tight junctions that limit macromolecule transport 

into the brain parenchyma and unique neurovascular supporting cells that play structural and 

immunological roles. Among these cells, pericytes, astrocytes, microglia, and interneurons 

contribute to maintenance of tight junctions. Cytokines and chemokines secreted by the 

tumor or immune cells contribute to tight junction disruption, vessel leakiness, and edema.
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Table 2.

Ongoing prospective immune therapy clinical trials involving previously untreated brain metastases

Study name or 
ClinicalTrials.gov 
identifier Phase Disease Intervention

Neurologic 
symptoms Steroid

Enrollment 
study progress

Immunotherapy

 NCT02681549 2 Melanoma 
and NSCLC

Pembrolizumab/
Bevacizumab

Asymptomatic Prohibited 53 anticipated

 NIVOREN 
NCT03013335

2 RCC Nivolumab Asymptomatic Prohibited 37 Enrolled with 
untreated BMs

 CheckMate-204 
NCT02320058

2 Melanoma Ipilimumab/Nivolumab Symptomatic Allowed 20 Enrolled

 BEAT-MBM 
NCT03175432

2 Melanoma Bevacizumab/
Atezolizumab

Asymptomatic Prohibited 25 Anticipated

Mildly 
symptomatic or 
asymptomatic

Allowed (< 4 
mg/day dex)

15 Anticipated

 NCT03873818 2 Melanoma Ipilimumab/
Pembrolizumab

Asymptomatic Prohibited 30 Anticipated

 TRIDeNT 
NCT02910700

2 Melanoma Nivolumab/Dabrafenib/
Trametinib (treated BMs)

Asymptomatic N/A 51 Anticipated

Nivolumab/Trametinib Asymptomatic 
(prior PD-1) or 
symptomatic

Allowed (≤8 
mg/day dex)

 NIBIT-M2 
NCT02460068

3 Melanoma Fotemustine Asymptomatic Prohibited 168 Anticipated

Fotemustine/Ipilimumab Asymptomatic

Ipilimumab/Nivolumab Asymptomatic

Immunotherapy with radiation

 NCT02858869 1 Melanoma 
and NSCLC

Pembrolizumab and 5 
SRS fractions

Asymptomatic Prohibited 10 Anticipated

Pembrolizumab and 3 
SRS fractions

Asymptomatic Prohibited 10 Anticipated

Pembrolizumab and 1 
SRS fractions

Asymptomatic Prohibited 10 Anticipated

 NCT02716948 1 Melanoma Nivolumb and SRS N.E. Prohibited 90 Anticipated

 NCT02696993 1/2 NSCLC Nivolumb and SRS N.E. Allowed (≤ 4 
mg/day dex)

22 anticipated

Nivolumb and WBRT N.E. Allowed (≤ 4 
mg/day dex)

22 anticipated

Ipilimumub/Nivolumb 
and SRS

N.E. Allowed (≤4 
mg/day dex)

22 Anticipated

Ipilimumub/Nivolumb 
and WBRT

N.E. Allowed (≤4 
mg/day dex)

22 Anticipated

 GEM Study 
NCT02115139

2 Melanoma WBRT and Ipilimumab Asymptomatic Prohibited 58 Anticipated

 NCT02097732 2 Melanoma Ipilimumab induction 
prior to SRS

Asymptomatic Prohibited 3 Enrolled

SRS followed by 
Ipilimumab

Asymptomatic Prohibited 1 Enrolled

 NCT02107755 2 Melanoma Ipilimumab & SRS Asymptomatic Prohibited 8 Anticipated
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BM, brain metastasis; Dex, dexamethasone; N.E., not evaluated as a criterion for eligibility per available data on clinicaltrials.gov; N.R., not 
reported; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1; RCC, renal cell carcinoma; SRS, stereotactic radiosurgery; 
WBRT, whole brain radiotherapy.
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