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Abstract

Often the analysis of time-dependent chemical and biophysical systems produces high-

dimensional time-series data for which it can be difficult to interpret which individual features are 

most salient. While recent work from our group and others has demonstrated the utility of time-

lagged covariate models to study such systems, linearity assumptions can limit the compression of 

inherently nonlinear dynamics into just a few characteristic components. Recent work in the field 

of deep learning has led to the development of the variational autoencoder (VAE), which is able to 

compress complex datasets into simpler manifolds. We present the use of a time-lagged VAE, or 

variational dynamics encoder (VDE), to reduce complex, nonlinear processes to a single 

embedding with high fidelity to the underlying dynamics. We demonstrate how the VDE is able to 

capture nontrivial dynamics in a variety of examples, including Brownian dynamics and atomistic 

protein folding. Additionally, we demonstrate a method for analyzing the VDE model, inspired by 

saliency mapping, to determine what features are selected by the VDE model to describe 

dynamics. The VDE presents an important step in applying techniques from deep learning to more 

accurately model and interpret complex biophysics.

1 Introduction

Simulations of biomolecules have provided insight into molecular processes with increasing 

time- and length-scales due to advances in both algorithms1 and hardware2. Such 

simulations can have thousands of degrees of freedom, making it crucial to have meaningful 

and statistically robust methods to extract underlying dynamical processes3.

The dynamics of molecular systems are often represented using the dynamical propagator 

approach4. Given an ensemble of particles at time t distributed in phase space with a given 
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probability distribution p(x, t), we seek to describe a propagator as an operator that can 

describe the new distribution of the ensemble, p(x, t + τ), given some lag time τ. When τ is 

chosen such that these probabilities are independent of the history of the system, the model 

is said to be Markovian.

The Markovian propagator contains all the information needed to propagate the system 

forward in time. To make a Markov state model (MSM) from a biomolecular simulation, 

each frame in the time-series dataset is assigned to a tractable number of discrete states5. 

The transition matrix stores the conditional transition probabilities between all pairs of states 

at the specified lag time. This transition matrix is also constrained to obey microscopic 

reversibility and ergodicity. Due to these constraints, the eigenvalues are real with a unique 

highest Perron eigenvalue of one and all subsequent eigenvalues with absolute values 

smaller than one. The non-Perron eigenvalues and their eigenfunctions correspond to 

processes in the time-series, representing their timescales and interstate fluxes, respectively.

In 2013, the derivation of a variational approach to conformational dynamics (VAC)6 

showed that estimates of MSM eigenvalues cannot exceed their true values. Thus, the choice 

of MSM states can be optimized according to this variational principle. In fact, the VAC 

applies in a more general case than MSMs: the eigenfunction approximations need not come 

from the discrete state decomposition that characterizes a MSM, but rather can come from 

other features; in the case of protein dynamics, these features might represent torsional 

angles or pairwise distances between amino acids. In this spirit, many methods have been 

developed to compute approximations to the propagator of a molecular system from 

simulation data, including time-structure-based independent component analysis (tICA)7–9 

and extensions (kernel tICA10, sparse tICA11), VAMPnets12, soft-max MSMs13, and 

diffusion maps14. These methods make different assumptions about the underlying 

eigenfunctions of the system; for example, approximating the eigenfunctions of the 

propagator under the constraint of linear combinations of features produces tICA8, which 

can be further enhanced as a nonlinear approximation via the kernel trick10.

Any method for approximating the dynamics of a complex system has two objectives: to 

adequately represent complexity in the form of model nonlinearity and to be interpretable, 

that is, to be readily analyzable for feature importance. In Figure 1, we indicate how several 

commonly-used methods for dimensionality reduction of dynamical systems compare in 

terms of achieving these two aims. Complexity and interpretability often come at the 

expense of each other. For instance, kernel methods such as kernel tICA10, 15 improve the 

ability to capture nonlinear effects of features in dynamics over linear methods; however, 

identifying biophysical meaning in coordinates in an implicit kernel space remains a 

challenge. Conversely, standard tICA and sparse tICA allow for more precisely identifying 

relevant biophysical features, but the linearity of tICA limits the complexity of dynamics it 

can represent.

An alternative technique for dimensionality reduction is the autoencoder framework16, 17. 

An autoencoder is a deep unsupervised learning algorithm that aims to learn a low-

dimensional representation of high-dimensional data18, 19. An autoencoder has two 

components: an encoder network and a decoder network. The encoder network reduces the 
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input data to a low-dimensional representation, referred to as the latent space of the 

autoencoder, and the decoder network reconstructs the latent representation to the original 

dimensionality. The difference between the original data and the reconstruction is used to 

update and train the network. variational autoencoder (VAE) adds regularization to the 

encoder framework by applying Gaussian noise to the latent space20. The term “variational” 

stems from this stochasticity: the autoencoder is an implementation of variational Bayesian 

inference with a Gaussian prior, which maximizes the lower bound on the log-likelihood of 

the observed data16.

Recently, the autoencoder framework has been extended to model time-series data24–30. 

Analysis in these applications typically involves mapping time-series data to latent spaces 

with the same dimensionality as the length of the initial time-series data and has not focused 

on approximating a propagator for the time-series data; however, there are a couple of 

notable exceptions. Doerr and De Fabritis30 recently compared a simple autoencoder to 

other methods for dimensionality reduction of biophysical simulation data. Wehmeyer and 

Noé introduced a time lag into an autoencoder (TAE) framework to describe dynamics24. 

Interestingly, they demonstrate that in the limit of a single linear hidden layer, the tICA 

solution can be attained.

In this work, we extend the traditional VAE architecture to approximate a propagator for 

time-series data in an architecture denoted as a variational dynamics encoder (VDE). This 

represents the first use of a time lag within a variational autoencoder to our knowledge. 

Additionally, we introduce a novel “autocorrelation” loss function, which is inspired by the 

VAC6. We demonstrate that this approach yields models with more explanatory power than 

linear dimensionality reduction techniques in both the Müller-Brown potential and the 

folding landscape of the villin headpiece subdomain. We also explore the generative 

capability of the VDE as a propagator of dynamics and show that, as implemented, it is 

unable to reliably capture thermodynamics at differing temperatures. Finally, we 

demonstrate a novel analysis method, inspired by saliency mapping in neural nets for visual 

classification31–33, to lend interpretation to VDE models. This combination of using the 

VDE with saliency mapping creates a framework that enables nonlinear combinations of 

features while remaining interpretable.

2 Model: Variational Dynamics Encoder (VDE)

2.1 VDE Architecture

The architecture of the VDE, as seen in Figure 2, closely resembles that of a VAE; however, 

the training procedure is slightly modified to suit time-series data24, 30. The most significant 

modification being that featurized data, xt, at some timepoint, t, are fed into the network in 

order to make a prediction of the state of the system, xt + τ′ , at a future timepoint, t + τ, where 

τ is some user-selected lag time such that the dynamics of the system is Markovian. We note 

that choosing a lag time at which the system is Markovian depends entirely on the system is 

being modeled34. At a long enough lag time for the system to be approximated as a Markov 

process, intrastate transitions occur much more quickly than interstate transitions. The 

appropriate lag time depends on the system of study: for protein folding, tens of 
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nanoseconds might be appropriate; for electron dynamics, a suitable lag time might be on 

the order of femtoseconds. If a system is Markovian at a lag time τ (if the intrastate 

transitions occur more quickly than τ), then the system will be Markovian at all lag times 

greater than τ and the timescales of the subprocesses will be constant for all Markovian lag 

times. Therefore, τ should be large enough to achieve Markovianity, but small enough to 

make statistically significant observations of the system’s dynamics.

As with a traditional VAE, the network can be subdivided into three parts: the encoder 

network; variational layer, Λ; and the decoder network. The encoder network is a deep 

neural network (DNN) with non-linear activation functions and a user-selected number of 

hidden layers, which eventually bottlenecks into the one-dimensional latent space, zt. In this 

way, the encoder network functions as a non-linear dimensionality reduction of xt. The latent 

space is then perturbed by Gaussian noise within the Λ-layer, with mean parameter, µ, 

variance parameter, σ2, and arbitrary scaling, α, to generate z′, as described by Kingma and 

Welling16. Finally, the decoder network, also a DNN, mirrors the encoder network in 

architecture by using z′ to generate xt + τ′ , a prediction of how the system will evolve after a 

duration of τ.

Once the VDE has been trained, it can be used for both dimensionality reduction and 

synthetic trajectory generation. During dimensionality reduction, only the encoder network 

is necessary, which provides a direct mapping of x z. During trajectory generation, the 

entire VDE network is needed. An initial set of features, x0, is fed through the network to 

generate xτ′ , the predicted state after a duration of τ. This can be done iteratively to generate 

an arbitrarily long trajectory of features exhibiting dynamics consistent with that of the 

original system used during training. In order to overcome the model’s insensitivity to the 

Λ-layer used during training, we recommend that the noise factor, α, is increased such that 

αgeneration ≫ αtrain.

2.2 VDE Loss Function

The VDE is quantitatively evaluated by calculating the sum of three loss functions: 

reconstruction loss ℒR , Kullback–Leibler divergence loss ℒKL , and autocorrelation loss 

ℒAC :

ℒVDE = ℒR + ℒKL + ℒAC . (1)

The first of these three, reconstruction loss, attempts to quantify how well the VDE 

approximates the state of the system at t + τ, given the true state of the system at time t16, 20. 

In doing so, we evaluate the ability of the network to approximate the Markovian propagator 

after a single lag time. This can be done by considering the mean squared error between the 

predicted propagation, xt + τ′ , and the true propagation, xt+τ:

ℒR = E xt + τ′ − xt + τ . (2)

Hernández et al. Page 4

Phys Rev E. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Kullback–Leibler divergence loss allows for variational inference of the latent space and 

considers the latent space priors that generate zt′:

ℒKL = E 1 + logσ zt
2 − μ zt

2 − σ zt
2

2 , (3)

where µ and σ are separate affine transformations that estimate the mean and standard 

deviation, respectively, of the Gaussian prior locally applied to the latent space, as seen in 

Figure 3. Coupled with the reconstruction loss, the Kullback–Leibler divergence enables a 

trade-off between model complexity and simplicity of the Gaussian prior. Reconstruction 

loss pushes the model towards having high fidelity to the training data, while the Kullback–

Leibler divergence acts as a regularization term to ensure that the latent space behaves as a 

Gaussian emission16. This scheme also has the benefit of allowing for sampling of the latent 

space, using the same priors, to generate new trajectories as mentioned in Section 2.1.

Although minimization of the reconstruction loss has the potential to recover these 

dynamical processes23, we find that in some cases, such as in Section 4.3, it alone is not 

sufficient35. In order to improve model convergence, we borrow from the VAC6, a specific 

application of the variational principle from quantum mechanics adapted for Markov 

modeling and a useful tool for parameter selection. The variational principle states that, in 

the limit of infinite data, no process can be estimated from the data that is slower than the 

true process. If we interpret the variational principle as the measure of the quality of this 

approximation, the phase-space decomposition that leads to a linear model with larger 

leading dynamical eigenvalues is consequently the better phase-space decomposition11. In 

the limit of a single process which determines the dynamics of a system, there is only one 

eigenvalue to consider, which is equivalent to the autocorrelation of the decomposed 

trajectories. We propose that maximizing the autocorrelation of z optimizes training towards 

generating a more complete representation of the long time-scale kinetics observed within 

time-series. The autocorrelation loss, ℒAC, takes the following form:

ℒAC = − ρzt, zt + τ = − E zt − zt zt + τ − zt + τ
sztszt + τ

, (4)

where zt and szt are the sample mean and standard deviation of the latent space for a 

particular batch of data, respectively. For linear models, this leads only to a first-order 

approximation of slowest process; however, by incorporating this into the VDE’s loss 

function, we take advantage of the deep encoder as a general approximator to the slowest 

processes found within in our data6.

When we consider that z is a rich latent observable of the true dynamics, its autocorrelation 

also represents a weighted sum of the all the dynamical eigenvalues of the system36:
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ρzt, zt + τ = ∑
ij

ziP Xt = i zjP Xt + τ = j Xt = i = ∑
ij

zizjπiT ij

= ∑
ijk

zizjλk ϕk i ϕk j = ∑
k

λkωk
2,

(5)

where Xt is some latent state of the system at time, t; π is the stationary distribution of X; T 
is the transition matrix; and λ and ϕ are eigenvalues and eigenvectors of T. ωk represents the 

inner product between the observable and the k-th eigenvector. This ω2-weighted sum is 

closely related to the generalized matrix Rayleigh quotient (GMRQ), which is calculated as 

an unweighted sum of leading dynamical eigenvalues and can be used as a scoring metric for 

cross-validating Markovian models11. Through the optimization of ρzt, zt + τ, we implicitly 

maximize the GMRQ for our model.

Algorithm 1 outlines how these two losses are calculated and used for backpropagation in 

practice. Note that the data is split into many smaller batches during training, with xt as 

input variable and xt+τ as the target variable, to take advantage of stochastic gradient descent 

methods. We also recommend pre-processing features—either via standardization or 

median-centering and scaling by interquartile ranges—to prevent the reconstruction loss 

from overpowering the autocorrelation loss37.

3 Methods

3.1 Müller-Brown Potential

We first test the VDE as a proof-of-concept in characterizing Brownian dynamics under the 

Müeller-Brown potential, a well-studied smooth two-dimensional potential energy surface. 

We generated 10 independent simulations of the 2-D Müller-Brown potential governed by 

the following equation:

ẋ = − Δ V x
kT + 2DR t ,

where kBT = 1.5 × 104 Joules, D = 10−2 meters-squared per second, and R (t) is a delta-

correlated Gaussian process with zero mean, and V (x) is defined as:

V x = ∑
j = 1

4
Aj ⋅ exp aj x1 − Xj

2 + bj x1 − Xj x2 − Y j + cj x2 − Y j
2 ,

where a = (−1,−1,−6.5,−0.7); b = (0, 0, 11, 0.6); c = (−10,−10,−6.5,0.7); A = 

(−200,−100,−170, 15); X = (1, 0,−0.5,−1); and Y = (0, 0.5, 1.5, 1) as suggested by Müller 

and Brown38. Using the Euler-Maruyama method for numerical integration and a time step 

of 0.1, we produced ten unique trajectories with 106 time steps, saved every 100 steps. The 

initial positions were sampled via a uniform distribution over the box: [−1.5, 1.2] × [−0.2, 

2.0].
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VDEs for the Müller-Brown potential were trained with a lag time of 10 time steps; 3 hidden 

layers with 256 nodes each; the Swish activation function39; α-value of 10−3; batch size of 

100; dropout rate of 30%; and a learning rate of 1 × 10−4. We note that these parameters 

were not optimized using automated hyperparameter selection. Gradient descent was 

performed with the Adam optimizer40. Models were trained for 50 epochs, at which point 

the losses were observed to be converged. Prior to training, trajectories were preprocessed 

by subtracting their overall median values and scaling by inter-quartile ranges.

In constructing MSMs for the Müller-Brown potential, the scaled trajectories were then 

subject to dimensionality reduction using principal component analysis (PCA)21, time-

structure-based independent component analysis (tICA)7–9, and the pre-trained VDE, in 

order to generate one-dimensional representations of the system’s dynamics. We then 

partitioned the representations into twelves clusters using the mini-batch k-means 

algorithm41, 42. Finally, the clusters were used to construct a maximum-likelihood estimated 

reversible MSM43. A lag time of 10 time steps was chosen for both MSM construction and 

dimensionality reduction, as the resulting models provided optimal convergence of implied 

timescales. The MSMs were then evaluated 100 randomly seeded hold-out datasets to 

generate unbiased GMRQ scores and standard errors. All trajectory generation and analyses 

were performed with MSMBuilder37, MDEntropy44, and MSMExplorer45.

Finally, in order to generate “fake” trajectories using the VDE, we randomly sampled initial 

positions via a uniform distribution, as described above, and iteratively propagated these 

coordinates through the VDE for 1,000 steps, equivalent to 10,000 integrator steps. This was 

done for five scaling values, α, evenly sampled in logspace between 10−2 and 10−1 to 

understand how the Λ-layer affects propagation.
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Algorithm 1 Training the VDE
1: procedure TRAIN model, data
2: for batch ∈ data do
3: xt, xt + τ batch
4: zt model . encode xt
5: zt′ model . lambda zt
6: xt + τ′ model . decode zt′
7: zt + τ model . encode xt + τ
8:
9: μt, σt model . lambda . parameters
10:
11: ℒR E xt + τ′ − xt + τ

12: ℒKL E
1 + logσt2 − μt2 − σt2

2

13: ℒAC − ρzt, zt + τ
14:
15: model . loss ℒR + ℒKL + ℒAC
16:
17: model . loss . backward
18: model . optimizer . step

3.2 Villin Headpiece Domain

We demonstrate the utility of the VDE method in characterizing the folding landscape of 

villin headpiece domain (pdb: 2f4k), a widely-studied 35-residue fast-folding protein, 

referred to henceforth as villin. Simulation data for villin was generated by Lindorff-Larsen 

et al.46. The simulation length was is 125 µs and is strided at 2 ns for analysis. Cα contact 

distances were used for featurization37, 47. VDEs for villin were trained with a lag time of 44 

ns, selected to be the same as that in the optimal tICA model. Other than expanding the 

number of hidden layers nodes to 1024, the training procedure was identical to that of 

Section 3.1. The VDE was compared to an optimized tICA model, with respect to MSM 

GMRQ scoring, for villin, as featurized with Cα contacts, that was identified via 

hyperparameter optimization48. Husic et al.48 have indicated that Cα contacts are a useful 

featurization for representing folding processes48, hence the selection of this featurization. 

However, using ϕ − ψ backbone dihedral angles for featurization results in a VDE model 

with a latent space that is highly correlated with the VDE latent space featurized by Cα 
contacts (Figure S1), indicating the robustness of the VDE dimensionality reduction process. 

For the optimized tICA model, a tICA lag time of 44 ns, 4 tICA components, and kinetic 

mapping49 were selected according to hyperparameter optimization48. To construct MSMs 

on tICA-transformed and VDE-transformed data, analogous steps as for the Müller potential 

in Section 3.1 were performed. Mini-batch k-means clustering was performed with 125 

clusters for both sets of data. This was the optimal cluster number identified for tICA, and 

hyperparameter searching showed little influence of cluster number on MSMs from VDE-

transformed data. MSMs for both tICA- and VDE- transformed models were constructed 

with 50 ns lag time. To obtain error estimates for MSM equilibrium populations and MSM 
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timescales, 100 rounds of bootstrapping were performed over the original set of trajectories. 

The resulting ranges of values were used for error bars.

3.3 Protein Saliency Maps

Saliency maps were designed for classification algorithms and thus needed to be modified 

for our application (Algorithm 2). Briefly, we first generate a faux two-step trajectory 

starting from a random protein conformation, for instance, a misfolded state, and going to 

the desired protein conformation, for instance, the folded state. The misfolded state is 

propagated through the network, and the residual to the folded state (Figure 7a) is 

propagated back to obtain loadings on individual distances. This back-propagation is just the 

chained partial derivative of the reconstruction error with respect to the atomic coordinates 

of the system.

Ideally, we perform this process for a large number of possible misfolded to folded 

transitions to obtain robust saliency maps. The median values for each feature across all of 

these maps can then be integrated to obtain residue level statistics or rank ordered to find 

important features. It is worth noting that our method is different from classical saliency 

scoring whereby only the desired class label score is propagated backwards.

Algorithm 2 Computing saliency maps
1: procedure SALIENCY model,data
2: xt, xt + τ data
3: xt + τ′ model . forward xt
4: model . loss = xt + τ′ − xt + τ
5: model . loss . backward

6: return∂model . loss
∂xt

We note that both the VDE’s noise parameter and the autocorrelation loss should be set to 

zero for consistent results and numerical stability. We also recommend computing the 

saliency scores multiple times across many configurations and averaging out the results. 

Lastly, we note that the protein saliency maps can be used in a variety of different protein 

deep learning algorithms, including VAMPnets12 and TAE23.

4 Results

4.1 A Non-Linear Encoding for Brownian Dynamics

We first apply the VDE framework to the well-studied 2-D Müller-Brown potential and 

demonstrate it can adequately describe the dynamics of this simple system. Figure 4 shows 

results for a) the VDE, b) tICA, and c) PCA. We note that while tICA and PCA both identify 

the same dominant linear coordinate, representing diffusion from minor to major basin, the 

VDE generates a non-linear projection that is able to distinguish these basins more clearly, 

as well as the transition region.
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To establish an unbiased assessment of the VDE’s performance compared to tICA or PCA, 

we measure its ability to represent the original trajectories, as well as its ability to capture 

slow-timescale dynamics. In order to measure the former, we employ mutual information to 

understand exactly how many more bits of information is shared between the VDE latent 

space and the original features than the principal components of PCA and tICA; as shown in 

Supplementary Materials Figure S1, we find that it shares more than twice as many bits of 

information with the original features than the linear methods do. To address the latter, we 

constructed MSMs using identical hyperparameters and compared GMRQ scores of the 

slowest process. The VDE achieves a slightly higher mean GMRQ score (1.8580 ± 5 × 10−4) 

than tICA (1.8460 ± 5 × 10−4) or PCA (1.8472 ± 5 × 10−4) on held-out data. This, along 

with the mutual information results, suggests that the VDE is better able to represent the 

dynamics of this system.

4.2 The VDE Does Not Behave as a True Propagator

As VAEs are regarded as a generative model, we consider the relationship between the VDE 

and the propagator function. When trained on the Müller-Brown potential, with kBT = 1.5 × 

104 Joules, the VDE is able to generate “fake” trajectories with some similarities in 

dynamics to the original simulations, as seen in Figure 5 (pink curve). Furthermore, when 

we modulate the effect of the Λ-layer by adjusting the scaling parameter α, we are also able 

to mimic some effects of changing the simulation temperature without having to re-train the 

VDE. Figure 5b demonstrates that when decreasing (dark blue and purple curves) or 

increasing (orange and yellow curves) α, the VDE is able to adjust barrier heights in a 

similar fashion to what is observed in simulation, shown in Figure 5a. However, we find that 

this fidelity to simulation is lacking in transition regions and previously unobserved regions 

of phase-space, where the VDE does a poor job of recapitulating true thermodynamics.

Also of note is the case of α = 0 (not shown in Figure 5b), where the VDE behaves 

essentially as an indicator function, reporting which basin a given frame will eventually 

diffuse towards in a low temperature simulation. As α is increased, the VDE must decide 

which basin to push the now heat-bathed system towards and more realistic dynamics can be 

observed. Such behavior is analagous to a ‘black-box’ Langevin equation, whereby the VDE 

has learned some of the underlying dynamical characteristics of the system; although, there 

seems to be a strong attraction to certain basins (e.g. region 2) which is not observed in 

simulation. Because of this attraction, increasing α raisies intermediate basins towards 

realistic free energies rather than lowering them, as one might expect when raising the 

temperature of a simulation. We recommend greatly increasing α, as described in Section 

2.1, when generating synthetic trajectories due to this trend.

4.3 A Simple Encoding for Villin Headpiece Dynamics

We next apply the VDE to pairwise alpha-carbon (Cα) contacts in order to model the 

folding process of the villin headpiece subdomain. Here, we aim to assess the quality of the 

VDE as a dimensionality reduction technique for protein folding by quantifying how well a 

MSM constructed from VDE-transformed data separates relevant timescales and 

distinguishes basins within the landscape. With these metrics in mind, the VDE appears to 
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represent the folding landscape well and can even out-perform tICA using similar MSM 

hyperparameters.

Figure 6a depicts trajectory data projected onto the slowest two tICA processes (tICs) from 

an optimized tICA model48 and colored by the projection onto the VDE latent coordinate. In 

the optimal tICA model, 2 tICs are needed to capture both the folding and a prominent 

misfolding process. The first tIC is unable to completely separate unfolded and folded state, 

whereas the second tIC distinguishes the folded and unfolded state but is unable to 

distinguish the folded and misfolded state. In contrast, the VDE latent coordinate is able to 

discriminate between all three states: folded, unfolded, and misfolded. By comparing the 

free energies of the VDE latent space (Figure 6c) and the first tIC (Figure 6d), we observe 

that the VDE coordinate has a narrower basin of folding than that of the first tIC, indicating 

the VDE latent coordinate more sharply resolves the folding basin than the first tIC does.

To test the benefit of using the autocorrelation loss discussed in Section 2.2, we trained 

models of villin using only the reconstruction loss and no autocorrelation loss. The 

projection of the optimal model with no autocorrelation loss is portrayed in Figure 6b. In this 

projection, there is minimal differentiation between different parts of the landscape. This 

highlights the necessity of incorporating an autocorrelation loss into the VDE loss function.

MSMs for the villin landscape were constructed from both the VDE model and the 

optimized tICA model. Comparing these models indicates that the VDE model identifies a 

slower timescale than the tICA model. Figure 6e portrays the timescales of the slowest five 

processes identified by MSMs built from the VDE projection, our optimized tICA model, 

and a tICA model built with one tICA component. The timescale of the slowest process in 

the MSM from the VDE projection is 1620 ± 80 nanoseconds, whereas the timescale of the 

slowest process in the optimal tICA model is 770 ± 40 nanoseconds. According to the 

variational approach to conformational dynamics, as described in Section 2.2, a model with 

longer timescales should be closer to modeling the true dynamics of the system.

4.4 Protein Saliency Maps Enable Interpretation of the VDE

As noted in Figure 1, nonlinear methods for time-series analysis tend to sacrifice model 

interpretability. Linear tICA provides “loadings” on each input feature for each slow mode. 

Thus, the absolute magnitude of these loadings can be used to understand holistic protein 

dynamics at the atomic scale37. To make VDEs more interpretable, we designed a novel 

variant to saliency maps (see Section 3.3) to gain insight into how the network operates and 

propagates protein configurations at a particular lag time. Saliency maps31–33 were 

originally proposed for looking at spatial support for varied classification problems. For 

image data, they find spatial features that a network looks for during classification, i.e., by 

asking how much does any individual pixel contribute to the final prediction. This is done by 

back-propagating from the desired class score through the network and into the image 

pixels. Similar to tICA loadings, the magnitude of the derivative can then be used to gauge 

feature importance per output class. An alternative closely related method, namely guided 

back-propagation, only propagates the positive derivatives through the network. This allows 

the modeler to visualize what pixels a network looks at when it ouputs a certain class label.
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To perform the saliency analysis, we computed a median value for the derivative of the 

residual between villin’s misfolded and folded basin with respect to its input contact 

features. As shown in Figure 7b, these saliency maps for villin found 5 important Cα 
contacts. The 5 contacts (indicated with green lines in Figure 7b), all involve contacts to 

residues around Asn19. Remarkably, we can also integrate the saliency scores for each 

atomic feature to infer feature importances at the residue scale. The residue importance 

Figure 7b–c can be used to potentially design new molecular simulations and biophysical 

experiments. For example, in the case of villin, our model predicts distances to Asn19 as 

being critical for movement out of the misfolded partially helical state (Figure 7b). Mutating 

this residue to a proline or glycine could potentially be used to prevent the system from 

sampling the misfolded state. A potential drawback for this method is it requires sufficient 

knowledge of the system to identify a relevant path to investigate the corresponding initial 

and final conformations. This can be accomplished by either some empirical analysis, 

clustering, or simply sampling conformations at the minima and maxima of the latent space.

5 Discussion

In this work, we have introduced a variational autoencoder to analyze dynamical processes 

by incorporating a time lag into the traditional autoencoder structure, introducing an 

autocorrelation loss during training, and leveraging the Gaussian noise introduced into the 

latent space during training, dimensionality reduction, and synthetic trajectory analysis. 

Furthermore, we have introduced a saliency mapping approach inspired by advances in deep 

learning in order to interpret which features contribute to the identified progress coordinate.

We demonstrate that the VDE is able to outperform state-of-the-art methods, such as tICA, 

in describing slow dynamics in both the 2-D Müller-Brown potential and protein folding. In 

the more complex case of protein folding, we show the utility of the VDE in understanding 

the conformational landscape of the villin headpiece domain, which is non-trivial due to the 

prominent misfolded state observed. The latent space of the VDE captures the transitions 

among misfolded, unfolded, and folded, and a MSM constructed using the VDE projection 

exhibits a significantly longer timescale for the slowest process than the optimized one 

constructed from tICA-transformed data. We also show how biophysical insights into the 

network’s decision-making can be attained via protein saliency mapping. For villin, we 

identify important Cα contacts that we predict potentially play a role in misfolding-folding 

transitions. We anticipate that such results will prove useful in experimental design, such as 

in FRET experiments, to decide how to effectively probe a protein to observe 

conformational change.

We also examine the generative nature of the VDE, showing that it can generate realistic 

dynamics when trained on Brownian dynamics trajectories and has potential to extrapolate 

dynamics at temperatures it has not observed; however, as is, the model is unable to recover 

proper thermodynamics nor is it able to generate new conformations. We hypothesize that at 

least some of discrepancies observed in the generated free energies landscapes may be due 

to the simplicity of the Gaussian prior used. Assuming Langevin dynamics, one might 

expect the noise term within the reduced coordinate to be a non-trivial function of the 

original dynamics, rather than a Gaussian process. Another approach to improving trajectory 
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generation may be to train on trajectories sampled using replica exchange methods and 

condition on an additional temperature variable. We expect that a better understanding of 

how VDE priors and parameters relate to simulation parameters will lead to using the VDE 

to efficiently sample thermodynamics across different simulation conditions.

While the VDE shows much promise, there are a few reasons why we cannot recommend it 

as a complete replacement of previous methods, such as tICA, just yet. First, when training 

deep autoencoders using a autocorrelation loss (i.e. as inspired by the VAC), there is a 

noticeable dependence on batch size that arises during training. The autocorrelation, as well 

as the related variational loss, attempts to calculate global equilibrium statistics, such as the 

exchange timescale for the slowest process. However, for finite batch sizes, we might only 

observe a single event in that process within a given batch. This may lead to underestimating 

the computed statistics since the network has no information about the rest of the dataset. 

This problem does not arise in tICA or MSMs because timescales and other global statistics 

are only estimated after all the data has already been processed. Another issue with using the 

autocorrelation loss, as implemented, arises from the reality that many processes can occur 

with similar timescales. Each of these processes can be assigned highly similar 

autocorrelations, and thus might lead to volatile training; although, we believe our 

compound loss function can somewhat attenuate this issue, since the network is designed to 

keep track of global transition dynamics in addition to fitting the slowest processes.

One area for further study is the effect of the components of the loss function on the latent 

encoding obtained. Concurrent work in our group has demonstrated that both the 

incorporation of the autocorrelation loss and the time-lagged reconstruction loss are 

necessary for obtaining a latent space with maximal autocorrelation35.

All in all, VDEs and recent related work23, 24 herald exciting opportunities for bridging 

Markov models and deep learning. We believe the expressive power of neural networks 

provides a natural solution to the choice-of-basis problem that plagues many Markovian 

analyses, while the strong theoretical underpinnings behind MSMs allow us to select and 

potentially even validate cross-validate neural architectures11, 50, ultimately allowing us to 

address fundamental questions in biophysics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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that the VDE is able to produce similar models using internal protein coordinates, unlike previous 
linear methods.
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Figure 1. 
An overview of a subset of the methods used to analyze protein dynamics in terms of model 

interpretability and ability to capture non-linear motions7–10, 15, 21–24. Here, we define 

interpretability as the ease with which a scientist can analyze the model for feature 

importance with respect to dynamics. For example, principal component analysis (PCA), 

arguably the simplest model mentioned, is typically ill-suited to analyze complex dynamics 

and, therefore, the resulting principal components are not reliably meaningful. In contrast, 

the VDE is able to leverage deep learning to model non-linear relationships between time-

dependent observables and saliency mapping to understand which observables contribute 

most to the model. We note that saliency mapping is a general technique for analyzing 

neural networks and can also be applied to related methods.

Hernández et al. Page 17

Phys Rev E. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A schematic of the VDE. Features, xt, at some timepoint, t, are fed into the network in order 

to make a prediction of the state of the system, xt + τ′ , at a future timepoint, t + τ, where τ is 

some Markovian lag time. As with a traditional VAE, the network can be subdivided into 

three parts: the encoder network; variational layer, Λ; and the decoder network, as labeled. 

Our encoder network is a DNN with non-linear activation functions in the hidden layers, 

which eventually bottlenecks into the one-dimensional latent space, zt. The latent space is 

then slightly perturbed with Gaussian noise by the Λ-layer to generate z′, as described by 

Kingma and Welling16. Finally, the decoder network, also a DNN, mirrors the encoder 

network in architecture by using z′ to generate xt + τ′ , a prediction of how the system will 

evolve after one lag time of τ.
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Figure 3. 
A diagram representing the effects of the autocorrelation loss and KL-divergence loss 

functions on the VDE latent space. A trajectory, x, which contains several states represented 

by different colors, can be mapped onto a latent space, z. Here, we randomly select frames 

from x from each state to be mapped onto z. Maximization of the autocorrelation of z 
ensures that the slowest process within a trajectory can be modeled continuously within the 

latent space. Perturbation of the latent space with learnable, value-specific Gaussian noise 

enables a variational Bayes approach for propagating values from the original trajectory, x. 

In doing so, we are also able to infer the posterior probability of values within z and 

effectively perform sampling within the latent space.
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Figure 4. 
The 2-D Müller-Brown potential (gray-scale contours) overlaid with colormap projections of 

the one-dimensional a) VDE, b) tICA, and c) PCA coordinates. While tICA and PCA 

identify a strictly linear mode that approximates the slowest dynamical process (i.e. 

diffusion from region 1 to 3), the non-linear VDE is better able to map out basins (regions 1 

and 3) and intermediate state (region 2). Note that because the region outside of the contours 

is energetically unfavorable, the color projections in that space are extrapolations of each 

method, respectively.
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Figure 5. 
One-dimensional free energy projections generated from the VDE coordinate for a) true 

Brownian-dynamics simulations at different temperatures and b) fake trajectories generated 

by the VDE, trained at kBT = 1.5 × 104 Joules, with different scaling values, α, a proxy for 

temperature, within the Λ-layer. Although not a true one-to-one comparison, we find that 

free energy barriers (between regions 1, 2, and 3) are lowered, as expected, when 

temperature is increased within the Müller-Brown potential; however, free energies of 

transition (region 2) and boundary regions (beyond regions 1 or 3) of phase-space cannot be 

reproduced reliably. We note that the selected α values have not been rigorously fitted to 

best match the different values of kBT shown, but were instead evenly sampled over a fixed 

interval, in which similar dynamics to simulation are observed.
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Figure 6. 
The latent space of the VDE is able to discriminate between three significant states in the 

folding coordinate of villin: the folded (yellow), unfolded (orange), and a prominent 

misfolded (purple) states (shown in a). In contrast, an optimized tICA model requires two 

coordinates to differentiate these states. The autocorrelation loss is crucial for this; without it 

the VDE is unable to describe the landscape (shown in b). Comparing the free energies of 

the VDE coordinate (c) and the first tICA coordinate (d) indicates that the VDE is better able 

to separate the folded and unfolded state from the misfolded state. When comparing the 

timescales of MSMs constructed from both models (e), the VDE has a slower first process 

than an optimal tICA model with 4 tICA components and performs significantly better than 

a tICA model with a single coordinate, indicating a superior model. Error bars represent the 

range of 100 bootstrapped replicates.
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Figure 7. 
Protein saliency maps can be used to gain insight into the VDE. a) In saliency maps, the 

distances between the predicted and targeted output (i.e. contact distances in the folded 

states) are propagated back through the network to the input contact distances in order to 

gain insight into what the network learns. This is repeated for a large batch of possible 

configurations. b) For villin, the folded state is characterized by Cα contact distances to the 

central Asparagine residue. In the misfolded state, this residue is too close to the first helix 

forming non-native contacts. The green lines denote the 5 contacts with the highest median 

saliency scores. c) Integrating over the saliency at the atomic level allows us to infer the 

importances of individual residues in certain state transitions, making them prime candidates 

(red stars) for further biophysical characterization. The distributions are computed over 200 

transitions.
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