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Abstract

The healthy and diverse microbes living in our gut provide numerous benefits to our health. It is 

increasingly recognized that the gut microbiome affects the host’s neurobehavioral state through 

production of metabolites, modulation of intestinal immunity (e.g., cytokines) and other 

mechanisms (e.g., gut neuropeptides). By sending the sensed information (e.g., metabolic and 

immunologic mediators) about the state of the inner organs to the brain via afferent fibers, the 

vagus nerve maintains one of the connections between the brain and GI tract, and oversees many 

critical bodily functions (e.g., mood, immune response, digestion and heart rate). The microbiome-

gut-brain axis is a bidirectional communication between the gut, its microbiome, and the nervous 

system. In the present review, the roles of microbiome in neuroendocrine and neuroimmune 

interactions have been discussed using naturally occurring isoflavones, particularly the 

phytoestrogen genistein, as there are sex differences in the interactions among the microbiome, 

hormones, immunity and disease susceptibility. A deep understanding of the mechanisms 

underlying the interactions among the endocrine modulators, brain, endocrine glands, gut immune 

cells, vagus nerve, enteric nervous system and gut microbiome will provide important knowledges 

that may ultimately lead to treatment and prevention of debilitating disorders characterized by 

deficits of microbiome-neuroendocrine-neuroimmune relationships.
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1. Introduction

It is well known that the gastrointestinal (GI) tract and central nervous system (CNS) 

interact, and mechanisms underlying the bidirectional gut–brain interactions have gradually 

been revealed. The microbiome-gut-brain axis is a dynamic interaction among various 

tissues and organs, including the brain, endocrine glands, gut immune cells, vagus nerve, 

enteric nervous system and gut microbiome (GMB) that communicate in a multidirectional 

manner to maintain organism homeostasis. This interaction is now recognized as a regulator 

of mood, fear, cognition, pain, sleep and behaviors (Chu et al., 2019). The GMB is a 

dynamic ecosystem formed by thousands of distinct bacterial species in the gut. The first 

evidence associating GMB disturbances (dysbiosis) and neurobehavioral disorders 

originated from germ-free mice. These mice exhibited abnormalities in the GI tract as well 

as the hypothalamic-pituitary-adrenal gland axis by showing more anxieties and fear-

associated behaviors, and less exploratory, cognitive and social behaviors (Chu et al., 2019). 

These deficits could be reversed with bacterial reconstitution or fecal transplantation, 

suggesting a critical role for GMB in postnatal development of the enteric nervous system. 

In addition, other experimental paradigms including treatment with antibiotics or pre-/

probiotics have demonstrated that GMB influence many facets of CNS physiology e.g., 

neurotransmitter signaling, synaptic plasticity, myelination and neurogenesis.

Gut houses 70% of the body’s immune system along with 80% of plasma cells (Vighi, 

Marcucci, Sensi, Di Cara, & Frati, 2008), and intestinal inflammation and imbalance of 

GMB (dysbiosis) and associated metabolic activities are linked to many diseases, including 

neurological symptoms (e.g., depression), diabetes and obesity (metabolic), malnutrition and 

inflammatory bowel disease (IBD; immune) (Day, 2018; Lazar et al., 2019; Valles-Colomer 

et al., 2019). The objective of this manuscript was to review the roles of GMB in 

neuroendocrine and neuroimmune interactions by focusing on naturally occurring 

isoflavones, particularly the phytoestrogen genistein. There are sex differences in the 

interactions among the GMB, hormones, immunity and disease susceptibility. In addition, 

there are pathophysiological differences between the microbiome of humans and animals. 

For example, all rodent guts contain equol-producing bacteria, while only 30–50% of 

humans harbor such bacteria (Cross et al., 2017). To this end, we have discussed human and 

lab animal microbiome separately for the phytoestrogen genistein.

2. Possible Pathways in the Microbiome-Gut-Brain Axis

It has been realized a long time ago that intestinal dysfunctions, such as IBD, and psychiatric 

disease (e.g., depression) might share the same pathogenesis and biological mechanisms, 

including alterations in the hypothalamic-pituitary-adrenal gland axis mediated by 

corticotropin releasing factor in response to stress, cytokine secretion and immunological 

modulations. The microbiome-gut-brain axis is a bidirectional communication between the 

gut, its microbiome, and the nervous system. The efferent brain-gut signaling includes 

neuroendocrine, neuroimmune and autonomic regulations (Mayer, Tillisch, & Gupta, 2015). 

The afferent gut–brain signaling involves the enteroendocrine system, cytokines, sensory 

epithelial cells, and GMB (Figure 1). Both the vagus nerve and palatine nerve can relay 

cytokine-induced signals to the brain, and neurotransmitters, such as serotonin, play a key 

Guo et al. Page 2

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



role in the activation of immune cells to produce proinflammatory cytokines (Banks, 2008; 

Herr, Bode, & Duerschmied, 2017). In addition, cytokines alter the concentrations of several 

neurotransmitters that regulate the communications in brain, including serotonin, dopamine, 

and glutamate. Cytokines, together with neurotransmitters and hormones, are critical in the 

maintenance of neuro-immune-endocrine system homeostasis. Crosstalk among the 

intestinal epithelium, intestinal immune system and GMB can modulate systemic immunity 

and affect the interaction between GMB and CNS-restricted immune cells, the microglia 

(Chu et al., 2019).

The CNS can alter GMB composition and behavior via the autonomic nervous system, and 

neuroendocrine and neuroimmune pathways (Wasilewska & Klukowski, 2015). For 

example, reducing hypothalamic inflammation improves leptin sensitivity (Milanski et al., 

2012), which is under GMB control (Cani & Knauf, 2016). The present review focuses more 

on the enteric-afferent pathways than on the complicated neuro-efferent events. There exist 

at least three major ways for GMB to send signals to the brain (Figure 1). Firstly, GMB may 

signal the brain through the vagus nerve, which connects networks of nerves in the gut to 

various brain regions (e.g., hypothalamus) using neurotransmitters. It is also possible for 

GMB to stimulate gut immune cells to secrete cytokines that travel to the brain via the 

bloodstream. The third possible way for gut-brain communication to occur is through 

metabolites produced by GMB, e.g., short chain fatty acids (SCFAs), which may stimulate 

enteric neurons and enteroendocrine cells to produce gut neuropeptides. Metabolites such as 

SCFAs can also travel to the brain through the bloodstream and directly modulate microglia 

density, morphology and maturity (Erny et al., 2015). However, these three pathways are not 

mutually exclusive. There exist interactions and overlaps among them that allow for these 

processes to amplify each other. For example, the vagus nerve has immunomodulatory 

properties (Breit, Kupferberg, Rogler, & Hasler, 2018), and SCFAs can stimulate free fatty 

acid receptors in enterochromaffin cells to trigger serotonin biosynthesis (Reigstad et al., 

2015).

2.1 Vagus nerve and neurotransmitters in the microbiome-gut-brain axis

The vagus nerve bridges the direct communication between GMB and the brain (Figure 1). 

In the gut, the sensed information, such as metabolic mediators from GMB and 

immunologic mediators, is integrated at the vagal nuclei and then transmitted to different 

brain regions to alter behavioral responses. Furthermore, GMB can alter the neurochemical 

levels in the vagus nerve. GMB produces a range of neurotransmitters through the 

metabolism of indigestible fibers (i.e., cellulose, hemicellulose, lignin, pectin and beta-

glucans) (Lattimer & Haub, 2010). These include dopamine and noradrenaline by members 

of the Bacillus family, GABA (γ-aminobutyric acid) by the Bifidobacteria family, serotonin 

(5-hydroxytryptamine) by the Enterococcus and Streptococcus families, noradrenaline and 

serotonin by the Escherichia family, and GABA and acetylcholine by the Lactobacilli family 

(Sarkar et al., 2016). These neurotransmitters stimulate the vagus nerve, and it may in turn 

alter the activities in hypothalamus and other brain regions. It is also possible that some of 

these neurotransmitters reach the brain via blood and circumventricular organs. However, 

more studies are required to determine what are the physiological implications of GMB-

mediated alterations of these neurotransmitters, although it has been proposed that some of 
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these neurotransmitters may reach the brain through the vagus nerve (Bonaz, Bazin, & 

Pellissier, 2018; Klarer et al., 2014).

The expressions of neurotransmitters, such as GABA and serotonin, can be regulated by 

GMB (Martin et al., 2019; Strandwitz et al., 2019). GABAergic transmission plays a key 

role in controlling emotional state and participates in the regulation of various 

psychophysiological phenomena. There are GABA-producing bacteria found in the stool 

samples from healthy people, e.g., Bacteroides, Parabacteroides and Escherichia species 

(Strandwitz et al., 2019), and more have been identified from various dietary sources. In 

patients with depressive disorders, the relative abundance of fecal GABA-producing 

Bacteroides is decreased and negatively correlates with the depressive signatures in the brain 

(Strandwitz et al., 2019). In adult male BALB/c mice, administration of the potential 

psychobiotic Lactobacillus rhamnosus (JB-1) over 28 days lowered the level of stress-

induced corticosterone, and decreased the anxiety and depression-like behaviors in the 

forced swim test (Bravo et al., 2011). At the same time, JB-1-treated mice exhibited region-

dependent alterations in the expression of GABAB1b and GABAAα2 mRNAs, which are 

related to the modulations of memory and anti-depression, respectively (Bravo et al., 2011). 

Further studies in vagotomized mice did not show either behavioral or neurochemical 

changes in the same tests, suggesting an indispensable role of the vagus nerve in the 

communication between JB-1 and brain via regulating inhibitory neurotransmitter GABA 

(Bravo et al., 2011).

Serotonin has been used in the form of drugs and nutraceuticals for vagus nerve stimulation 

and for sleep and feelings of well-being. However, about 95% of the body’s serotonin 

locates in the gut but not in the brain (Fung et al., 2019). Germ-free mice display lower 

serotonin levels in cecum and colon, and lower percentage of unconjugated serotonin 

(bioactive form) than the germ-free mice recolonized with specific pathogen-free fecal flora 

(Hata et al., 2017). One possible explanation is that some bacterial species, such as lactic 

acid bacteria (e.g., Streptoccocus thermophilus) and E. coli, produce serotonin. In addition, 

indigenous spore-forming bacteria from GMB promote the serotonin biosynthesis in 

enterochromaffin cells through secreting metabolites, e.g., α-tocopherol, butyrate, cholate, 

deoxycholate, p-aminobenzoate, propionate and tyramine (Yano et al., 2015). In spite of a 

plethora of information showing that serotonin is vital for emotional and basic physiological 

functions, and that GMB can regulate the serotonin levels, comprehensive evidence is 

missing to directly link GMB-regulated serotonin level to emotion and behavior. It is also 

unclear whether the vagus nerve is mediating this communication.

2.2 Cytokines and gut neuropeptides in the microbiome-gut-brain axis

Although the interactions between GMB and intestinal immune system (Figure 2) have been 

well studied (Guo et al., 2018), the interplays among cytokine production, neuroendocrine 

regulation and GMB have not been investigated extensively. In a study to determine the 

effect of probiotics on chronic stress induced by maternal separation during perinatal stages 

in C57BL/6 mice, the introduction of the potential probiotic Bifidobacterium 
pseudocatenulatum CECT 7765 downregulated maternal separation-induced intestinal 

inflammation by reducing IFN-γ and intestinal hypercatecholaminergic activity, e.g., 
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dopamine and adrenaline, at postnatal day 21 (Moya-Perez, Perez-Villalba, Benitez-Paez, 

Campillo, & Sanz, 2017). In a rat study, modulation of GMB by a multi-species probiotic 

treatment significantly reduced depressive-like behavior by 34% in the forced swim test, and 

altered the cytokine production by the stimulated blood mononuclear cells towards IFN-γ, 

IL-2 and IL-4 at the expense of TNF-α and IL-6 (Abildgaard, Elfving, Hokland, Wegener, & 

Lund, 2017). Interestingly, the probiotic use lowered the transcript levels of factors involved 

in the regulation of hypothalamic-pituitary-adrenal gland axis, including corticotropin 

releasing hormone receptor-1, −2 and mineralocorticoid in hippocampus (Abildgaard et al., 

2017). In a mechanistic study, it was demonstrated that depression was associated with a 

decreased GMB richness (Kelly et al., 2016): Fecal microbiota transplantation from 

depressed patients to microbiota-depleted rats induced behavioral and physiological features 

related to depression in the recipient animals, including anhedonia and anxiety-like 

behaviors, as well as alterations in tryptophan metabolism. In addition, the depressed rats 

showed an elevated IL-8 and TNF-α (Kelly et al., 2016).

In addition to immune mediators, gut neuropeptides originated from enteric neurons and 

enteroendocrine cells can serve as a mediator between GMB and host (Figure 2). Common 

gut neuropeptides include substance P, neuropeptide Y, α-melanocyte stimulating hormone, 

vasoactive intestinal peptide, calcitonin gene-related peptide and adrenomedullin, and they 

are likely to play important roles in the bidirectional gut-brain communication. The function 

of gut neuropeptide-releasing enteroendocrine cells is directly influenced by metabolites 

(e.g., SCFAs) generated by GMB from indigestible fiber, and gut neuropeptides may control 

the impact of GMB on inflammatory processes, pain, brain function and behavior. The 

effects of gut neuropeptides on GMB can be direct or indirect when the stimuli are sensed. 

Gut neuropeptides can cross the epithelial barrier and exert antimicrobial activity in the gut 

lumen by different mechanisms (direct) or induce immune responses (innate or adaptive), 

and subsequently result in microbial imbalance (indirect) (Aresti Sanz & El Aidy, 2019).

In the CNS, the microglia are the innate sentinel immune cells that can detect subtle changes 

in molecules in their locality. The proper functioning of microglia in brain regions (e.g., the 

hypothalamus) is critical for maintaining brain health and regulating metabolism (Figure 2). 

When activated, they perform functions such as removing damaged cells at a site of injury. 

A critical role for GMB in microglia maturation, morphology and immunological function 

has been shown (Erny et al., 2015), and a healthy and diverse GMB is essential for the 

continuous preservation of healthy microglia and proper brain function throughout host 

lifespans. Furthermore, it has also become clear that microglia have a crucial role in synaptic 

connectivity. By engulfing and degrading unwanted synapses, microglia can ensure that 

neuronal connections are pruned or maintained as needed, which have been shown to be 

critical for fear extinction (Chu et al., 2019). In addition, there exist a neuroimmune circuit 

involving microglia activation and an altered sympathetic neural tone to the peripheral 

immune system to recruit inflammatory monocytes to the brain (Wohleb, Mckim, Sheridan, 

& Godbout, 2015). Taken together, GMB closely interact with the body’s major 

neuroendocrine and neuroimmune systems that control various physiological processes in 

response to stress, metabolic dysfunction and infections (Figure 2).
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2.3 Bacterial-derived metabolites in the microbiome-gut-brain axis

The microbial metabolism is seen as a complement to the host metabolism. Dietary 

metabolites derived from GMB play a critical role in the regulation of multiple neural 

behaviors (e.g., anxiety, depression) through the microbiome-gut-brain axis, and gut 

dysbiosis favoring pro-inflammatory microbial communities precedes depression 

development (Macedo et al., 2017). GMB can metabolize dietary compounds into 

metabolites (e.g., phenolic acids) with important biological activities. These small, gut-

derived metabolites may be responsible for the health benefits of diets high in fruits and 

vegetables. Nuclear magnetic resonance and liquid chromatography-mass spectrometry-

based metabolomic studies have shown that microbial metabolites are often the compounds 

most markedly altered in the disease state when compared to healthy individuals (L. S. 

Zhang & Davies, 2016). Importantly, many studies suggest that these metabolites may be 

effective anxiolytic, antidepressant, and/or anti-inflammatory agents. Furthermore, these 

metabolites may exert their biological effects using various pathways simultaneously rather 

than acting through a single mechanism (e.g., biological signature; Figure 2). Although 

GMB is highly variable, the summation of genomes composing it tends to be quite 

conserved when considering the microbial metabolic pathways.

SCFAs such as acetate (C2), propionate (C3), butyrate (C4) and pentanoate (valerate, C5) 

are mainly produced by bacterial fermentation of dietary fiber or glycosylated host proteins 

such as mucins in the colon. Bacteroidetes (gram-negative) and Firmicutes (gram-positive) 

are the most abundant phyla in the intestine, with members of the Bacteroidetes mainly 

producing acetate and propionate, while Firmicutes mostly produce butyrate in the human 

gut (Parada Venegas et al., 2019). SCFAs are not only able to protect host from mucosal 

inflammation and colorectal tumorigenesis, but may also act in a systemic manner to 

ameliorate T cell-driven autoimmunity in the brain (Luu et al., 2019). Systemic sodium 

butyrate injections in rats produce antidepressant effects, and increase central serotonin 

neurotransmission and brain-derived neurotrophic factor expression (Sun et al., 2016). 

Dysbiosis in patients with multiple sclerosis, an autoimmune disease affecting the CNS, is 

characterized by a reduction of species belonging to Clostridia XIVa and IV clusters 

(Miyake et al., 2018). These species produce SCFAs by the fermentation of soluble fiber 

contained in the diet. However, unfavorable health effects of SCFAs have also been 

described. For example, butyrate has been shown to act on the locus of enterocyte 

effacement pathogenicity island of enterohemorrhagic E. coli, which enables this pathogen 

to efficiently colonize the host epithelium (Luu et al., 2019).

Children, especially newborns and fetuses, are more sensitive to environmental toxicants 

compared to adults (Kamai, McElrath, & Ferguson, 2019). There is a clear association 

between alterations of GMB and metabolites in children and the risk of developing 

depression in adulthood (Frye et al., 2015; Petra et al., 2015). In the fetus, early-life gut 

bacterial colonization plays an important role in metabolic tissue development and in 

influencing the risk of immune related diseases because intestinal immune system 

development starts as early as 11 weeks of gestation in humans (Romano-Keeler & 

Weitkamp, 2015; Younge et al., 2019). Modulation of GMB by probiotics (Lactobacillus 
rhamnosus or Bifidobacterium lactis) during pregnancy alters infant immune responses 
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(Prescott et al., 2008). The mode of delivery, antibiotic use after birth and infant formula 

consumption could all help shape the infant GMB and further modulate the immune system.

3. Phytoestrogens and the Gut-Brain Axis

The complex symbiotic interaction between GMB species can be perturbed by endocrine 

modulators. Furthermore, GMB can interact with the endocrine modulators by altering their 

processes of absorption, disposition, metabolism and excretion (Lai et al., 2018). Dietary 

isoflavones, especially the phytoestrogen genistein (GEN, Formula: C15H10O5, CAS ID: 

446-72-0), have been proposed as possible preventive or complementary medicines for 

depression, and they might improve the overall quality of life and decrease self-rating 

depression scores (Atteritano et al., 2014). The widely used dietary supplement GEN has 

been explored for its potential effects in cognitive function, cancer therapy, and bone and 

cardiovascular health. GEN presents as glycosides (genistin; Formula : C21H20O10, CAS 

Number : 529-59-9; Figure 3) in intact soybeans. Orally administered glycoside form is 

hydrolyzed by β-glucosidase to aglycones in the GI tract. The aglycone form is either 

absorbed intact or further metabolized by GMB. Only a small fraction of dietary GEN is 

absorbed in the small intestine, and large proportions of that reach the colon where they 

undergo modifications by GMB. It has been estimated that at least 30% of metabolites have 

a bacterial origin. GEN and gut microbe-derived GEN metabolites (MGMs) can interact 

with estrogen receptors (ERs), and function as either antagonist or agonist depending on the 

estrogen level (Hwang et al., 2006). GEN is first converted by GMB to dihydrogenistein 

(Formula : C15H12O5, CAS Number 21554-71-2; Figure 3), which can bind to ERs and exert 

biological effects (e.g., antioxidative). Dihydrogenistein has been detected in human urine 

and plasma at high concentrations, which may act as bioactive component of GEN 

(Kobayashi, Shinohara, Nagai, & Konishi, 2013). Dihydrogenistein is further metabolized to 

6’-hydroxy-O-desmethylangolensin (C15H14O5), with unknown health effects, through 

absorption and enterohepatic circulation (Kobayashi et al., 2013). A peak with molecular 

weight (257.0819 g/mol) identical to 5-hydroxy-equol was also found, suggesting that the 

production of this compound could be more common than equol. Interestingly, 5-hydroxy-

equol showed an antioxidant activity superior to that of GEN (Gaya, Medina, Sanchez-

Jimenez, & Landete, 2016). The 5-hydroxy-equol is also expected to bind to ERs, preferably 

to ER-β. Complete cleavage of the C-ring can also produce 2,4,6-trihydroxybenzoic acid and 

p-ethyl phenol. C-ring fission may also generate 2-(4-hydroxyphenyl)-propionic acid and 

trihydroxybenzene (Figure 3).

The actions of GEN have been studied for more than 20 years, and a great deal has been 

learned, but the research up to date has not led to the significant clinical successes. More 

than 30 clinical trials of GEN with various disease indications have been conducted to 

evaluate its clinical efficacy, and ambiguous therapeutic effects and large interindividual 

variations have been observed (Yang, Kulkarni, Zhu, & Hu, 2012). The discrepancy between 

clinical studies of GEN could be attributed to a failure to distinguish between MGM 

producers and nonproducers in the metabolism of GEN and sex difference in GMB (Vemuri 

et al., 2019). The solubility of GEN in water and most aqueous buffers is low, e.g., 0.9 μg 

GEN/ml in water, and the oral availability of GEN is only 23.4% for the dose administered 

(Yang et al., 2012). In contrast, various MGMs have been detected in plasma and urine. 
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These MGMs are more bioavailable than GEN per se, and they have increased biological 

activities, e.g., estrogenic or antiestrogenic, antioxidant, anti-inflammatory, antiproliferative 

and apoptosis-inducing (Gaya et al., 2016). The clinical effectiveness of GEN in depression 

may be attributed to MGMs. On one hand, GMB that is altered through GEN intake 

modulates active estrogen in the serum by secreting β-glucuronidase that deconjugates 

estrogen (Plottel & Blaser, 2011). On the other hand, the metabolites of isoflavones and 

estrogen from GMB can modulate the immune responses. They may be transmitted through 

the vagal nerve or systemic circulation to affect neural function. As the gut-associated 

lymphoid tissue represented 70% of entire immune system, the mechanism of GEN affecting 

GMB also needs to be studied further from the perspective of metabolome. In addition, as an 

endocrine disrupting chemical, GEN has been linked to some detrimental health effects, 

especially during developmental exposure (discussed later). For example, mice treated 

neonatally with GEN developed cancer of the uterus later in life (Newbold, Banks, Bullock, 

& Jefferson, 2001). Therefore, understanding the mechanisms underlying GEN’s beneficial 

and detrimental actions (e.g., depending on the dose and windows of exposure) will help 

form a more targeted therapy that have fewer side effects.

Human microbiome studies - Adult exposure.

Because limited human studies are available specifically for GEN, this section has 

considered both in vivo and in vitro gut microbial profile changes following either GEN 

exposure or soy consumption (Table S1). Soy intake can modulate GMB, estrogen 

metabolism and immunity. Isoflavone administration in the human GMB-associated mice 

led to a significant increase in fecal Clostridia (Tamura, 2004), and modified numbers of key 

bacterial species in the gut in vitro (Vazquez, Florez, Guadamuro, & Mayo, 2017). By 

culturing human feces in reactor vessels and introducing soy powder upon stabilization, an 

increase of several bacterial strains (Lactobacillus sp.) together with a 30% increase of 

SCFAs were found (De Boever, Deplancke, & Verstraete, 2000). In postmenopausal women, 

supplementation of isoflavones aglycon stimulated dominant microorganisms of the 

Clostridium coccoides-Eubacterium rectale cluster, Lactobacillus-Enterococcus group, 

Faecalibacterium prausnitzii subgroup and Bifidobacterium genus (Bolca et al., 2007; Clavel 

et al., 2005). Similarly, a week of diet supplementation with soy bars containing isoflavones 

(160 mg soy isoflavones/day) significantly increased Bifidobacterium (Nakatsu et al., 2014). 

In overweight and obese men, consuming soymilk altered the microbiome including a 

potentially beneficial alteration of the Firmicutes to Bacteroidetes ratio (Fernandez-Raudales 

et al., 2012). In athymic nude mice transplanted with human microbiome, GEN at the dose 

of 0.25 g/kg modulates the microbiome and contributes to its effects on increasing the 

latency of breast tumor and reducing tumor growth (Paul et al., 2017). Thus, adult exposure 

to GEN seemed to produce an overall beneficial effect.

Human microbiome studies - Developmental exposure (Table S1).

In humans, a critical period influencing lifelong health is the period from conception to 24 

months (the first 1000 days) when GMB composition and eating patterns are established 

(Schwarzenberg, Georgieff, & Committee On, 2018). Infants who had their cow’s milk-

based formula replaced with soymilk were associated with a decrease in the intestinal 

bifidobacterial population (Piacentini, Peroni, Bessi, & Morelli, 2010). A study in Australian 
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children of 2 to 3 years old found soy intake was positively associated with the relative 

abundance of bacteria related to Bacteroides xylanisolvens (Smith-Brown, Morrison, 

Krause, & Davies, 2016). A cross-sectional study found that the urinary concentration of soy 

isoflavone GEN in infants consuming soy-based formula was 500 times higher than in those 

consuming cow’s milk-based formula (Cao et al., 2009). However, human studies have 

shown that twice as many children with type 1 diabetes consumed soy-based formula in 

infancy as compared to controls (Fort et al., 1986; Strotmeyer et al., 2004). In addition, soy 

milk formula consumption during infancy was associated with a significant increase in the 

use of asthma or allergy drugs in young women (Strom et al., 2001), and possible increases 

in autistic behaviors (Westmark, 2013). These conditions are associated with an overactive 

immune system, suggesting that GEN might have some adverse effects on children, 

especially newborns and fetuses.

Lab animal microbiome studies - Adult exposure (Table S2).

It was reported that soy milk could rescue cholesterol-disturbed GMB in male Sprague–

Dawley rats (S. M. Lee, Han, & Yim, 2015), which was supported by additional four 

studies: (1) Soy protein isolate modulated the effects of prebiotic oligosaccharides on gut 

fermentation and microbiota in female Wistar rats (Bai, Ni, Tsuruta, & Nishino, 2016), (2) 

Dietary soy exerts a beneficial shift in gut microbial communities in ovariectomized rats 

with low-running capacity (Cross et al., 2017), (3) Soy exposure resulted in a lower 

Firmicutes:Bacteroidetes ratio in ovariectomized rats with low-running capacity (Vieira-

Potter et al., 2018), and (4) In male BALB/c mice, Odoribacter (Bacteroidales family), 

Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in 

soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. 

rhamnosus-fermented soymilk (Dai et al., 2019). For phytoestrogen GEN, it was shown that 

GMB alteration by ovariectomy may affect GEN bioavailability in C57BL/6 mice (D. H. 

Lee et al., 2017). Our in vivo studies showed that GEN could modulate GMB and immune 

homeostasis in adult non-obese diabetic (NOD) mice (Huang et al., 2017). In NOD male 

mice, it was found that GEN treatment during adulthood induced decreases in GM-CSF 

(75.6%), IFN-γ (22.9%), IL-5 (36.3%), IL-10 (45.3%), and MCP-1 (72.2%), suggesting an 

anti-inflammatory effect (Huang et al., 2017). These cytokines/chemokines have a strong 

association with depressive responses by interacting with GMB. When the composition of 

GMB at the genus level was compared, GEN treatment induced an increased Prevotella, and 

a decreased Alistipes and Blautia in terms of relative abundance, suggesting an anti-

inflammatory response (Huang et al., 2017). Prevotella can also help maximize energy 

harvest from a plant-based diet (Y. J. Zhang et al., 2015), while Alistipes show a significant 

association with depressive symptoms as they are overly represented in patients with 

depression (Jiang et al., 2015; Naseribafrouei et al., 2014). Overall, consistent with human 

studies, adult exposure to GEN produced beneficial effects in lab animals (López et al., 

2018).

Lab animal microbiome studies - Developmental exposure (Table S2).

In 21-day old DF508 mice, exposure to GEN at the dose of 600 mg/kg resulted in a lower 

within-sample diversity and significant differences in beta diversity when compared to 

control (Corrie Whisner, 2019). In California mice (Peromyscus californicus), early GEN 
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exposure disrupted normal socio-communicative behaviors, which might be due to GEN-

induced microbiota shifts and resultant changes in gut metabolites but might also be 

attributed to GEN disruptions on neural programming (Marshall et al., 2019). However, 

early-life GEN intake could also attenuate the harmful effects of maternal high fat diet in 

adult offspring, and the protective effects were associated with the alterations in GMB 

(Zhou, Xiao, Zhang, Zheng, & Deng, 2019). Our studies have also shown significant 

alterations of immune responses in mouse offspring exposed to GEN during in utero and 

lactation (Guo, Auttachoat, & Chi, 2005; Guo, Chi, Germolec, & White, 2005; Huang et al., 

2018). In NOD mice, we have found that the effect of GEN in type 1 diabetes depended on 

sex and windows of exposure: perinatal exposure produced an exacerbation of type 1 

diabetes in females and an anti-inflammatory effect in males (Huang et al., 2018), while 

adult exposure exerted a protection of type 1 diabetes in both sexes (Guo et al., 2015; Huang 

et al., 2017). RNA-seq analysis of gene expression in the ileum tissues in perinatal GEN-

treated female offspring showed that intestinal α-defensin expression was decreased by 70% 

(Huang et al., 2018). Importantly, a case-control study using whole-genome copy number 

analysis showed that decreased dosage of defensin was a predisposing factor to idiopathic 

autism spectrum disorder (Cho et al., 2009).

Defensins, whose expression is modulated by estrogen, are 2–6 kDa, cationic, antibacterial 

peptides active against many Gram-negative and Gram-positive bacteria. We conducted 

GMB analysis in NOD offspring exposed to GEN during in utero and lactation and found 

that GMB from postnatal day (PND) 90 female offspring was significantly altered following 

perinatal GEN exposure with an increased level of Enterobacteriales (Genus), suggesting a 

pro-inflammatory response. Some members of the Enterobacteriaceae (e.g., E. coli) produce 

endotoxins that are an etiopathogenic agent of type 1 diabetes. In the NOD ileum, E. coli 
was the sole bacterium correlating with the insulitis score (Sane et al., 2018). Significantly, 

higher levels of Enterobacteriaceae genera and species were found in children with autism 

than healthy children (De Angelis et al., 2013). Moreover, compared with healthy subjects, 

serum levels of endotoxin were significantly higher in autistic patients, and inversely and 

independently correlated with socialization scores on the Vineland Adaptive Behavior Scales 

(VABS) and ADI-R Domain A score (social) (Emanuele et al., 2010). In addition, animal 

studies have shown that early exposure to GEN can lead to altered brain development and 

behavioral abnormalities (Ponti et al., 2017), and girls exposed during infancy to soy 

formula show reduced female-typical play behavior (Adgent, Daniels, Edwards, Siega-Riz, 

& Rogan, 2011). Taken together, developmental exposure to GEN might be harmful, which 

is dependent on sex.

4. Conclusions and Future Directions

The fundamental question driving the GMB field is - how do differences in microbial 

composition among individuals (i.e., interindividual diversity) affect human health and 

disease? It has been suggested that there are likely four major patterns of interindividual 

variability in GMB functions (Rosen & Palm, 2017). Type I functions show very low 

interindividual variability among humans. Type II functions are normally distributed among 

the population but show a wider range of variability, and the host can tolerate a broader 

range of activity. Type III functions are present in the majority of humans but absent in a 
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small population. Type IV functions are present in a minority of individuals and absent in 

the majority. Future studies should focus on categorizing GMB and metabolite functions by 

type, which may not only help delineate the roles of specific microbial activities, or even 

microbes themselves, in health and diseases, but also act as a guide for which functions 

should be targeted therapeutically. A better understanding of the roles of GMB in 

neuroendocrine and neuroimmune interactions following exposure to endocrine modulating 

chemicals will permit individuals seeking dietary supplements to make better-educated 

choices. This is especially true for IBD, a chronic recurrent inflammatory disease in which 

sex hormones play an important role in its prevalence (Shah et al., 2018). If GMB 

contributes to neuroendocrine and neuroimmune interactions, therapeutics including 

prebiotics, probiotics, fecal transplants, isoflavone supplements or remediation strategies 

may be designed to induce/prevent such GMB alterations and thereby improve 

neurobehavioral outcomes.
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Figure 1. 
Illustrated are three major ways for gut microbiome to send signals to the brain. (1) Gut 

microbes may signal the brain through the vagus nerve using neurotransmitters. (2) Gut 

microbes stimulate gut immune cells to secrete cytokines for brain signaling. (3) The gut-

brain communication occurs through metabolites produced by gut microbes. SCFAs = short 

chain fatty acids, LPS = lipopolysaccharides, ENS = enteric nervous system.
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Figure 2. 
Interactions and overlaps among the three pathways described in Figure 1. AM = 

adrenomedullin, α-MSH = α-melanocyte stimulating hormone, CCK = cholecystokinin, 

CGRP = calcitonin gene-related peptide, GLP = glucagon-like peptide, ILC3 = type 3 innate 

lymphoid cells, NPY = neuropeptide Y, PYY = peptide YY, SP = substance P, Treg = 

regulatory T cells, VIP = vasoactive intestinal peptide, Mφ = macrophage, DCs = dendritic 

cells, IBD = inflammatory bowel disease.
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Figure 3. 
Possible gut microbe-derived GEN metabolites.

Guo et al. Page 20

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Possible Pathways in the Microbiome-Gut-Brain Axis
	Vagus nerve and neurotransmitters in the microbiome-gut-brain axis
	Cytokines and gut neuropeptides in the microbiome-gut-brain axis
	Bacterial-derived metabolites in the microbiome-gut-brain axis

	Phytoestrogens and the Gut-Brain Axis
	Human microbiome studies - Adult exposure.
	Human microbiome studies - Developmental exposure (Table S1).
	Lab animal microbiome studies - Adult exposure (Table S2).
	Lab animal microbiome studies - Developmental exposure (Table S2).

	Conclusions and Future Directions
	References
	Figure 1.
	Figure 2.
	Figure 3.

