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Abstract 
A growing number of cases have proved the possibility of airborne transmission of the coronavirus 
disease 2019 (COVID-19). Ensuring an adequate ventilation rate is essential to reduce the risk of 
infection in confined spaces. In this study, we estimated the association between the infection 
probability and ventilation rates with the Wells–Riley equation, where the quantum generation 
rate (q) by a COVID-19 infector was obtained using a reproductive number-based fitting approach. 
The estimated q value of COVID-19 is 14–48 h−1. To ensure an infection probability of less than 1%, 
a ventilation rate larger than common values (100–350 m3/h per infector and 1200–4000 m3/h per 
infector for 0.25 h and 3 h of exposure, respectively) is required. If the infector and susceptible 
person wear masks, then the ventilation rate ensuring a less than 1% infection probability can be 
reduced to a quarter respectively, which is easier to achieve by the normal ventilation mode applied 
in typical scenarios, including offices, classrooms, buses, and aircraft cabins. Strict preventive 
measures (e.g., wearing masks and preventing asymptomatic infectors from entering public spaces 
using tests) that have been widely adopted should be effective in reducing the risk of infection in 
confined spaces. 
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1 Introduction 

The once-in-a-century coronavirus disease 2019 (COVID-19) 
pandemic has shown that the airborne transmission of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
cannot be ignored (Morawska and Cao 2020). Although 
the transmission of COVID-19 occurs mainly via droplets 
during close contact or via contaminated surfaces, a recent 
study showed that SARS-CoV-2 remains viable in aerosols 
for multiple hours (Van Doremalen et al. 2020). A recent 
report suggested that current research supports the possibility 
that SARS-CoV-2 can be spread via bioaerosols generated 
directly by patients’ exhalation (National Research Council 
2020). Furthermore, recent visualization studies also support 
that SARS-CoV-2 may spread between the infector and 
susceptible person simply by speaking (Anfinrud et al. 2020; 
Stadnytskyi et al. 2020). A recent field sampling study 
further indicated that SARS-CoV-2 is widely distributed in 
the air, and the transmission distance in the air might be 
up to 4 m (Guo et al. 2020). These results partly explain 

the easier spread of SARS-CoV-2 in confined spaces. The 
Wells–Riley equation is a classic model for quantifying the 
risk associated with airborne transmission of respiratory 
diseases (Riley et al. 1978). It has been used to demonstrate 
that some building factors (particularly the ventilation rate) 
are important removal mechanisms for airborne infectious 
agents (Escombe et al. 2007). In addition, a report by WHO 
suggested that insufficient ventilation increases disease 
transmission (Chartier et al. 2009). Therefore, ensuring a 
sufficient ventilation rate for offices, classrooms, and public 
transport is essential to reduce the potential risk of infection 
in these confined spaces, which is extremely important for 
daily life. 

In this study, we employed the Wells–Riley equation to 
estimate the association between the infection probability 
and ventilation rate, where the quantum generation rate (q) 
is a critical parameter. The value of q of a COVID-19 infector 
is currently not well established, and we obtained this value 
based on its fitted correlation with the basic reproductive 
number (R0). We then estimated the association between 
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the infection probability and ventilation rate for some typical 
scenarios, including offices, classrooms, buses, and aircraft 
cabins.  

2 Methods 

2.1 Wells–Riley equation 

The Wells–Riley equation is as follows (Riley et al. 1978): 

= 1 e Iqpt QCP
S

-= -                                (1) 

where P is the probability of infection risk; C is the number 
of cases that develop infection; S is the number of susceptible 
people. I is the number of source patients (infectors); in 
this study, we focused on normal scenarios (not health care 
settings for COVID-19 patients), thus, we assumed I = 1. p is 
the pulmonary ventilation rate of each susceptible person 
per hour (m3/h); p = 0.3 m3/h when people are sitting or 
participating in light activity indoors (Duan et al. 2013). 
Q is the room ventilation rate (m3/h); q is the quantum 
generation rate produced by one infector (h−1); t is the 
exposure time (h). 

The unit “quantum” in this risk model is not an actual 
physical unit; it is a hypothetical infectious dose unit that is 
typically back-calculated from epidemiological studies. One 
quantum is defined as a collection of pathogen particles 
that can infect susceptible people (Riley et al. 1978). 

The Wells–Riley equation has two key assumptions, as 
follows: (1) droplet nuclei are evenly distributed in space, 
which means that the infection risk predicted by this equation 
is uniform within the space and (2) the equation neglects 
the viability and infectivity of the pathogen quanta. 

Owing to the filtration effect of the mask, we considered 
that wearing a mask of infector can dilute exhaled pathogen 
concentration; while for the susceptible person, it’s equivalent 
to increasing the room ventilation rate. The filtration efficiency 
of ordinary medical surgical masks on virus-laden aerosols 
is about 60% (Hui et al. 2012), which can be set as 50% 
considering the influence of air leakage (Davies et al. 2013). 
The modified Wells–Riley equation is as follows: 

I s(1 )(1 )1 e Iqpt η η QCP
S

- - -= = -                        (2) 

where ηI is the exhalation filtration efficiency, ηI = 50%; ηs is 
the respiration filtration efficiency, ηs = 50%. 

Furthermore, a previous study modified the Wells–Riley 
equation to include deposition rates (kdeposition) and filtration 
removal rates (kfiltration) (Stephens 2012). 

The kdeposition depends primarily on the particle size, density, 
and room characteristics, such as air speeds and surface areas 

(Fennelly and Nardell 1998; Fisk et al. 2004). It’s measured 
(Liu et al. 2020b) that viral RNA in aerosols and found that 
SARS-CoV-2 aerosol mainly resides in two size ranges, 
namely 0.25–0.50 μm and 0.50–1.00 μm. It’s indicated that 
the range of kdeposition is 0.21–0.63 h−1 with a mean value of 
0.36 h–1 for aerosols in such two size ranges (Ji and Zhao 
2015). This kdeposition value has a negligible effect compared 
with the removal effect of ventilation in this study.  

Regarding the kfiltration value, if we treat the ventilation 
rate (Q) as the equivalent clean air delivery rate (CADR), 
which is equal to the actual ventilation rate multiplied by 
filtration efficiency (Foarde 1999), then no modification is 
required to incorporate it. 

Finally, the key input parameter when applying the 
Wells–Riley equation is q. 

2.2 Quantum generation rate with a reproductive 
number-based fitting approach 

So far, there have been no available reported values of q of 
SARS-CoV-2. To obtain a reasonable q value, we collected 
the known q value and R0 for other airborne transmitted 
infectious diseases in previous studies, and fitted the 
association between them. R0 is the key epidemiological 
determinant that characterizes the transmission potential of 
an infectious disease, which is defined as the average number 
of infectious individuals created by a single infector in a 
susceptible population (Anderson et al. 1992). As both the q 
and R0 essentially determine the rate of spread of an epidemic 
and are estimated based on actual confirmed cases, we think 
that it may be logical to obtain the q value based on its 
association with R0 as a compromised but relatively reasonable 
approach. 

We then estimated q with the R0 of COVID-19 based 
on the fitted equation. Table 1 lists the values of q and R0 
for several typical infectious diseases collected from the 
references. It’s reported that the transmission of respiratory 
pathogens such as measles, tuberculosis, middle east 
respiratory syndrome coronavirus (MERS), severe acute 
respiratory syndrome (SARS) and influenza in indoor 
environments are governed by similar physical and biological  

Table 1 Quantum generation rate (q) and basic reproductive 
number (R0) values of airborne transmitted infectious diseases 

 q (h−1) R0 Reference 

Tuberculosis 1–50 2.22–5.46 Stephens 2012; Li et al. 2018

MERS 6–140 0.50–1.20 WHO 2019 

SARS 10–300 2.00–5.00 WHO 2003 

Influenza 15–500 1.60–3.00 Lee et al. 2012 

Measles 570–5600 11.00–18.00 Plans Rubió 2012 
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processes to COVID-19 (Stephens 2012; WHO 2003, 2019). 
With the values listed in this table as inputs, we fitted the 
association between q and R0 with a least square method 
implemented in Origin 2019. 

3  Results 

3.1 Fitted quantum generation rate of COVID-19 with 
the basic reproductive number 

The fitted curve representing the association between q and 
R0 is shown in Figure 1, and the fitted equation is as follows: 

2
1 0 2 0q A B R B R= + ´ + ´                         (3) 

where A = −30.27958 ± 26.07, B1 = −44.81536 ± 12.34048, 
and B2 = 19.67934 ± 0.62317. 

With the widely used range of R0 of 2.0–2.5 (Imai et al. 
2020; Li et al. 2020; Majumder and Mandl 2020; Read et al. 
2020; Zhao et al. 2020b), we obtained the corresponding 
range of q for COVID-19, which was 14–48 h−1. 

Considering that the R0 of measles is much larger than 
that of other infectious diseases, we fitted the association 
between q and R0 with the same method but removed the 
R0 of measles (Figure 2). The corresponding range of q for 
COVID-19 is 2–40 h−1, which is comparable to the results 
obtained from Figure 1 and Eq. (3). 

During the preparation of this manuscript, we found a 
study conducted by Lu et al. (2020) reporting a suspected 
case of airborne transmission of COVID-19 in Guangzhou, 
China, which is a suitable epidemiological case for the back- 
calculation of q. According to the description presented 
in the article, we back-calculated the value of q to be 22 h−1. 
Furthermore, we also noticed another novel method for 
predicting the value of q on the basis of the emitted viral load 
from the mouth (Buonanno et al. 2020). The results show that 
q varies significantly as a function of different parameters  

 
Fig. 1 The fitted curve between the quantum generation rate (q) 
and basic reproductive number (R0) (with measles values) 

 
Fig. 2 The fitted curve between the quantum generation rate (q) 
and basic reproductive number (R0) (without measles values) 

(including inhalation rate, type of respiratory activity, and 
activity level). Our aim is to analyze the asymptomatic 
case in light exercise activity, which represents the typical 
characteristic of infectors in common public spaces. 
Considering this point, the corresponding q reported by 
Buonanno et al. (2020) is between 10.5 and 33.9 h−1. Such 
values are in the same magnitude as the results in this study. 

Based on the above analysis, it can be considered that 
the initially estimated value of q in this study is reliable. 
Thus, we applied a q value of 14–48 h−1 for the sedentary 
state for later analysis. 

3.2 Association between infection probability and 
ventilation rate 

3.2.1 Infection probability  

Figure 3 shows the estimated association between the infection 
probability and ventilation rate. For the case with one infector 
inside of a confined space, a ventilation rate of 100–350 m3/h 
per infector was required to ensure an infection probability 
of less than 1% for 0.25 h of exposure of a susceptible person. 
A ventilation rate of 1200–4000 m3/h per infector was 
required to ensure an infection probability of less than 1% 
for 3 h of exposure of a susceptible person. 

3.2.2 Effect of wearing a mask 

The estimated association between the infection probability 
and ventilation rate for the cases with masks is shown in 
Figure 4. The results indicated that wearing a mask plays an 
important role in reducing the infection risk. For the case 
where there was one infector inside of a confined space, if 
both the infector and susceptible person wore masks, then the 
required ventilation rate to ensure an infection probability 
of less than 1% was reduced to 30–90 m3/h per infector for 
0.25 h of exposure and 300–1000 m3/h per infector for 3 h of 
exposure of a susceptible person, respectively.  
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3.2.3 Typical scenarios 

Figure 5 shows the association of the estimated infection  

 
Fig. 5 Association between the infection probability and ventilation 
rate in typical scenarios (one infector inside) 

probability with the ventilation rate for some typical scenarios. 
Table 2 lists the corresponding air change rates (ACHs) for 
typical volumes of the examined confined spaces. The ACH is 
a measurement of how much fresh/clean air replaces indoor 
air in 1 h (Sherman and Wilson 1986), which is more widely 
used in engineering to determine if ventilation and air 
conditioning systems can provide a sufficient ventilation 
rate to ensure a low infection probability. 

If people are wearing masks, then natural ventilation 
or normal mechanical ventilation can provide a sufficient 
ventilation rate to ensure that the infection probability is 
less than 1% for most scenarios (except for offices; Table 2). 
However, not wearing masks may result in a relatively higher 
infection risk for most cases, especially if q reaches the 
maximum value. In these scenarios, additional measures 
could be suggested if the actual ventilation rate is out of a 
safe range, including UV sterilization, HEPA filtration and 
increasing outdoor air rate (Zhao et al. 2020a). 

 
Fig. 3 Infection probability with different ventilation rates during different exposure times (without masks, one infector inside): (a) q = 14 h−1; 
(b) q = 48 h−1 

 
Fig. 4 Infection probability with different ventilation rates during different exposure times (with masks, one infector inside): (a) q = 14 h−1;
(b) q = 48 h−1 
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4 Discussion 

R0 varies due to different methodological issues, including 
the utilized datasets, confirmed cases, outbreaking region and 
mathematical models. Several methods have been produced, 
resulting in different estimations of R0. For example, there 
are studies showing that the R0 of COVID-19 can be reached 
a high level of 6.47 (Tang et al. 2020). However, R0 seems to 
be stabilized at around 2–3, which is obtained from a large 
database (Liu et al. 2020a) and from more different researches 
(D’Arienzo and Coniglio 2020; Imai et al. 2020; Li et al. 2020; 
Majumder and Mandl 2020; Read et al. 2020; Riou and 
Althaus 2020; Zhao et al. 2020b), the data used includes 
both the Mainland of China and overseas outbreak up to 
March, 2020. Thus the R0 of 2–2.5 here can be expected to 
be reliable, as it builds upon more case data. 

Given the large uncertainties associated with each of 
the parameters, we relied on two assumptions in an attempt 
to link the indoor ventilation strategy to infectious disease 
risk models, namely, the ventilation efficiency was assumed 
to be 1 and the concentration of viruses was assumed to be 
homogeneous in the indoor environment. 

The estimation indicates that when an infector remains 
in a public confined space, the infection risk is relatively high 
with an infection probability of approximately 2% at the 
common ventilation rate (500–2500 m3/h per infector for 
0.25 h of exposure; Figure 3). Such findings may partly explain 
the early large-scale epidemics in China and European and 
American countries.  

Thus, preventing the infectors (especially asymptomatic 
infectors that have not been confirmed) from entering these  
types of public spaces is critical to suppress the spread of the 

virus via airborne transmission. Current measures, strict 
screening of asymptomatic infectors with wider nucleic acid 
tests, and home isolation have already ensured that infectors 
are unlikely to enter public spaces and have ensured a 
relatively safe environment in confined spaces. 

Furthermore, the above findings imply that wearing 
an ordinary medical surgical mask is effective; thus, it is 
important to advise people to wear masks when they enter 
or remain in confined spaces. 

It is acknowledged that COVID-19 is transmitted mainly 
by close contact or droplets deposited on contaminated 
surfaces. However, the risk of potential or opportunistic 
airborne transmission cannot be ignored, especially in public 
confined spaces. The value of q also warrants further study. 
Furthermore, strict preventive measures have been widely 
adopted, such measure provides a prerequisite for common 
ventilation strategies to ensure a sufficiently low risk of 
airborne transmitted infection. 

5 Conclusion 

This study employed Wells–Riley equation to predict 
infection probability in some typical scenarios based on the 
estimated quantum generation rate. The main conclusions 
are as follows: 
(1) A quantum generation rate of 14–48 h−1 for COVID-19 

is obtained with a reproductive number-based fitting 
approach. 

(2) The Infection probability less than 1% requires ventilation 
rate larger than 100–350 m3/h per infector and 1200– 
4000 m3/h per infector for 0.25 h and 3 h of exposure. 

(3) Wearing an ordinary medical surgical mask is effective 
to reduce the infection risk. 

Table 2 Air change rate (ACH) vs. infection probability (Y: with masks; N: without masks, one infector inside) 
Scenario Bus Classroom Aircraft cabin Office 

Volume (m3) 75 348 100 150 

Exposure time (h) 0.5 2.0 4.0 8.0 

ACH (h−1) Infection  
probability  Y N Y N Y N Y N 

2.0% 0.33 1.30 0.28 1.15 2.00 8.00 2.70 10.00 
1.5% 0.48 1.80 0.40 1.70 3.00 11.00 3.30 14.00 
1.0% 0.70 2.80 0.60 2.40 4.00 16.00 6.00 20.00 
0.5% 1.40 5.60 1.20 4.80 9.00 33.00 10.00 43.00 
0.1% 

q = 14 h−1 

7.00 27.00 5.50 20.00 35.00 160.00 50.00 200.00 

2.0% 1.20 4.80 1.00 4.00 7.00 30.00 10.00 36.00 
1.5% 1.60 6.40 1.40 5.00 9.00 38.00 12.00 53.00 
1.0% 2.40 9.60 2.00 7.00 15.00 55.00 18.00 80.00 
0.5% 4.80 19.00 3.50 15.00 29.00 110.00 33.00 133.00 
0.1% 

q = 48 h−1 

24.00 93.00 20.00 71.00 125.00 550.00 200.00 666.00  
*The ACHs in red text indicate that the ventilation rates could be achieved with a normal ventilation system or natural ventilation for the corresponding scenarios. 
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