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Abstract
In light of the existing preliminary evidence of a link between Covid-19 and poor air qual-
ity, which is largely based upon correlations, we estimate the relationship between long 
term air pollution exposure and Covid-19 in 355 municipalities in the Netherlands. Using 
detailed data we find compelling evidence of a positive relationship between air pollution, 
and particularly PM

2.5
 concentrations, and Covid-19 cases, hospital admissions and deaths. 

This relationship persists even after controlling for a wide range of explanatory variables. 
Our results indicate that, other things being equal, a municipality with 1 μg/m3 more PM

2.5
 

concentrations will have 9.4 more Covid-19 cases, 3.0 more hospital admissions, and 2.3 
more deaths. This relationship between Covid-19 and air pollution withstands a number of 
sensitivity and robustness exercises including instrumenting pollution to mitigate potential 
endogeneity in the measurement of pollution and modelling spatial spillovers using spatial 
econometric techniques.
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1 Introduction

The Covid-19 pandemic is causing significant social and economic impacts across large 
parts of the world. At the time of writing the number of Covid-19 cases worldwide has 
reached 7.2 million, while the death toll has exceeded 400,000.1 Governments and health 
care systems are facing the immense challenge of trying to control the spread of the virus 
and to prevent hospitals from being overwhelmed as millions of individuals remain sub-
ject to lockdown and face significant economic uncertainty. In order to respond to these 
unprecedented challenges it is important for policy makers and health care professionals 
to understand which groups of individuals suffer the highest morbidity and mortality risks 
from Covid-19 and which factors may exacerbate these risks.

A contributory factor that has been tentatively explored in several recent academic stud-
ies is poor air quality. While some such studies have identified the significant improve-
ments in air quality that have resulted from Covid-19 lockdowns (Cicala et al. 2020; Cole 
et al. 2020), others have pointed to a correlation between Covid-19 hotspots and areas with 
high levels of pollution concentrations (Travaglio et al. 2020; Conticini et al. 2020). It is 
well known that long term exposure to pollutants such as nitrogen dioxide ( NO2

 ), sulphur 
dioxide ( SO

2
 ), and fine particulate matter ( PM

2.5
 ) contributes to cardiovascular disease, 

reduces lung function, and causes respiratory illness (Faustini et al. 2014; Ming Han et al. 
2015; Katanoda et al. 2011; Abbey et al. 1999; De Weerdt et al. 2020). These pollutants 
have been shown to cause a persistent inflammatory response even in the relatively young, 
and to increase the risk of infection by viruses that target the respiratory tract (Travaglio 
et al. 2020; Conticini et al. 2020). While Covid-19 produces only mild symptoms for most 
sufferers, in a minority of cases it results in an excessive inflammatory response causing 
Acute Respiratory Distress Syndrome (ARDS) and death. Given the clear overlaps between 
the symptoms of Covid-19-induced ARDS and long term exposure to air pollution, a num-
ber of studies have begun to explore the links between the two.

Focusing on the UK, Travaglio et  al. (2020), for instance, find evidence of a correla-
tion between Covid-19 cases and concentrations of nitrogen oxides and ozone, while Ogen 
(2020) examines 66 regions across Italy, France, Germany, and Spain and finds similar evi-
dence. Conticini et al. (2020) focus on Northern Italy and conclude that pollution concen-
trations are a likely contributor to the high Covid-19 death rates experienced in that region. 
Setti et al. (2020) find similar evidence for Italy and raise the possibility that particulate 
matter could actually carry the virus thereby directly contributing to its spread. A prelimi-
nary analysis of the Netherlands also finds evidence of a link between concentrations of 
PM

2.5
 and Covid-19 cases (Andree 2020). Finally, Wu et al. (2020) examine US counties 

and estimate the relationship between county-level Covid-19 death rates and long-term 
concentrations of fine particulate matter ( PM

2.5
 ) using a negative binomial count model, 

controlling for a wide range of confounding factors. They conclude that a 1 μg/m3 increase 
in PM

2.5
 is associated with an 8% increase in the Covid-19 death rate.

While the above studies provide useful preliminary evidence, Conticini et  al. (2020) 
and Ogen (2020) offer only geographical correlations between Covid-19 cases and pol-
lution exposure, whereas Travaglio et al. (2020) take a similar approach but control only 
for differences in population density and do so across only 7 relatively large regions. 
Establishing a convincing link between exposure to pollution and Covid-19 cases requires 

1 As of June 9th 2020. Source https ://www.world omete rs.info/coron aviru s/#count ries.

https://www.worldometers.info/coronavirus/#countries
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individual-level data with the ability to control for individual characteristics, such as age 
and the presence of underlying health conditions.2 Since individual-level data on Covid-19 
infections is not available, the next best alternative is to examine a large number of small 
geographic regions with detailed data on the characteristics of those regions. This allows 
the researcher to assess whether any correlation between Covid-19 and pollution exposure 
still holds once differences in social deprivation, population density, ethnic composition, 
and other factors are controlled for. While Wu et al. (2020) come closest to doing this, US 
counties are still relatively large, raising the question of how well such aggregated data 
can capture the local variation in confounding effects without being ‘averaged out’. Fur-
thermore, by focusing only on particulate matter, and on Covid-19 deaths, it is not clear 
whether other pollutants have an effect on Covid-19 deaths once other factors are con-
trolled for or, indeed, on Covid-19 infections or hospitalisation rates.

With the above in mind, this paper undertakes a detailed analysis of the relationship 
between pollution concentrations and Covid-19 using data for 355 relatively small Dutch 
municipalities. More specifically, by using high-resolution air pollution data as well as 
combining administrative and municipal-level data, we estimate the relationship between 
long term exposure to concentrations of PM2.5

 , NO
2
 , and SO

2
 and the number of Covid-

19 infections, the number of individuals hospitalised with Covid-19, and the number of 
those who died as a result of Covid-19. We use a negative binomial count model and are 
able to control for a wide range of potential confounding effects, including those relating 
to income, age, underlying health conditions, education, social deprivation, ethnic com-
position, workplace characteristics, spatial and social proximity to potential risk factors 
and others. Our analysis utilises Covid-19 data up to 5th June 2020 allowing us to capture 
almost the full wave of the epidemic and hence much more fully than the previous studies 
which have examined data up to only March or early April. Finally, we undertake a number 
of robustness exercises including instrumenting pollution to address some possible endoge-
neity concerns. Therefore, compared to Wu et al. (2020) we use data at a finer resolution3 
and include more controls, plus mitigate concerns arising from imprecise measurement of 
pollution.

The Netherlands provides a useful setting in which to examine the link between Covid-
19 and air pollution. As a relatively small, densely populated nation with an ethnically 
diverse, aging population, the country faces a number of potential Covid-19 risk factors. It 
also shares an open land border with Germany and Belgium, the latter a country that cur-
rently has the highest number of Covid-19 deaths per capita. The Netherlands additionally 
experiences hot spots of poor local air pollution both within urban areas and also, in the 
case of PM

2.5
 , in more rural areas perhaps due in part to intensive livestock farming. By 

early June 2020, the Netherlands had experienced over 6000 deaths as a result of Covid-19, 
resulting in the 7th highest number of Covid-19 deaths per capita.4

Our results provide compelling evidence of a statistically significant positive relation-
ship between air pollution and Covid-19 cases, hospital admissions and deaths. More 

2 It also ideally requires an experimental setting in which some individuals are exposed to pollution while 
others are not.
3 The average US county-level population is 104,435 and average area of each county is 3130 km2 (US 
Census Bureau). In contrast, the average population in Dutch municipalities is 48,682 while the average 
area is 94.8 km2.
4 As of June 9th 2020. All Dutch Covid-19 data is provided by the National Institute for Public Health and 
the Environment (RIVM). The international ranking excludes the principalities of San Marino and Andorra 
and stems from: https ://www.world omete rs.info/coron aviru s/#count ries.

https://www.worldometers.info/coronavirus/#countries
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specifically we find that, on average, and other things being equal, a municipality with 1 
μg/m3 more PM

2.5
 concentrations than another will have between 9.4 and 15.1 more Covid-

19 cases, depending on our model. It will also have between 2.9 and 4.4 more Covid-19 
hospital admissions and between 2.2 and 2.8 more Covid-19 deaths.

The remainder of this paper is organized as follows. Section  2 provides background 
information on Covid-19 and air pollution in the Netherlands and Sect.  3 presents our 
empirical methodology. Section 4 describes our data, Sect. 5 reports our results and Sect. 6 
concludes.

2  Covid‑19 and Air Pollution

The first confirmed Covid-19 case in the Netherlands occurred in late February 2020, and 
by early June over 46,000 cases had been identified. Daily new cases of Covid-19 peaked at 
1,335 on April 10th, while the daily death toll peaked 3 days earlier at 235. Both daily new 
cases and daily deaths have been declining steadily since. While all 12 of the Netherlands’ 
provinces have experienced broadly similar trends, levels of Covid-19 cases have differed 
significantly across provinces. For instance, in the southern provinces of North Brabant 
and South Holland daily new cases peaked at over 350,5 while in other provinces such as 
Groningen and Drenthe, both in the north of the country, new cases peaked at fewer than 
40 per day.6

From the outset of the epidemic within the Netherlands the south east has experienced 
a disproportionate number of Covid-19 cases. Figure 1 shows the distribution of cases per 
capita across the 355 municipalities of the Netherlands up to June 5th 2020. The red ‘hot-
spots’ in the south east, which are largely within the provinces of North Brabant and Lim-
burg, demonstrate the relative intensity of cases in those regions. Unusually, these are rela-
tively rural regions with low population density raising the question of why these provinces 
have been so badly affected by Covid-19.7

One potential explanation raised by the Dutch media has been the annual carnival cel-
ebrations held during the last week of February and beginning of March which were con-
centrated largely within North Brabant and Limburg. These celebrations attracted thou-
sands of people from all over the country to street parties and parades, as they do each year. 
Numerous Dutch media reports have suggested that these celebrations may at least partially 
explain the rapid spread of Covid-19 within these regions and also to other regions of the 
Netherlands via carnival participants.8 However, the significant variation in Covid-19 cases 
across the municipalities within these two provinces suggests that the carnival is unlikely 
to fully explain the density and distribution of these cases.

5 Equivalent to 137.5 cases per million of population in North Brabant and 95.3 per million in South Hol-
land.
6 Equivalent to 68.5 cases per million of population in Groningen and 81.3 cases per million in Drenthe.
7 Figure  2 in the “Appendix” shows that both hospital admissions and deaths per capita from Covid-19 
have also been disproportionately high in these south eastern regions.
8 A non-exhaustive list includes: https ://www.nrc.nl/nieuw s/2020/04/09/vuile -lucht -vergr oot-de-kans-om-
te-sterv en-aan-covid -19-a3996 388https ://nos.nl/nieuw suur/artik el/23324 60-gebie den-met-veel-lucht veron 
trein iging -zwaar der-getro ffen-door-coron a.htmlhttps ://www.rtlni euws.nl/nieuw s/neder land/artik el/50943 
41/coron a-updat e-noord en-minde r-besme tting enhttps ://nadav os.nl/nieuw s/2020-lucht veron trein iging -covid 
-19https ://www.trouw .nl/binne nland /zorgt -de-veeho uderi j-voor-meer-coron adode n-in-oost-braba nt~b2b54 
87d/.

https://www.nrc.nl/nieuws/2020/04/09/vuile-lucht-vergroot-de-kans-om-te-sterven-aan-covid-19-a3996388
https://www.nrc.nl/nieuws/2020/04/09/vuile-lucht-vergroot-de-kans-om-te-sterven-aan-covid-19-a3996388
https://nos.nl/nieuwsuur/artikel/2332460-gebieden-met-veel-luchtverontreiniging-zwaarder-getroffen-door-corona.html
https://nos.nl/nieuwsuur/artikel/2332460-gebieden-met-veel-luchtverontreiniging-zwaarder-getroffen-door-corona.html
https://www.rtlnieuws.nl/nieuws/nederland/artikel/5094341/corona-update-noorden-minder-besmettingen
https://www.rtlnieuws.nl/nieuws/nederland/artikel/5094341/corona-update-noorden-minder-besmettingen
https://nadavos.nl/nieuws/2020-luchtverontreiniging-covid-19
https://nadavos.nl/nieuws/2020-luchtverontreiniging-covid-19
https://www.trouw.nl/binnenland/zorgt-de-veehouderij-voor-meer-coronadoden-in-oost-brabant%7eb2b5487d/
https://www.trouw.nl/binnenland/zorgt-de-veehouderij-voor-meer-coronadoden-in-oost-brabant%7eb2b5487d/
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Another possible explanation that has received less attention in the Netherlands revolves 
around the intensive livestock farming that takes place within North Brabant and Limburg. 
These regions house over 63% of the Netherlands’ 12 million pigs and 42% of its 101 mil-
lion chickens.9 Such intensive livestock production produces large quantities of ammonia 
( NH

3
 ), which can be  an important contributor to PM

2.5
 concentrations. Figure  3 in the 

“Appendix” provides a map of 2019 NH
3
 concentrations and shows that the south eastern 

regions have some of the highest concentrations within the Netherlands. Indeed, a compar-
ison with the map of PM

2.5
 concentrations in Fig. 1 shows a very similar pattern illustrating 

how ammonia potentially contributes to PM
2.5

.
While the maximum annual average concentration of PM

2.5
 at municipality level is 12.3 

μg/m3, the equivalent figure for a 1 km × 1 km gridcell is 23.9 μg/m3, which is close to 
the EU air quality standard of 25 μg/m3. This indicates that local concentrations of PM

2.5
 

within the regions of North Brabant and Limburg are close to dangerous levels even when 
averaged annually, raising the likelihood that for shorter periods they may exceed safe lev-
els. Since PM

2.5
 concentrations show a similar spatial distribution to Covid-19 cases, also 

in Fig. 1, it’s reasonable to examine this potential link and to see whether the visual rela-
tionship between Covid-19 cases and PM

2.5
 concentrations withstands controlling for other 

potential contributory factors.10

3  Methodology

In order to examine the relationship between Covid-19 and air pollution we begin by esti-
mating Eq. 1 for 355 municipalities:

where C refers to Covid-19 cases, the number of individuals hospitalised by Covid-19, or 
the number of deaths from Covid-19 in municipality i as of June 5th 2020. Pollution refers 
to annual concentrations of PM

2.5
 , NO

2
 , or SO

2
 , averaged over the period 2015-2019. Vec-

tors D′ , P′ , E′ , S′ and H′ contain control variables capturing demography, social and physi-
cal proximity, employment/education, spatial and health variables, respectively, for the 
year 2019, as defined in the next section. The term �r denotes province level fixed effects 
for each of our 12 provinces, r.

Since our dependent variables take the form of discrete count variables, estimating Eq. 1 
using OLS could result in inconsistent, inefficient, and biased estimates (Long 1997; Hoff-
man 2004). The alternative is to use Poisson or negative binomial count models. Since the 
error assumption of the Poisson model requires the conditional mean to equal the condi-
tional variance, a condition that our over-dispersed data fails to meet, we employ the nega-
tive binomial model. This model builds upon the Poisson model by adding a parameter that 
allows the conditional variance to exceed the conditional mean.

(1)Ci = �pollutioni + �
1
D

�

i
+ �

2
P

�

i
+ �

3
E

�

i
+ �

4
S

�

i
+ �

5
H

�

i
+ �r + �i

9 2019 data from CBS Statline.
10 This article in Trouw, a Dutch national newspaper, expresses the concerns of local residents that poor air 
quality in the intensively livestocked regions may be leaving the local population susceptible to Covid-19, 
https ://www.trouw .nl/binne nland /zorgt -de-veeho uderi j-voor-meer-coron adode n-in-oost-braba nt~b2b54 87d/

https://www.trouw.nl/binnenland/zorgt-de-veehouderij-voor-meer-coronadoden-in-oost-brabant%7eb2b5487d/
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Importantly our attempt to estimate the relationship between pollution exposure and 
Covid-19 cases (as well as hospital admissions and deaths) potentially suffers from a num-
ber of econometric challenges: 

Fig. 1  Covid-19 cases per 100,000 people and annual concentrations of PM
2.5

 , NO
2
 and SO

2
 averaged over 

the period 2015–19
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1. Omitted variable bias
 If we fail to control for all potential determinants of Covid-19 that are possibly cor-

related with pollution, then the estimated coefficients on the pollution measures could 
potentially be biased. As will be outlined in Sect. 4, our strategy is to limit omitted 
variable bias by including a wide range of control variables. However, clearly omit-
ted variable bias still persists and therefore we make no claim to be addressing causal 
relationships.

 In principle our pollution variables may be subject to systematic measurement error if 
the error was in some way related to the pollution-Covid-19 relationship. For instance, if 
individuals with poor health were more (or less) likely to live in polluted areas and hence 
were more (or less) likely to catch or succumb to the virus. We are unable to identify 
any potential mechanisms of this nature and our wide range of explanatory variables 
should obviously help to control for any such effects if they were to exist.

2. Non-systematic measurement error of pollution
 Such measurement error could arise if we are not accurately capturing long-term pollu-

tion exposure within each municipality. While Sect. 4 outlines how we measure long-
term pollution exposure, we note that any non-systematic measurement error of this 
kind is likely to result in a conservative estimate of the association between pollution 
and Covid-19 due to possible attenuation bias.

 Nevertheless, we do instrument pollution in Eq. 1 as a means of further reducing con-
cerns around attenuation bias. Since we are using a non-linear count model we instru-
ment using a control function approach, which is likely to be more efficient than a stand-
ard instrumental variables model (Wooldridge 2015). This approach involves estimating 
air pollution, our potentially endogenous variable, as a function of our instruments and 
other exogenous variables, and then inserting the predicted errors from this first stage 
into the second stage as a separate control variable (in addition to our air pollution vari-
able).11 A simple test of the statistical significance of the coefficient on the predicted 
residuals will inform us whether our pollution variable was indeed endogenous, a pro-
cedure equivalent to a Durbin–Wu–Hausman exogeneity test.

 To be suitable for use as an instrument a variable should be correlated with air pollu-
tion but independent of our Covid-19 variables and hence should only influence them 
through the effect of air pollution. We experiment with two potential candidates. The 
first is a long lag of air pollution. More specifically, we use annual pollution concentra-
tions averaged over the period 1995–2000. Second, we use a measure of the average 
commuting time for residents in each municipality. This variable draws upon free-flow 
road network data from VUGeoPlaza enabling us to calculate average travel time for 
every j and k location pair. In order to calculate the commuting times we obtain the 
residential and work locations of each worker at the 4 − digit postal code level (which 
corresponds to neighbourhood level) by constructing an employer-employee data set 
(LEED) based on linking administrative data, Dutch Labour Force surveys, and Tax 
Registers.12 We then combine the travel time data with the LEED. Travel times linked 
with the LEED allow us to calculate the commuting time of each worker to their actual 
place of work. Additionally we calculate the travel time based on the Euclidean dis-
tance between the 4 − digit postal code, assuming an average speed of 10 km/h. We 
then choose the lowest of the commuting time and the Euclidean distance travel time 

12 Access to these data sets requires a confidentiality agreement with Statistics Netherlands.

11 We bootstrap the standard errors in the second stage using 500 replications.
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for each worker and average these across municipalities.13 Differences in commuting 
time between municipalities reflect differences in the duration and intensity of journeys 
undertaken and should therefore influence differences in air pollution concentrations. 
We see no reason why commuting time should directly influence Covid-19 cases.

3. Measurement error of Covid-19
 A third potential econometric challenge is the existence of possible measurement error 

within our Covid-19 data. Non-systematic measurement error would tend to reduce the 
precision of our estimates by increasing the standard errors on the estimated coefficients. 
Alternatively, if the measurement error is related to other omitted variables that are 
important for the pollution-Covid-19 relationship, or to its own values, this could be a 
cause for concern. Section 4 discusses the nature of our Covid-19 data and its potential 
deficiencies in more detail.

4. Spillover effects
 The final potential econometric challenge is the possible existence of spillover effects 

caused by the virus spreading from one municipality to another. To allow for this pos-
sibility we extend Eq. 1 to include a spatially lagged dependent variable and a spatial 
error term, each using spatial weight matrices with varying distance cut-offs, as specified 
in Eq. 2.

where wi is an inverse distance spatial weight matrix with a 50 km cut-off, a 100 km 
cut-off, or no cut-off at all. All other variables are as previously specified. Note that the 
inclusion of a spatially lagged dependent variable into a non-linear count data model 
is not straightforward and hence there has yet to be a widely accepted method of doing 
so (Glaser 2017). Equation  2 is therefore a linear model estimated using maximum 
likelihood.

4  Data and Summary Statistics

4.1  Data

We utilize extensive municipality-level data combined with administrative micro-data and 
spatial data from various sources in the Netherlands. Our analysis rests on municipality 
level cross-sectional Covid-19 data provided by the National Institute for Public Health and 
the Environment (RIVM) and a rich set of controls from 2019 (unless otherwise stated). 
We further use high resolution spatial data for air pollution indicators which span the 
period 2015–19.

The municipal-level data is obtained from the data repository Statline of the Statistics 
Netherlands, while some variables are aggregated from the administrative micro-data up 
to municipality level. When modelling the relationship between Covid-19 and air pollu-
tion, we control for a wide range of potentially confounding effects which we categorise 
as demographic, social and physical proximity, employment and education, spatial, and 

(2)Ci = �pollutioni + �
1
D

�

i
+ �

2
P

�

i
+ �

3
E

�

i
+ �

4
S

�

i
+ �

5
H

�

i
+ �wiCi + �wi�i + �i

13 See Koster and Ozgen (2020) for more details. Generally, for short distances (e.g. less than 5 km) it is 
slower to use the road network and so the Euclidean travel time is used.
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health-related. Below we discuss Covid-19 and pollution data and each category of control 
variable:14

4.1.1  Covid‑19

The Covid-19 data used in our analysis is obtained from RIVM. The Regional Public 
Health Service Centres (known as GGD) from all across the country15 provide RIVM with 
the Covid-19 data, which is then corrected for any inconsistencies before being released by 
RIVM. As stated by RIVM on their website, there is a slight delay between the day of hos-
pitalization or death and the day on which the the number of cases is reported.16 However, 
when the data is available RIVM does the necessary adjustment to the data retrospectively. 
This incident of slight delay is well-known for all countries. Again similar to the other 
countries, the number of Covid-19 cases is likely to be an underestimate of the true number 
of cases as not everybody in the country is tested. In addition, the disparity between the 
official Covid-19 death toll and calculations of excess deaths suggests that official statistics 
are under-reporting the true death toll, as seems to be happening world-wide.17 Finally, it is 
important to note that all Covid-19 variables are coded by the residence of each individual 
rather than the address of the test centre or the hospital to which they are admitted.

4.1.2  Air Pollution

Annual concentrations of PM
2.5

 , NO
2
 , and SO

2
 measures are provided by RIVM. These 

pollution concentrations are reported at the level of 1 × 1 km
2 grid-cells having been mod-

elled using a wide range of sources and components in the Netherlands and in other Euro-
pean countries. Maps of the spatial distribution of pollution concentrations were calculated 
using the Operational Priority Substances dispersion model, which constructs the average 
annual concentrations of pollutants stemming from the dispersion, transport, chemical con-
version and dispersion of emissions. The resultant concentrations are calibrated with the 
observations from the Dutch Air Quality Monitoring Network (Velders et al. 2020; Fischer 
et al. 2020).18

To produce municipality level measures of pollution concentrations we use the median 
grid-cell concentrations within each municipality. In order to overcome any potential meas-
urement bias due to annual fluctuations and to capture the long term exposure of residents 

14 Our analysis does not control for meteorological variables such as temperature and humidity. The evi-
dence that such variables can affect Covid-19 is very limited, for instance Wu et al. (2020) found no statisti-
cally significant impact of meteorological variables on US Covid-19 death rates. In addition, meteorological 
data does not appear to be available at anything close to municipal-level resolution. For example, Coper-
nicus data is only available at 0.25 degree resolution, which would provide approximately 23 observations 
for the Netherlands. Perhaps more fundamentally, there is very little variation in meteorological conditions 
within the Netherlands due to its relatively small size and lack of variation in altitude. We therefore rely on 
our province fixed effects to capture any variation in meteorological conditions.
15 https ://www.ggd.amste rdam.nl/coron aviru s/.
16 https ://www.rivm.nl/coron aviru s-covid -19/actue el.
17 The fact that Covid-19 deaths in the Netherlands peaked several days prior to the number of Covid-19 
cases, as discussed in Sect. 2, may be evidence of reporting difficulties. Alternatively, it may simply reflect 
the growing number of tests being performed and an increasing share of minor cases being detected.
18 For more details on the construction of the pollution concentrations data see Velders et al. (2017).

https://www.ggd.amsterdam.nl/coronavirus/
https://www.rivm.nl/coronavirus-covid-19/actueel
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within a municipality, we average the annual pollution concentrations data over the 5-year 
period 2015–2019 (in our sensitivity analysis we also use a 10 year average 2010–19).19

4.1.3  Demographic and Labour Market Indicators

The demographic controls include the total population as well as the density of population 
in each municipality, expressed as population per square kilometre. The share of the popu-
lation over 70 years of age in our regressions accounts for the particular vulnerability of the 
elderly to Covid-19, as the stylized facts from around the world indicate higher casualties 
among the elderly population. We also include the share of the population under 18 years 
old, with the omitted category being the working age share of the population.

Finally, several recent studies from a number of countries including the UK and the 
US20 have indicated that ethnic minorities are disproportionately affected by Covid-19. 
There are a number of potential reasons why this might be so. First, Zorlu and Hartog 
(2012) show that ethnic groups in the Netherlands are more likely to work in manual occu-
pations, which have been shown to increase the risk of exposure to Covid-19 due to the 
greater frequency of face-to-face contact amongst workers (Lewandowski 2020).21 Second, 
ethnic minorities may be more likely to experience social deprivation, live in smaller hous-
ing and belong to larger households. As will be discussed below, we try to control for each 
of these factors by taking housing and household size conditions into account. Other risk 
factors may include the use of certain cultural practices (e.g., attending places of worship) 
or having a disposition for underlying health conditions. To control for any such effects 
we include the number of non-western migrants as a share of the population. Non-west-
ern migrants in the Netherlands are defined as the number of immigrants who are born in 
Africa, Latin America, Asia (excluding Japan and Indonesia), and Turkey.

We also include the average household income level and the share of employment in 
elementary occupations to control for the possibility that groups that are economically and 
occupationally more vulnerable could be more affected by Covid-19. Workers in elemen-
tary occupations are perhaps more likely to work in close proximity to fellow workers and 
were perhaps less likely to be able to work from home once the epidemic began. Finally, 
our specification includes the number of highly educated people as a share of the total 
educated population at the municipal level. Highly educated is defined as those who have 
obtained a bachelor’s degree or higher.

4.1.4  Social and Physical Proximity

While the majority of countries have disproportionately experienced Covid-19 infec-
tions in large metropolitan areas, the empirical findings so far are unclear about the role 
played by population density.22 Epidemiological studies have argued that density per se is 

20 See Kirby (2020) and Platt and Warwick (2020) https ://www.ifs.org.uk/inequ ality /chapt er/are-some-
ethni c-group s-more-vulne rable -to-covid -19-than-other s.
21 https ://www.thegu ardia n.com/world /2020/may/11/manua l-worke rs-likel ier-to-die-from-covid -19-than-
profe ssion als.
22 See for example,

19 In unreported estimations we include NH
3
 as an explanatory variable. If included instead of PM

2.5
 it is 

generally statistically significant. When included alongside PM
2.5

 it becomes insignificant while PM
2.5

 is 
significant.

https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others
https://www.ifs.org.uk/inequality/chapter/are-some-ethnic-groups-more-vulnerable-to-covid-19-than-others
https://www.theguardian.com/world/2020/may/11/manual-workers-likelier-to-die-from-covid-19-than-professionals
https://www.theguardian.com/world/2020/may/11/manual-workers-likelier-to-die-from-covid-19-than-professionals
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not important but rather it is the type of interaction between people that is important e.g. 
weddings, close family events and occasions when individuals come into close proxim-
ity with each other (Hu et al. 2013). One such occasion in the Netherlands is the annual 
Carnival which is widely celebrated in the southern regions of the country—North Bra-
bant and Limburg—as discussed in Sect. 2. To capture the potential impact of the Carnival 
we initially rely on province level fixed effects which capture the effects in North Brabant 
and Limburg and all other provinces individually. Furthermore, in sensitivity analysis we 
test a Carnival(municipality) measure by creating a dummy variable for the seven most 
populous municipalities (Den Bosch, Tilburg, Breda, Bergen op Zoom, Eindhoven, Hel-
mond, Oss) within the borders of North Brabant and Limburg provinces. Alongside this, 
in order to account for the potential spread of the virus from the areas where the Carnival 
is widely celebrated, we also test a proximity to Carnival(municipality) measure that is the 
inverse distance from the centroid of these seven Carnival municipalities to the centroid of 
all municipalities in the Netherlands.

To capture physical interactions between households we include the share of small 
housing, defined as the share of total housing that is between 15 and 50 m2 in size,23 and 
the average household size. We also apply the same principle to workplaces. We aggregate 
a linked employer-employee data set based on the population of firms and employees in 
the Netherlands from 2016 records in order to create an average firm size variable at the 
municipal level. This data is obtained from Tax Registers, which include approximately 12 
million observations from the universe of employees.

4.1.5  Spatial Controls

Our specification includes several spatial variables which capture the spatial interactions 
and spillovers between municipalities. First, we account for the municipalities where 
Covid-19 infections may have been influenced by the transmission of the virus beyond 
Dutch national borders. The Dutch municipalities bordering Belgium experience substan-
tial daily cross-border mobility and Covid-19 cases in Belgium have been the highest of all 
countries in per capita terms. Dutch municipalities that border Germany also experience 
intensive daily crossings, although, in contrast, the Covid-19 cases in Germany had been 
relatively low compared to other European countries. In order to capture the potential con-
tagion through cross-border mobility, we therefore construct 2 dummy variables; munici-
palities bordering Germany and municipalities bordering Belgium.

Second, Schiphol airport within the borders of the municipality of Haarlemmermeer 
(9 km from Amsterdam) is the main international hub of the country and one of the largest 
airports in Europe with approximately 72 million passengers a year. We therefore construct 
a variable capturing the inverse distance from each municipality centroid to Schiphol air-
port to capture the potential contagion from the high volume of passengers. Lastly, to cap-
ture the effect of the prevailing wind from the North Sea which could mean less physical 
spread of the virus and/or reduced spillovers from neighbours, we include a dummy vari-
able for all of the municipalities on the Dutch coast.

23 We don’t have the average size of housing as Statistics Netherlands provides house sizes in categories.

 https ://www.centr eforc ities .org/blog/have-uk-citie s-been-hotbe ds-of-covid -19-pande mic/http://jedko lko.
com/2020/04/15/where -covid 19-death -rates -are-highe st/.

Footnote 22 (continued)

https://www.centreforcities.org/blog/have-uk-cities-been-hotbeds-of-covid-19-pandemic/
http://jedkolko.com/2020/04/15/where-covid19-death-rates-are-highest/
http://jedkolko.com/2020/04/15/where-covid19-death-rates-are-highest/
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4.1.6  Health‑Related

Covid-19 statistics in many countries have indicated that those persons with underlying 
health conditions are likely to be disproportionately affected by the virus. Our data allows 
us to control for these groups at the municipality level. We include in our estimations the 
share of smokers and the share of those suffering from obesity in the total local population 
in 2019. Moreover, the share of people receiving incapacity benefits is also included to 
proxy those who cannot be active in the labour market due to health constraints. In unre-
ported estimations, to capture the supply of medical services we tested the number of hos-
pitals within 5 km, 10 km and 20 km radii of each municipality centroid. In each case these 
variables were not statistically significant. They were omitted as they were highly corre-
lated with population density (the correlation was between 0.63 and 0.67).

4.2  Descriptive Statistics

We report the descriptive statistics of our data in Table 1. Our Covid-19 data covers the 
period since the first Covid-19 case in February until the tail-end of the epidemic’s wave 
in June. On average, each municipality has experienced a total of 131 Covid-19 cases over 
this period (equivalent to 2690 per million of population) with a maximum number of 2416 
(equivalent to 49,628 per million). Over the same period on average 33 hospital admissions 
were recorded across all municipalities (maximum 611) while on average 17 people died 
(maximum 336).24

Our data set includes 355 municipalities based on the 2019 municipal borders in the 
Netherlands, where each has an average population of approximately 47,000 people, of 
which 7.4% are non-Western European immigrants. Although the size of the municipalities 
is broadly uniform, average population density across municipalities shows a large varia-
tion, ranging from 23 individuals per  km2 to 6523 per  km2. On average 3.5% of housing is 
classed as small (15–50 m2) while the average household size is 2.3 individuals. Finally, 
15% of the population is over 70 years old.

The median annual wage is 32,722. With 32% of the population holding a university 
degree or higher, Netherlands has a relatively highly-educated population. 9% of the popu-
lation performs elementary occupations which require low-skilled manual-task intensive 
work. Median firm size is 556 workers, but becomes larger for peripheral areas, although 
the average firm size in large cities is still around a standard deviation higher than the 
median. Although known to be one of the healthiest nations, 19% of the population are 
smokers and 14% experience obesity (defined as % of over 19 s with BMI>30 kg/m2 ). 6% 
receive incapacity benefits due to being unable to work.

With regard to our pollution concentrations data which is measured in μg/m3, we see 
that the average value of PM

2.5
 concentrations in our dataset is 10.49, with a maximum of 

12.26. For NO
2
 concentrations the mean value is 15.76, with a maximum value of 27.41, 

and for SO
2
 concentrations the mean value is 0.80 with the maximum being 3.09. While 

the EU air quality standards do not stipulate a safe limit for annual concentrations of SO
2
 , 

for PM
2.5

 and NO
2
 concentrations the limit is 25  μg/m3 and 40  μg/m3, respectively. We 

can therefore see that 5 year averages of annual concentrations in the Netherlands do not 

24 An average value of 33 hospital admissions per municipality is equivalent to 677.8 per million of popu-
lation, while the average value of 17 deaths per municipality is equivalent to 349.2 per million.
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exceed these limits. However, it is worth noting that the maximum values of the annual 
concentrations of our 1 × 1 km2 grid-cells that form the basis of our municipality pollution 
data are 23.9 μg/m3 and 62.4 μg/m3 for PM

2.5
 and NO

2
 , respectively. In the case of NO

2
 , 

this is substantially beyond the EU safe limit, while for PM
2.5

 it is very close to the safe 
limit.

5  Results

Table 2 provides our initial negative binomial estimates of Eq. 1 with columns (1)–(3) pro-
viding the estimates of Covid-19 cases for the three pollutants. Columns (4)–(6) do the 
same for hospital admissions, and columns (7)–(9) provide estimates of Covid-19 deaths, 
again for the three pollutants.

Table 1  Summary statistics

The proximity to carnival measure is calculated as the negative exponential of distance i.e. (exp(-distance)) 
and produces numbers that are very small in magnitude, thereby explaining the large estimated coefficients 
for this variable in our regression results

Variable Mean SD Minimum Maximum

PM2.5 5 year ave 10.49 1.35 6.92 12.26
NO2 5 year ave 15.76 3.86 6.84 27.41
SO2 5 year ave 0.80 0.36 0.21 3.09
Covid-19 cases 131.46 224.89 0 2416
Covid-19 hospital admissions 33.02 55.13 0 611
Covid-19 deaths 16.87 31.45 0 336
Carnival 0.02 0.14 0 1
Proximity to carnival 0.00 0.00 0 0.0001
Proximity to Schiphol 86.49 46.15 5.27 194.83
Belgian border 0.073 0.26 0 1
Coast 0.093 0.29 0 1
German border 0.09 0.29 0 1
Ave gross income 32.72 3.05 23.50 53.6
ln (firm size) 8.9 0.51 3.26 10.06
Sh elementary occup 0.089 0.031 0 0.20
Sh high educated 0.32 0.095 0.071 0.90
Ave household size 2.30 0.18 1.71 3.34
Sh of small houses 0.036 0.045 0 0.67
Sh pop under 18 0.20 0.024 0.13 0.34
Sh pop over 70 0.15 0.025 0.063 0.24
Obesity 14.39 2.13 9 22
Smokers 19.62 2.75 14 31
Sh on incapacity benefits 0.063 0.017 0.02 0.13
Pop density 877.32 1042.72 23.11 6523.14
Ln (population) 10.40 0.83 6.84 13.67
Sh non-western migrants 0.074 0.059 0.014 0.39
Ave commuting time 14.07 8.29 4.28 134.43
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Focusing initially on the estimated pollution coefficients, we see that PM
2.5

 concentra-
tions have a positive and statistically significant relationship with Covid-19 cases, hospital 
admissions and deaths. In the case of NO

2
 we find a positive and statistically significant 

association between Covid-19 cases and deaths, but this is not statistically significant for 
hospital admissions. Finally, for SO

2
 we again discover a positive relationship with our 

dependent variables, but this is not statistically significant. Using a Fisher combination test 
across the specifications for the different dependent variables for each pollutant suggests 
that both PM

2.5
 and NO

2
 have a significant impact on Covid-19 outcomes in general, but 

SO
2
 does not.25

After calculating marginal effects, we find that a one unit increase in a municipality’s 
PM

2.5
 concentrations is associated with 9.4 more Covid-19 cases, 3.0 more hospital admis-

sions, and 2.3 more deaths within that municipality. A one unit increase in NO
2
 increases a 

municipality’s Covid-19 cases by 2.2 and deaths by 0.35. To make these comparable, a one 
standard deviation increase in PM

2.5
 and NO

2
 concentrations increases Covid-19 cases by 

12.7 and 8.5, respectively. The same one standard deviation in PM
2.5

 and NO
2
 concentra-

tions increases Covid-19 deaths by 3.1 and 1.4, respectively. Table 3 summarises our pol-
lution marginal effects from the estimations in which pollution is statistically significant.

Turning to the other explanatory variables, and focusing on those that are generally 
statistically significant, we find that municipalities next to the German border have lower 
Covid-19 cases, hospital admissions, and deaths compared to other municipalities. We 
also find average household income to have a negative association with all three dependent 
variables, while average household size and the share of housing that is small both have 
positive relationships with our Covid-19 variables. Relative to the share of the working age 
population, the share of those under 18 has a negative association with Covid-19 while, 
as expected, the share over 70s has a positive association. Finally, smokers, the share of 
non-Western immigrants, and the total population of each municipality are associated with 
increased Covid-19 cases, hospital admissions, and deaths.

Since we find the greatest statistical significance and largest marginal effects for PM2.5
 

concentrations, for reasons of space we focus on this pollutant alone for the remainder 
of our analysis, although the results for other pollutants can be found in the “Appendix”. 
Table 4 reports the results of the instrumental variable estimations using a control func-
tion approach, as outlined previously. In Table 4 we see that the estimated coefficients on 
PM

2.5
 concentrations remain positive and statistically significant, with a similar magnitude 

to those in Table 2. It is notable that the first stage residuals are not statistically significant, 
thus failing to reject the null of exogeneity. One can also see that an F-test on our instru-
ments in the first stage is highly statistically significant. Table 8 in the “Appendix” reports 
the first stage results, which use commuting time, commuting time squared, and lagged 
particulate matter concentrations from 1995 to 2000 as instruments. In sensitivity analysis 
we tested different combinations of these variables including lagged pollution alone, com-
muting time alone, and commuting time in linear form only. In each case the first stage 
residuals were not statistically significant in the second stage. Our results therefore provide 
reassurance that our estimations in Table 2 are not being unduly influenced by endogeneity 
arising from attenuation bias.

Table  5 reports the results of the spatial econometric estimations based on Eq.  2 in 
which we include a spatially lagged dependent variable and spatial errors using three 

25 The corresponding �2 statistics were 27.3, 17.0, and 10.7, respectively.
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different spatial weight matrices (50 km, 100 km, no cut-off). Table 5 displays the esti-
mated coefficients on PM

2.5
 concentrations for the three dependent variables. The three 

models with differing weight matrices are presented. For each we also report the spatial 
error and spatial lag coefficients, � and � , respectively. Table 5 indicates that PM

2.5
 concen-

trations continue to have a positive relationship with all three of the Covid-19 dependant 
variables, for all three of the spatial weight matrices.26 Where the estimated coefficients 
on PM

2.5
 are not labelled as being statistically significant at 5% levels, they are signifi-

cant at 10% levels. The introduction of the spatially lagged dependent variable into Eq. 2 
changes the interpretation of our estimated coefficients. PM

2.5
 concentrations in municipal-

ity i continue to affect the conditional mean of Covid-19 in that municipality but now that 
change in Covid-19 potentially changes the conditional mean of Covid-19 in other nearby 
municipalities (depending on our weight matrix). Furthermore, the change in Covid-19 in 
those nearby municipalities affects the conditional mean of Covid-19 in their neighbouring 
municipalities and so on. PM

2.5
 concentrations therefore now have a direct effect on Covid-

19 in their own municipality plus an indirect effect on Covid-19 in other municipalities.
If we take the example of our estimate of Covid-19 Cases using a weight matrix with a 

50 km cut-off, which reports an estimated coefficient on PM
2.5

 concentrations of 20.88, we 
can calculate the marginal effect to consist of a direct effect of 21.0, an indirect effect of 
-5.9, and a total effect of 15.1. This implies that a 1 unit change in PM

2.5
 concentrations is 

associated with an increase in Covid-19 cases of 15.1. However, it is notable that the esti-
mates of both � and � from this model are not statistically significant, implying that spatial 
spillovers are not unduly influencing our results, either through the error term or through 
the dependent variable. Indeed, if we look at the estimates of � and � from the other models 
in Table 5 we see that the majority are not statistically significant. This is particularly true 
of the spatial error coefficient � . So, while we find limited evidence of statistically signifi-
cant spatial spillovers, Table 5 at least confirms that our positive and statistically significant 
association between Covid-19 and PM

2.5
 concentrations is robust to the inclusion of such 

spillovers.
Finally, Tables  6 and 7 report some additional sensitivity estimations. In columns 

(1)–(3) of Table 6, rather than relying only on province dummies to control for the effect of 
the carnival, we include a municipality-level dummy of the seven most populous munici-
palities within North Brabant and Limburg provinces. In addition, we include a measure of 
the proximity of each municipality to the centroid of these seven combined municipalities. 
Table 6 indicates that these municipality-level carnival variables are not statistically signif-
icant, nor do they have the expected signs. Furthermore, the coefficients on PM

2.5
 concen-

trations remain unaffected by their inclusion in terms of magnitude, sign, or significance.27

As mentioned earlier, the effect of urban density on the spread of Covid-19 has been an 
ongoing discussion with a number of studies providing mixed and inconclusive evidence. 
To explore this further, columns (4)–(6) in Table 6 report estimations in which we omitted 
from our analysis the major urban areas of Amsterdam, Rotterdam, Utrecht and The Hague 
in case, given their high levels of concentration, they are unduly influencing our results. 
The sign, significance and magnitude of our estimated coefficients on pollution are consist-
ent with our previous results (in columns (1), (4) and (7) from Table 2).

27 A Fisher combination test across the three specifications produced a �2 statistic of 21.9.

26 Fisher combination tests confirmed that PM
2.5

 continued to have an impact on Covid-19 outcomes, 
regardless of the spatial cut-off chosen.
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Finally, in columns (1)–(3) of Table 7 we replace our 5 year average of PM
2.5

 with a 10 
year average. As can be seen, all three coefficients on PM

2.5
 remain positive, statistically 

significant and of almost identical magnitude to those in Table 2. This suggests that our 
results are not at all sensitive to precisely how we measure long term pollution exposure. In 
columns (4)–(6) of Table 7 we return to 5 year pollution averages but include all three pol-
lutants together in each estimation. The 3 pollutants are highly correlated with the highest 
correlation of 0.79 between PM

2.5
 and NO

2
 . This raises question marks over the precision 

with which the coefficients on these pollutants are estimated but, nevertheless, we see that 
when all 3 pollutants are included together, PM

2.5
 generally remains statistically significant 

while the other pollutants are not significant.28

6  Conclusion

This paper has contributed to the nascent literature examining the link between poor air 
quality and Covid-19. We examine data for 355 Dutch municipalities to identify the rela-
tionship between concentrations of PM

2.5
 , NO

2
 and SO

2
 and Covid-19 cases, hospital 

admissions and deaths. In contrast to much of the previous literature we are able to control 
for a wide range of potential confounding effects and, by examining Covid-19 data between 
February and June 2020, are able to examine almost the full wave of the epidemic within 
the Netherlands.

Table 4  Instrumental variable results

Bootstrapped SE in parentheses, ***p < 0.001, **p < 0.01, *p < 0.05. Additional controls included in 
the estimations but not reported are Belgian border dummy, German border dummy, average household 
income, average household size, share of small housing, share of population under 18 years old, share of 
population over 70 years old, share of population who are smokers, population level, non-western migrant 
share, proximity to Schiphol airport, coastal dummy, average firm size, share of workers in elementary 
occupations, share of obesity, population density, share of working age population receiving incapacity ben-
efit

VARIABLES Covid-19 Cases Hospital admissions Deaths
(1) (2) (3)

PM2.5, 5 year ave 0.12*
(0.062)

0.14*
(0.069)

0.23**
(0.088)

First stage residuals
(Durbin–Wu–Hausman)

− 0.027
(0.074)

0.012
(0.063)

0.0018
(0.10)

F-test on instruments
(Prob> F)

190.48
(0.000)

190.48
(0.000)

190.48
(0.000)

Province Dummies YES YES YES
Observations 355 355 355
Pseudo  R2 0.17 0.19 0.18

28 Unreported sensitivity analyses test alternative measures of many of our explanatory variables. For 
instance, we replaced population density with the share of urban land, average household income with 
household income of the poorest 10%, the share of workers in elementary occupations with the share of 
workers in routine task-intensive occupations and others. Results were generally similar and, importantly, 
the sign, significance and magnitude of the pollution coefficients were not at all sensitive to the choice of 
explanatory variables.
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We find compelling evidence of a statistically significant positive relationship between air 
pollution and Covid-19 cases, hospital admissions and deaths. This relationship is particularly 
evident for concentrations of PM

2.5
 and to a lesser extent NO

2
 and persists after controlling for 

explanatory variables capturing income, demography, social and physical proximity, employ-
ment/education, health and spatial factors. The relationship withstands a number of sensitivity 
and robustness exercises including instrumenting pollution to mitigate some forms of potential 
endogeneity and modelling spatial spillovers using spatial econometric techniques.

Our results indicate that, on average, and other things being equal, a municipality with 1 
μg/m3 more PM

2.5
 concentrations than another will have between 9.4 and 15.1 more Covid-

19 cases, depending on our model. It will also have between 2.9 and 4.4 more Covid-19 
hospital admissions and between 2.2 and 2.8 more Covid-19 deaths. The only comparable 
study to our own is provided by Wu et  al. (2020) who examine Covid-19 deaths in the 
US. They find that a 1 μg/m3 increase in PM

2.5
 is associated with an 8% increase in the 

Covid-19 death rate. Since the mean number of deaths in our sample is 16.86, our esti-
mated increases of between 2.2 and 2.8 are equivalent to increases of between 13.0% and 
16.6%, which are clearly larger in magnitude than those of Wu et al. (2020).

Table 5  Sensitivity checks I—
spatial results

Robust SE in parentheses, ***p < 0.001, **p < 0.01, *p < 0.05. Addi-
tional controls included in the estimations but not reported are Belgian 
border dummy, German border dummy, average household income, 
average household size, share of small housing, share of population 
under 18 years old, share of population over 70 years old, share of 
population who are smokers, population level, non-western migrant 
share, proximity to Schiphol airport, coastal dummy, average firm size, 
share of workers in elementary occupations, share of obesity, popu-
lation density, share of working age population receiving incapacity 
benefit

Covid cases Hospital admissions Deaths

50 km cut off
PM2.5, 5 year ave 20.88*

(10.69)
6.50*
(3.25)

3.71*
(1.49)

Spatial error ( �) − 0.20
(0.52)

0.41
(0.35)

− 0.56
(0.59)

Spatial lag ( �) − 0.58
(0.29)

− 0.76*
(0.31)

− 0.50
(0.29)

100 km cut off
PM2.5, 5 year ave 21.40

(12.86)
6.57
(3.62)

4.00*
(1.91)

Spatial error ( �) − 0.54
(0.86)

0.42
(0.88)

− 0.90
(0.91)

Spatial lag ( �) − 0.57
(0.44)

− 0.74
(0.43)

− 0.57
(0.45)

No distance cut off
PM2.5, 5 year ave 21.2

(12.55)
9.15*
(4.19)

3.82*
(1.87)

Spatial error ( �) − 0.52
(1.05)

1.90**
(0.41)

− 0.97
(1.17)

Spatial lag ( �) − 0.83
(0.62)

− 2.03**
(0.64)

− 0.77
(0.64)

Observations 355 355 355
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It is notable that while we find PM
2.5

 and, to a lesser extent, NO
2
 to be associated with Covid-

19 outcomes, the same is not true of SO
2
 concentrations. The most likely explanation for this 

difference is that, unlike PM
2.5

 and NO
2
 , SO

2
 concentrations have fallen dramatically in recent 

years. For instance, SO
2
 concentrations from regional background monitoring stations have 

decreased from 5 to 15 μg/m3 to an average of 1 μg/m3 since 1990.29 Concentrations of PM
2.5

 
and NO

2
 have not experienced similar declines. Furthermore, the EU limit value for SO

2
 has not 

been exceeded anywhere in the Netherlands since 1998. Again, the same is not true of PM
2.5

 and 
NO

2
 concentrations. If SO

2
 concentrations are not sufficiently high to be causing adverse health 

impacts then they would appear to be less likely to contribute to Covid-19 outcomes.
While our findings remain correlative rather than causal, there are plausible mecha-

nisms through which air pollution could be affecting Covid-19 outcomes. Given the exist-
ing evidence of a link between exposure to air pollution and a persistent inflammatory 
response within the respiratory tract (Abbey et  al. 1999; De Weerdt et  al. 2020; Conti-
cini et al. 2020), it is possible that individuals who have experienced long term pollution 
exposure will face a higher risk of hospitalisation and death upon contracting Covid-19. 
Furthermore, since it has also been claimed that exposure to pollution can increase the 
risk of infection by viruses that target the respiratory tract (Travaglio et al. 2020; Conticini 
et al. 2020), and that particulate matter might actually carry the Covid-19 virus (Setti et al. 
2020), it is also feasible that pollution exposure could increase the number of actual Covid-
19 cases.

Two clear policy implications arise from our analysis. First, the impact of poor air qual-
ity on Covid-19 morbidity and mortality represents a considerable and unexpected addi-
tional cost from air pollution. Our results would therefore suggest that more stringent air 
pollution regulation may be required, even in a relatively well-regulated nation such as the 
Netherlands. Second, our findings should prove useful to public health officials by signal-
ing where subsequent waves of Covid-19, or indeed future pandemics of respiratory dis-
ease, might hit hardest. This could be particularly important in countries where pollution 
sources don’t correlate well with major metropolitan areas. If, for instance, livestock pro-
duction is a major source of emissions, as may be the case in some parts of the Nether-
lands, then advance warning may prove particularly beneficial for rural areas where health-
care infrastructure and coordination may be less developed.

We believe the statistical relationships we have observed between PM2.5
 concentrations 

and Covid-19 data are robust. Furthermore, given the established literature linking poor air 
quality with respiratory disease, the existence of a similar link between poor air quality and 
Covid-19 outcomes is plausible. By focusing on the Netherlands we can also be confident 
that the correlations we find between PM

2.5
 and Covid-19 outcomes are not simply a result 

of Covid-19 cases being clustered in large cities where pollution may be higher, as may be 
the case in Northern Italy for instance. As we have noted, Covid-19 hotspots in the Neth-
erlands were in relatively rural regions rather than the big cities. Nevertheless, a degree of 
caution is needed. We do not claim to have found a causal relationship between pollution 
and Covid-19 outcomes. Instead, we have found correlations that persist even when a wide 
range of control variables are included and a number of different estimation methods are 
utilised. Until detailed individual-level data is available providing information on Covid-
19 and a wide range of other individual characteristics the statistical evidence of a link 
between air quality and Covid-19 outcomes will remain suggestive rather than conclusive.

29 https ://www.clo.nl/indic atore n/nl044 1-zwave ldiox ide.

https://www.clo.nl/indicatoren/nl0441-zwaveldioxide
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Appendix

See Figs. 2 and 3, Tables 8, 9, 9, 10, 11 and 12.

Table 7  Sensitivity checks III—additional results

Robust SE in parentheses ***p < 0.001, **p < 0.01, *p < 0.05. Additional controls not reported are proxim-
ity to Schiphol airport, coastal dummy, average firm size, share of population receiving incapacity benefits, 
share of workers in elementary occupations, share of obesity, population density. Columns (1)–(3) include a 
10 year average of PM2.5 rather than 5 year, while columns (4)–(6) include all three pollutants together

Covid cases (1) Hospital 
admissions 
(2)

Deaths (3) Covid cases (4) Hospital 
admissions 
(5)

Deaths (6)

PM2.5, 10 year ave 0.12**
(0.044)

0.13*
(0.055)

0.22***
(0.064)

PM2.5, 5 year ave 0.093
(0.064)

0.19*
(0.082)

0.26**
(0.095)

NO2, 5 year ave 0.0062
(0.017)

− 0.022
(0.020)

− 0.024
(0.024)

SO2, 5 year ave 0.052
(0.086)

0.043
(0.081)

0.15
(0.12)

Belgian border 0.17
(0.11)

− 0.092
(0.11)

0.068
(0.16)

0.18
(0.11)

− 0.081
(0.11)

0.076
(0.15)

German border − 0.30***
(0.084)

− 0.25**
(0.080)

− 0.36***
(0.11)

− 0.30***
(0.083)

− 0.25**
(0.083)

− 0.37***
(0.11)

Ave gross income − 0.029*
(0.012)

− 0.028*
(0.013)

− 0.049*
(0.022)

− 0.026*
(0.011)

− 0.028*
(0.013)

− 0.046*
(0.022)

Ave household size 1.79***
(0.37)

2.17***
(0.49)

2.00**
(0.69)

1.79***
(0.38)

2.19***
(0.49)

2.00**
(0.67)

Sh of small houses 1.22***
(0.27)

0.65*
(0.28)

0.84*
(0.40)

1.27***
(0.26)

0.67*
(0.28)

0.91**
(0.35)

Sh of pop under 18 − 3.01
(2.26)

− 7.70**
(2.79)

− 2.42
(3.76)

− 3.17
(2.28)

− 8.05**
(2.82)

− 2.61
(3.70)

Sh of pop 70+ 4.91**
(1.51)

2.13
(1.61)

9.46***
(2.26)

4.47**
(1.51)

1.78
(1.65)

8.85***
(2.32)

Smokers 0.058***
(0.016)

0.032*
(0.015)

0.063**
(0.021)

0.056***
(0.017)

0.034*
(0.016)

0.062**
(0.021)

ln (population) 1.00***
(0.040)

1.00***
(0.052)

1.02***
(0.065)

1.00***
(0.042)

1.00***
(0.053)

1.03***
(0.069)

Non-western mig sh 1.42*
(0.67)

1.91**
(0.62)

2.35*
(1.07)

1.25
(0.66)

1.90**
(0.61)

2.07*
(0.98)

Observations 355 355 355 355 355 355
Province Dummies YES YES YES YES YES YES
Pseudo  R2 0.17 0.19 0.18 0.17 0.19 0.19

http://creativecommons.org/licenses/by/4.0/
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Fig. 2  Covid-19 hospital admissions and deaths per 100,000 people

Fig. 3  Ammonia ( NH
3
 ) concen-

trations (2019)
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Table 8  First stage results for 
PM2.5

SE in parentheses. ***p < 0.001, **p < 0.01, *p < 0.05

PM2.5 5 year ave

 Ave commuting time 0.046***
(0.012)

Ave commuting time squared − 0.00031***
(0.000096)

PM 5 year ave (1995–2000) 0.35***
(0.015)

Proximity to Schiphol 0.0022
(0.0012)

Belgian border − 0.37**
(0.14)

Coast − 0.92***
(0.13)

German border − 0.068
(0.13)

Ave gross income 0.033*
(0.016)

ln (firm size) − 0.12
(0.076)

Sh elementary occup − 1.59
(1.10)

Sh high educated 1.29*
(0.52)

Ave household size 0.77
(0.57)

Sh of small houses 0.30
(0.78)

Sh of pop under 18 − 8.40*
(3.49)

Sh of pop 70+ − 8.29***
(2.22)

Obesity 0.012
(0.023)

Smokers − 0.055*
(0.025)

Sh on incapacity benefits 9.31***
(2.82)

Pop density 0.00010*
(0.000051)

ln (population) 0.049
(0.059)

Sh non-western migrants − 3.76***
(1.16)

Observations 355
0.821R2
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Table 9  Instrumental variable results for NO
2

Bootstrapped SE in parentheses, ***p < 0.001; **p < 0.01; *p < 0.05. Additional controls included in 
the estimations but not reported are Belgian border dummy, German border dummy, average household 
income, average household size, share of small housing, share of population under 18 years old, share of 
population over 70 years old, share of population who are smokers, population level, non-western migrant 
share, proximity to Schiphol airport, coastal dummy, average firm size, share of workers in elementary 
occupations, share of obesity, population density, share of working age population receiving incapacity ben-
efit

VARIABLES Covid-19 Cases Hospital admissions Deaths
(1) (2) (3)

NO2, 5 year ave 0.035*
(0.018)

0.013
(0.019)

0.027
(0.026)

First stage residuals
(Durbin–Wu–Hausman)

− 0.026
(0.032)

0.0057
(0.034)

0.026
(0.051)

F-test on instruments
(Prob> F)

353.89
(0.000)

353.89
(0.000)

353.89
(0.000)

Province dummies YES YES YES
Observations 355 355 355
Pseudo  R2 0.17 0.19 0.18

Table 10  Instrumental variable results for SO
2

Bootstrapped SE in parentheses, ***p < 0.001; **p < 0.01, *p < 0.05. Additional controls included in 
the estimations but not reported are Belgian border dummy, German border dummy, average household 
income, average household size, share of small housing, share of population under 18 years old, share of 
population over 70 years old, share of population who are smokers, population level, non-western migrant 
share, proximity to Schiphol airport, coastal dummy, average firm size, share of workers in elementary 
occupations, share of obesity, population density, share of working age population receiving incapacity ben-
efit

VARIABLES Covid-19 Cases Hospital admissions Deaths
(1) (2) (3)

SO2, 5 year ave 0.42*
(0.20)

0.20
(0.22)

0.30
(0.32)

First stage residuals
(Durbin–Wu–Hausman)

− 0.39
(0.22)

− 0.18
(0.25)

− 0.14
(0.36)

F-test on instruments
(Prob> F)

71.17 71.17 71.17
(0.000) (0.000) (0.000)

Province dummies YES YES YES
Observations 355 355 355
Pseudo  R2 0.17 0.19 0.18



607Air Pollution Exposure and Covid-19 in Dutch Municipalities  

1 3

Table 11  Spatial econometric 
results for NO

2

Robust SE in parentheses, ***p < 0.001; **p < 0.01; *p < 0.05. 
Additional controls included in the estimations but not reported are 
Belgian border dummy, German border dummy, average household 
income, average household size, share of small housing, share of pop-
ulation under 18 years old, share of population over 70 years old, share 
of population who are smokers, population level, non-western migrant 
share, proximity to Schiphol airport, coastal dummy, average firm size, 
share of workers in elementary occupations, share of obesity, popu-
lation density, share of working age population receiving incapacity 
benefit

Covid cases Hospital admissions Deaths

50 km cut off
NO2, 5 year ave 3.75

(5.26)
1.00
(1.37)

0.37
(0.82)

Spatial error ( �) − 0.060
(0.55)

0.57
(0.34)

− 0.56
(0.83)

Spatial lag ( �) − 0.53
(0.35)

− 0.66
(0.37)

− 0.28
(0.44)

100 km cut off
NO2, 5 year ave − 6.1

(4.9)
− 0.49
(2.12)

− 0.97
(0.61)

Spatial error ( �) − 2.20
(1.21)

0.16
(1.25)

− 2.92***
(1.02)

Spatial lag ( �) 0.41
(0.39)

− 0.11
(0.72)

0.61*
(0.29)

No distance cut off
NO2, 5 year ave − 3.80

(5.34)
− 0.087
(1.64)

− 1.71**
(0.53)

Spatial error ( �) − 2.21
(1.65)

0.20
(0.99)

− 5.12***
(0.99)

Spatial lag ( �) 0.30
(0.64)

− 0.41
(0.75)

1.67***
(0.32)

Observations 355 355 355
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