Skip to main content
. 2020 Jul 10;17(14):4988. doi: 10.3390/ijerph17144988

Table 5.

Illustration of Correlation Explanation (CorEx)Q9 algorithm.

Input:phq_lexicon, Stressed Tweets (geotagged)
Output:topic sparse matrix S where row: tweetid and columns: PHQ Stress Level Index (1 to 9)
Procedure:
1. Shallow parsing each tweet into tweet_pharse using spaCy
2. For each word_set in phq_lexicon do
3. Calculate average vector of word_set and tweet_pharse using GloVe
4. Match word_set with tweet_pharse set using cosine similarity measure
5. Append each matched tweet_pharse to word_set 
6. Calculate Tf-Idf vector for all the tweets and transform the calculated value to a sparse matrix X
7. Iteratively run CorEx function with initial random variables Vrandom
8. Estimate marginals; calculate total correlation; update Vrandom
9. For each word_set in phq_lexicon
10. Compare Vrandom and word_set with bottleneck function
11. Until convergence