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Abstract: Most studies on dietary polyphenol intake and type 2 diabetes (T2D) risk have focused on
total or specific subclasses of polyphenols. Since polyphenols are often consumed simultaneously,
the joint effect of an intake of multiple subclasses should be explored. We aimed to identify profiles
of the dietary polyphenol subclasses intake associated with T2D. A total of 60,586 women from
the Etude Epidémiologique auprès de femmes de l’Education Nationale (E3N) cohort study were
followed for 20 years between 1993 and 2014. T2D cases were identified and validated. The individual
energy-adjusted daily intakes of 15 subclasses of polyphenols were estimated at baseline using a food
frequency questionnaire and the PhenolExplorer database. We used Bayesian profile regression to
perform the clustering of the covariates by identifying exposure profiles of polyphenol intakes and,
simultaneously, link these to T2D risk by using multivariable Cox regression models. We validated
2740 incident T2D cases during follow-up, and identified 15 distinct clusters with different intake
profiles and T2D risk. When compared to the largest cluster (n = 6298 women), higher risks of T2D
were observed in three of those clusters, which were composed of women with low or medium intakes
of anthocyanins, dihydroflavonols, catechins, flavonols, hydroxybenzoic acids, lignans, and stilbenes.
One cluster (n = 4243), characterized by higher intakes of these polyphenol subclasses, exhibited
lower T2D risk when compared to the reference cluster. These results highlight the importance of a
varied diet of polyphenol-rich foods such as nuts, fruits, and vegetables to prevent T2D risk.
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1. Introduction

Type 2 diabetes (T2D) is a lifelong disabling disease and its global prevalence continues to increase
rapidly. Emerging evidence suggests that inflammation and oxidative stress play a key role in the
pathogenesis of T2D [1,2]. Diet is one of the main lifestyle-related factors which can modulate the
inflammatory process [3,4], and it is well known that the consumption of certain foods and nutrients
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is able to elicit immunomodulatory effects [5,6]. Polyphenols, bioactive compounds found in fruits
and vegetables, have biological activities [7] which include modulation of the inflammatory signaling
cascades and improved vascular function [7–9]. The role of polyphenol intake in the etiology of T2D
has been widely investigated. Prior studies on dietary polyphenol intake and T2D risk reported a
lower risk for higher total polyphenol intake, while mixed results were found in other studies that
focused on specific subclasses of polyphenols [10]. Since polyphenols are ubiquitous in plant foods
and beverages and are therefore often consumed simultaneously, clustering approaches that account
for highly correlated intakes are of interest to better clarify the associations between polyphenol intake
and diabetes risk. Therefore, we aimed to identify profiles of the polyphenol intake associated with
T2D incidences in 60,586 French women.

2. Materials and Methods

2.1. Study Population and Follow-Up

The protocol of the Etude Epidémiologique auprès de femmes de l’Education Nationale (E3N)
cohort, a French prospective cohort study, has been already described [11]. Briefly, 98,995 women were
recruited from those affiliated to the French national health insurance plan for teachers and coworkers,
the Mutuelle Générale de l’Education Nationale. The women were enrolled and subsequently followed
by biannual self-administered questionnaires on health conditions, lifestyle, diet, treatments, mental
health status, etc. Furthermore, for each cohort participant, the health insurance plan provided data
that included all outpatient reimbursements for health expenditures since 1 January 2004; these data
included medication brand names, doses, and dates of reimbursements. The average response rate to a
follow-up questionnaire was 83%, with a total loss to follow-up since 1990 below 3%.

Eligible participants (n = 74,522) were those that completed the dietary questionnaire sent in
1993. Then we excluded all prevalent T2D cases (n = 824), women with extreme energy intakes (i.e.,
below the 1st and above the 99th percentiles of the energy intake over energy requirement distribution
in the population) (n = 1491), women who did not complete any follow-up questionnaire after the
dietary questionnaire (n = 1216) and women with missing data on polyphenol intake and covariables
(n = 10,405). The final study population included 60,586 women. Follow-up started in 1993 (the baseline
for the present study) and ended in 2013 (the latest date of T2D case validation in the E3N cohort).

2.2. Polyphenol Intake

Food intake was assessed using a validated 208-item semi-quantitative dietary questionnaire
sent in 1993 [12]. All food intakes were converted into intakes of energy and nutrients using
food composition databases from the French Information Center on Food Quality [13] and the
Phenol-Explorer database [14]. Energy adjusted intakes of 15 subclasses of polyphenols were computed
using the residual method as proposed by Willett et al. [15].

2.3. Ascertainment of Type 2 Diabetes

The detailed procedure has been described in detail elsewhere [16,17]. Subsequently, before 2004,
all potential cases of type 2 diabetes were identified through follow-up questionnaires that included
questions on the diagnosis of diabetes, diabetes-specific diets, diabetes drugs and hospitalizations for
diabetes. All potential cases were then contacted and asked to answer a diabetes-specific questionnaire
that included questions on the circumstances of diagnosis (year of diagnosis, symptoms, biological
examinations, and fasting or random glucose concentration at diagnosis), diabetes therapy (prescription
of diet or physical activity, list of all glucose-lowering drugs already used), and the most recent
concentrations of fasting glucose and HbA1c. In order to be considered as validated for type 2 diabetes,
an individual must have reported at least one of the following: (1) fasting plasma glucose ≥ 7.0
mmol/L or random glucose ≥ 11.1 mmol/L at diagnosis; (2) use of a glucose-lowering medication;
(3) most recent values of fasting glucose concentrations ≥ 7.0 mmol/L or HbA1c level ≥ 53 mmol/mol
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(7.0%) in the diabetes-specific questionnaire. After 2004, the identification of cases was based on
the drug reimbursement insurance database. All women with at least two reimbursements for any
glucose-lowering medication within a 1-year period were considered to be validated diabetes cases,
with the date of diagnosis defined as the date of their first reimbursement.

2.4. Covariables

All potential covariates were selected a priori because of their known or suspected association
with diabetes status and/or polyphenol intakes. In general, the covariables used were measured at
baseline (1993) but if not available, we used the measurement at the closest wave for all women. BMI
was calculated by dividing weight in kilograms by height in meters squared and was considered as
continuous in all models, and in three categories for stratified analyses (<20 kg/m2/20–25 kg/m2/and
≥25 kg/m2). The level of recreational physical activity in metabolic equivalent of task (MET-h/week)
was considered as a continuous variable. We considered the following categories: never, former, and
current for smoking status; undergraduate or less, graduate, and postgraduate or more for education
level; yes or no for personal history of hypercholesterolemia (wave 7), personal history of hypertension
(wave 9), and family history of diabetes (wave 8). Alcohol, caffeine, and total energy intakes were
considered as continuous.

2.5. Statistical Analysis

Baseline characteristics of the participants overall and according to T2D status were expressed as
means ± standard deviation (SD), or numbers (percentage) for categorical variables. The correlations
between the energy-adjusted intakes of polyphenol subclasses were explored by the Spearman’s rank
correlation analysis.

For our main analysis, we used Bayesian profile regression [18], which is based on Dirichlet process
mixture model methods [19]. This method allows for partitioning observations into clusters using two
sub-models, an assignment sub-model for covariates (exposures of interest), and a disease sub-model,
fitted jointly using Markov chain Monte Carlo methods. In the assignment sub-model, clustering was
based on the tertile ranges of intakes of individual polyphenol subclasses. For the disease sub-model,
we used Cox proportional hazards regression models adjusted for potential confounders to estimate
hazard ratios (HR) and 95% CI of T2D risk. The profile regression presents the advantage of assessing
collinear variables in one analysis model which cannot be done with standard regression models.
Moreover, this clustering approach is advantageous because the number of clusters is not fixed in
advance but determined throughout the algorithm. The profile regression was implemented with the
PReMiuM package in R [20]. Further details on the Bayesian profile regression approach have been
reported [20,21].

The associations between the total polyphenol, intake of each subclass and T2D risk were also
estimated individually by multivariable Cox regression models. Participants were followed from their
age at baseline until their age at diagnosis of T2D, at death, at the last follow-up, or at the end of the
follow-up period (2014), whichever occurred first. All models were adjusted for age, physical activity,
smoking status, level of education, BMI, family history of diabetes, personal history of hypertension,
hypercholesterolemia, and alcohol, caffeine, and energy intakes. The selection of confounders was
made a priori, based upon the known risk factors of T2D available in our dataset and associated with
polyphenol intake.

In addition, we investigated the foods and beverages that contributed most to the polyphenol
intake profiles and reported median (interquartile range) intakes across profiles.

Statistical analyses were performed using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) and R.
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2.6. Ethical Approval

The study was approved by the French National Commission for Data Protection and Privacy
(ClinicalTrials.gov identifier: NCT03285230). All participants gave their written informed consent.

3. Results

3.1. Baseline Characteristics

Over a mean (SD) follow-up of 18.81 (4.3) years, a total of 2740 (4.5%) validated incident T2D
cases were identified. Table 1 presents the baseline characteristics of the study, overall and according
to T2D status. The mean (SD) age of the population at baseline was 53 years (6.6). There was a strong
correlation between the subclasses of polyphenol intake (Figure S1).

Table 1. Baseline characteristics of the Etude Epidémiologique auprès de femmes de l’Education
Nationale (E3N) study population overall and by diabetes status.

Type 2 Diabetes Diagnosed during the Follow-Up

Overall
(N = 60,586)

No
(N = 57,846)

Yes
(N = 2740)

Age at baseline (years) 52.69 (6.62) 52.62 (6.62) 54.11 (6.62)
Educational level (%)
Undergraduate or less 6044 (9.98) 5675 (9.81) 369 (13.47)

Graduate 31,512 (52.01) 29,971 (51.81) 1541 (56.24)
Postgraduate or more 23,030 (38.01) 22,200 (38.38) 830 (30.29)

Physical activity (MET-h/week) 49.24 (49.88) 49.26 (49.83) 48.81 (51.04)
Smoking status (%)

Current 8295 (13.69) 7867 (13.60) 428 (15.62)
Former 20,256 (33.43) 19,391 (33.52) 865 (31.57)
Never 32,035 (52.88) 30,588 (52.88) 1447 (52.81)

BMI (kg/m2) 22.88 (3.23) 22.70 (3.04) 26.55 (4.58)
Hypertension (%) 30,974 (51.12) 28,937 (50.02) 2037 (74.34)

Hypercholesterolemia (%) 4273 (7.05) 3870 (6.69) 403 (14.71)
Family history of diabetes (%) 6821 (11.26) 6194 (10.71) 627 (22.88)
Alcohol consumption (g/day) 11.64 (13.85) 11.61 (13.76) 12.16 (15.53)

Coffee intake (ml/day) 200.81 (148.26) 200.89 (148.01) 199.12 (153.51)

N (%) for categorical variables and Mean (SD) for continuous variables. Abbreviation: Metabolic equivalent of task
(MET).

3.2. Clusters of Polyphenol Subclasses Intake and Type 2 Diabetes Risk

The profile regression identified 15 distinct clusters with a unique profile of polyphenol subclasses
intake and T2D risk (Figure 1). Characteristics of each cluster are summarized in Table S1.

When compared to the mean logHR of the largest cluster (cluster 5), cluster 15, composed of
women with high intakes of anthocyanins, dihydroflavonols, catechins, flavonols, hydroxybenzoic
acids, lignans, and stilbenes, were at lower risk of T2D (logHR = −0.004 (95%CIr −0.002,−0.007)).
When compared to the mean logHR of cluster 5, clusters 1 (logHR = 0.002 (95%CIr 0.004, 0.000)),
2 (logHR = 0.001 (95%CIr 0.003, −0.001)), and 3 (logHR = 0.001 (95%CIr 0.003, −0.001)), characterized
by low intakes of these polyphenol subclasses, exhibited higher T2D risk. When analyzed separately,
intakes of total polyphenols and of all subclasses (except for catechins and hydroxybenzoic acids) were
inversely associated with T2D risk (Table S2).

Cluster 15 was characterized by high consumptions of fruits, vegetables, olive oil, and wine
compared to the high-risk clusters (clusters 1, 2, and 3). The most important food contributors to
polyphenol intakes were reported for clusters 1, 2, 3 and 15 (Table S3).
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Figure 1. Log hazard ratios (logHRs) of clusters of polyphenol intakes profiles. The reference cluster is
the largest cluster (cluster 5). The horizontal line represents the logHR mean for each analysis. The
clusters whose 95% credible interval include the logHR mean are colored in green, and the rest in red
for clusters at higher risk or blue for the cluster at lower risk.

4. Discussion

In this prospective cohort study of 60,586 women, we identified profiles of the polyphenol
intakes associated with T2D risk. The clusters composed of women with low or medium intakes of
anthocyanins, dihydroflavonols, catechins, flavonols, hydroxybenzoic acids, lignans, and stilbenes
were at slightly higher risk of T2D than the reference group, and the group characterized by high
intakes of these polyphenol subclasses had a lower risk of T2D, independent of major potential
confounders. The cluster associated with a low risk of T2D was characterized by high consumptions of
fruits, vegetables, olive oil, and wine compared to the high-risk clusters.

Polyphenol intake and its roles in public health have gained much attention in the framework of
the World Health Organization’s goal to reduce and prevent chronic diseases. Previous epidemiological
studies have reported inverse associations between the intake of total and specific polyphenol subclasses
and T2D risk. However, no study has so far identified profiles of the polyphenol intake associated
with T2D risk. Dietary polyphenols represent a large group of bioactive molecules widely found in
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foods of plant origin, and their health protective effects have been mainly related to their antioxidant
and anti-inflammatory properties. However, it must be considered that the application of isolated
polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and low to
medium bioavailability [22]. Traditionally, studies have focused on total polyphenol intake or intakes
of specific subclasses. In this way, the associations between total polyphenol, intake of each subclass
and T2D risk were estimated. For example, in our study, catechins and hydroxybenzoic acids contribute
to T2D risk clusters as 85% and 96% of women in cluster 15 have high intakes of catechins and
hydroxybenzoic acids, respectively, but when analyzed individually, those polyphenols were not
associated with T2D risk. This may explain the null results in some studies that consider only one
polyphenol subclass at a time in the analyses [10].

The majority of polyphenol-rich foods were consumed in high proportions in the low-risk cluster.
These foods are important contributors to dietary patterns such as the Mediterranean diet and the
dietary inflammatory index, which have been associated with a decreased risk in T2D in several
studies [17,23].

Broadly, the favorable effects of polyphenols have been attributed to their anti-inflammatory
effects and interactions with signaling proteins [24]. Polyphenols inhibit the function of luminal
disaccharidases which reduce fasting and post-prandial hyperglycemia as well as increase glucose
uptake in muscle and adipocytes to lower blood glucose [25]. In addition, polyphenols modulate
the function of the liver which plays an important role in the regulation of blood glucose levels [25].
As regards the anti-inflammatory effects of polyphenols, it is mostly achieved by blocking the
expression of inflammatory cytokines [26,27]. Thus, through diverse pathways, polyphenols could
play an important role in T2D risk reduction.

The main strength of this study was the assessment of the cluster effects of polyphenols which
is more relevant than studying individual polyphenols. Furthermore, the prospective nature of the
study design, large sample size, and long follow-up time add strength to our findings. However,
there are some limitations such as dietary data being only available at baseline, thus not allowing
for the consideration of dietary changes during follow-up. In addition, our analyses are based on
self-reported dietary consumption. In order to minimize the potential measurement error in the usual
diet, we used a validated tool [12] and women with implausible diets were excluded. Finally, results
from this study may not be generalizable to other populations.

5. Conclusions

In this study, we identified profiles of the polyphenol intakes associated with slightly increased
or decreased T2D risks in women. The cluster at low risk was characterized by high consumptions
of fruits, vegetables, olive oil, and wine compared to the clusters at high risk. This result raises the
importance of a varied diet of polyphenol-rich foods such as nuts, fruits, and vegetables to prevent
T2D risk.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/7/1934/s1;
Figure S1: Spearman correlations between intakes of different polyphenol subclasses; Table S1: Results of profile
regression analysis showing the polyphenols intake profile of each cluster and the resulting logHR associated
with each cluster; Table S2: Adjusted HRs and 95% CIs of T2D according to intakes of total polyphenols and
individual subclasses in the E3N cohort; Table S3: Median (interquartile range) intakes of top foods and beverages
representative of cluster profiles of polyphenol intake at higher and lower risk of T2D.
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