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Abstract. Establishing the link between cellular processes 
and oncogenesis may aid the elucidation of targeted and effec-
tive therapies against tumor cell proliferation and metastasis. 
Previous studies have investigated the mechanisms involved in 
maintaining the balance between cell proliferation, differentia-
tion and migration. There is increased interest in determining 
the conditions that allow cancer stem cells to differentiate 
as well as the identification of molecules that may serve as 
novel drug targets. Furthermore, the study of various genes, 
including transcription factors, which serve a crucial role 
in cellular processes, may present a promising direction 
for future therapy. The present review described the role of 
the transcription factor atonal bHLH transcription factor 1 
(ATOH1) in signaling pathways in tumorigenesis, particularly 
in cerebellar tumor medulloblastoma and colorectal cancer, 
where ATOH1 serves as an oncogene or tumor suppressor, 
respectively. Additionally, the present review summarized 
the associated therapeutic interventions for these two types of 
tumors and discussed novel clinical targets and approaches. 
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1. Introduction

A balance among cell proliferation, differentiation and migra-
tion is required for proper tissue development. Epidemiological 
studies investigating the association between potential risk 
factors and an increased risk of cancer have indicated that a 
number of factors, including diet, obesity, hormones, immuno-
suppression, cancer‑causing substances, chronic inflammation, 
infectious agents and radiation, may increase the risk of imbal-
ance (1‑3). Furthermore, genetic and/or epigenetic changes or 
loss of function mutations in tumorigenesis‑associated genes 
and signaling pathways may disrupt this balance, resulting in 
tumor progression and metastasis (4). Previous studies investi-
gated gene mutations of the RAS, WNT, MYC, ERK and TRK 
genes, that may result in tumor initiation and progression, 
and may assist in understanding the underlying mechanisms 
involved (5‑8). However, little is known about the mechanism 
and exact cause of >100 types of human cancer. Current 
knowledge has revealed that only 5‑10% of cancer cases have 
a genetic component, which indicates that gene mutation is not 
the sole cause of cancer development (9‑14). Therefore, inves-
tigating the mechanisms underlying the alteration of protein 
expression profiles may aid cancer study.

Atonal bHLH transcription factor 1 (ATOH1), an evolution-
arily conserved human ortholog of the Drosophila proneural 
basic helix‑loop‑helix (bHLH) transcription factor atonal, is 
involved in a variety of developmental processes. ATOH1 was 
cloned and identified as a proneural transcription factor based 
on its sequence, structure and functional features (15). ATOH1 
serves an important role in the specification and regulation 
of skin mechanosensory cells and in the development of the 
auditory system in the inner ear (16,17). Furthermore, ATOH1 
is required to establish the intestinal epithelium secretory 
cell lineage and for the development of rhombic lip deriva-
tives, including respiratory rhythmogenesis and the cerebellar 
external granule cell precursor layer  (15,18‑20). ATOH1 
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positively regulates cell type specification and differentiation, 
controls cell cycle arrest and maintains granule neuron progen-
itors depending on the developmental context. Therefore, 
ATOH1 plays an important role in neural development and 
may serve as a tumor suppressor or an oncogene (21‑27).

Similar to other proneural genes, including achaete‑scute 
complex like 1 and neurogenin 2, mutations that alter the 
function or result in loss of function of ATOH1 are gener-
ally lethal (28). Therefore, unlike the classic oncogenes or 
tumor suppressor genes, ATOH1 loss of function mutations 
are rarely found in tumor tissue and the majority of tumors 
tend to exhibit abnormal increased or decreased expression 
of ATOH1 (21,22,26,27,29,30). Previous studies assessing the 
expression profile of ATOH1 in various tumor tissues revealed 
an alteration of ATOH1 mRNA and protein levels in brain, 
colon, thyroid, prostate and lung cancer (21,22,26,27,29,30). 
Several studies demonstrated that such alterations positively 
or negatively regulate tumor initiation or progression via 
tissue‑specific mechanisms.

It is essential to identify novel molecular biomarkers for the 
clinical diagnosis and molecular targeting of cancer for clin-
ical treatment. Considering the complexity of the tumorigenic 
progress, drug resistance, the specificity of clinical treatments 
and side effects, further developments are required in the field 
of cancer therapy. ATOH1 regulates the expression of several 
target genes, including BarH like homeobox 1 and hes family 
bHLH transcription factor 6, and influences several important 
signaling pathways, such as the sonic hedgehog (SHH) and 
notch pathways (31,32). Therefore, further investigation into 
the effects of ATOH1 alteration on tumorigenesis is required. 
The present review investigated the role of ATOH1 in cancer, 
with a particular emphasis on medulloblastoma (MB) and 
gastrointestinal cancer. Furthermore, the present review 
aimed to develop a clearer understanding of how alterations 
in ATOH1 expression and activation affect tumor initiation, 
progression and metastasis. Additionally, potential drug 
treatments for cancer therapy are discussed.

2. General features of ATOH1

ATOH1, also referred to as Hath1 in humans, Math1 in 
mice and Cath1 in chickens, encodes a class II bHLH tran-
scription factor. The functional bHLH domain consists of 
a basic DNA‑binding region and protein‑binding region 
with two α‑helices linked by a variable loop region. The 
protein‑binding region is required for the formation of a 
heterodimer with a class I member of the bHLH family protein 
E47/E12. ATOH1 shares ~70% homology with atonal in the 
bHLH domain. However, the rest of the sequence exhibits 
much less similarity and the positioning of the bHLH domain 
varies among species (33,34). In vertebrates, protein sequence 
comparisons have revealed >80% similarity in the serine‑rich 
region of the C‑terminal (35). Additionally, the N‑terminus 
of the open reading frame exhibits a high similarity among 
mammals  (35). Studies on atonal and its orthologs have 
revealed that the non‑bHLH domain of the protein serves an 
important role; for example, the conserved serine residues 
are involved in post‑translational modifications which affect 
protein function (15,36). Domain sweeping experiments have 
demonstrated that specific motifs and their combinations are 

important for proper protein function (36,37).Over the last few 
decades, research has focused on identifying the downstream 
targets of ATOH1/atonal. The majority of the target gene 
candidates identified are involved in transcriptional regula-
tion, chromosomal organization and cell cycle control and 
are associated with Wnt, SHH, notch, transforming growth 
factor‑β signaling and Janus kinase (JNK)/mitogen‑activated 
protein kinase (MAPK) signaling pathways (26,38‑46).

3. ATOH1 in Merkel cell carcinoma and lung cancer 

ATOH1 is expressed in Merkel cell (MCs) but not in lung tissue. 
In vertebrates, MCs are derived from neuroendocrine cells and 
are located in the basal layer of the epidermis (47). Clustered 
MCs consist of a touch sensitive zone, which is in nervated 
by slowly adapting type I mechanoreceptor nerves  (48). 
These epidermis‑derived cells are required for light touch 
responses (48). ATOH1 is expressed in MCs during develop-
ment and in adults (49,50). ATOH1 may be required for MC 
progenitor differentiation, but its expression is also maintained 
throughout development and in mature MCs  (51). ATOH1 
null mice exhibited a loss of type I mechanoreceptor nerve 
response and lacked MCs (52). ATOH1 expression in MCs is 
regulated by the transcription factor SRY‑box transcription 
factor 2 (SOX2). The expression of SOX2 in MCs is controlled 
by the polycomb repressor complex, which exhibits histone 
methyltransferase activity (53), suggesting the involvement of 
epigenetic regulation in cell lineage development. However, to 
the best of the authors' knowledge, the expression of ATOH1 
in lung tissue during development has not been documented.

Abnormal ATOH1 expression in Merkel cell carcinoma (MCC). 
MCC is a rare malignant skin cancer derived from epithelial 
and neuroendocrine cell differentiation that carries a very 
poor prognosis (54). Approximately 80% of MCC cases are 
polyomavirus‑positive. However, the pathogenesis involved 
in polyomavirus‑positive and negative MCC is yet to be fully 
elucidated (55‑57). Therefore, the association between poly-
omavirus infection and the development of MMC remains 
unclear.

Loss‑of‑function ATOH1 mutations or epigenetic silencing 
via promoter methylation have been detected in a small number 
of MCC cases  (26). However, a recent study with a larger 
number of MCC cases did not determine a correlation between 
ATOH1 expression and MCC malignancy or an association 
between ATOH1 mutations and MCC development  (58). 
Interestingly, the same study revealed a significant correlation 
between downregulated protein expression levels of ATOH1 
and MCC recurrence or mortality (58). Further studies are 
required to determine the signaling pathways that interact with 
ATOH1 to control the differentiation of epidermal progenitors 
into MCs and to identify novel therapeutic agents for MCC. 

Abnormal expression of ATOH1 in lung cancer. Previous 
studies investigating ATOH1 function during development 
and ATOH1 expression profiles in cancer have demonstrated 
the tissue‑ and context‑specific functions of ATOH1 in 
physiological and pathological conditions (21-23,26,59‑62). 
Several gene expression analyses have determined that 
ATOH1 is expressed in small cell lung carcinoma (SCLC), 
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a neuroendocrine tumor (63‑66). Additionally, <20% adeno-
carcinoma samples express ATOH1 and these tumors exhibit 
neuroendocrine features (63). Cytoplasmic and nuclear expres-
sion of ATOH1 has been detected in certain lung squamous 
cell carcinoma (SCC) samples (30). However, ATOH1 is not 
known to be expressed in lung tissue and has not been reported 
to be involved in normal lung development (63). A correlation 
analysis revealed that the expression of ATOH1 was inversely 
correlated with lung cancer growth  (25). Another study 
revealed that the ectopic activation of ATOH1 occurred in lung 
cancer, resulting in a poor patient prognosis (63). However, 
the underlying mechanisms remain unclear and ATOH1 
expression in lung cancer cells is poorly understood. The 
pathways linking ATOH1 and lung cancer pathogenesis have 
not been fully elucidated. However, the association between 
ATOH1 expression and neuroendocrine tumors as well as the 
poor prognosis of these tumors may unravel the underlying 
mechanisms. Future studies investigating how ATOH1 expres-
sion alters protein expression profiles in lung cancer cells are 
warranted and may shed light on the mechanisms maintaining 
the balance among cell proliferation, differentiation and 
migration. 

4. ATOH1 in medulloblastoma

Expression of ATOH1 in the central nervous system. The 
mouse ato orthologues Math1/ATOH1 mRNA is detected in 
the dorsal neural tube and cranial nerve ganglia at E9.5 (15). 
During embryonic brain development, ATOH1 is expressed 
in the dorsal hindbrain neuro epithelium, rhombic lip and 
the developing cerebellum (15,67). These ATOH1‑dependent 
neurons are required for the generation of dorsal commissural 
interneurons (68) and brainstem respiratory nuclei, and the 
development of cerebellar granule cell lineages (18,69). Unlike 
MCs, in which ATOH1 is expressed in both progenitor and 
mature cells, ATOH1 expression persists during granule cell 
lineage development and in cerebellar granule cell precursors, 
but disappears during differentiation and migration from the 
external granule layer (EGL) to the internal granule layer (IGL; 
Fig. 1A) (18). ATOH1‑null mice have a smaller cerebellum 
compared with wild type or heterozygous mice, and lack an 
EGL (18). The balance between the protein activity of ATOH1 
and signaling pathway activity of SHH and Notch has been 
demonstrated to regulate granule cell differentiation  (40). 
These data indicated that ATOH1 serves a crucial role in the 
development of cerebellar granule cells.

Abnormal ATOH1 expression in MB. Since ATOH1 is required 
for the regulation of cerebellar granule neuron precursors during 
cerebellar development, it is not surprising that ATOH1 exerts 
a crucial effect in the malignant cerebellar tumor subgroup 
SHH‑MB (70), which is closely associated with the origin of 
granule cell progenitors (71,72). In SHH‑MB, ATOH1, as well 
as GLI family zinc finger (GLI) 1/2, MYCN proto‑oncogene, 
bHLH transcription factor (MYCN), cyclin D1/2 (CCND1/2) 
and protease nexin‑1 (PN‑1), are highly expressed when 
compared with normal tissue (73,74) and serve to control the 
proliferation of granule cell precursors (21‑23). However, the 
precise mechanism of ATOH1 upregulation in MB is yet to be 
fully elucidated. Previous studies revealed that ATOH1 was 

upregulated in cases of MB with loss‑of‑function mutations of 
hypermethylated in cancer 1 (HIC1) (a ZBTB transcriptional 
repressor) and super‑activated SHH signaling  (22,59,75). 
Furthermore, HIC1 is required for the transcriptional inhibi-
tion of ATOH1, while cerebellar granule neuron precursors 
(GNPs) undergo differentiation to granule neurons, migrating 
from the EGL to IGL (Fig. 1A) (76). Another study revealed 
that the phosphorylation of tyrosine 78 in ATOH1 was present 
only in human colorectal cancer (CRC) and not normal tissues. 
This phosphorylation served to both stabilize ATOH1 and 
increase its transcriptional activity, hence promoting MB (77).

No evidence has demonstrated the direct activation of 
ATOH1 by the SHH signaling pathway, although in the 
majority of cases, the hyper activation of the SHH signaling 
pathway and high levels of ATOH1 expression are observed 
in SHH‑MB  (23,59,78). Additionally, the upregulation of 
ATOH1 alone does not initiate MB (21), but an increased 
number of MB‑initiating cells were observed when both 
ATOH1 and Gli1 were upregulated (21). Blocking ATOH1 in 
GNPs limited the response of pre‑proliferation genes to SHH 
activity and accelerated differentiation (21). This indicates 
that the upregulation of ATOH1 and the hyper activation of 
SHH may synergistically interact with each in tumorigenesis. 
Furthermore, ATOH1 is required for the maintenance of 
progenitor cells in MB progression rather than MB initia-
tion (21,59,79,80). Gene expression data analysis has revealed 
a strong correlation between ATOH1 gene expression and poor 
survival in patients with MB (81). These data suggested that 
ATOH1 is a tumor progression rather than a tumor initiation 
oncogene in the SHH subgroup of MB.

ATOH1 in the MB‑associated genetic network. Hyperactive 
SHH induces the expression of certain downstream genes 
including GLI1/2, CCND1/2 and MYCN to drive the prolif-
eration of GNPs (82‑84). In addition, a high expression of 
ATOH1 transcriptionally induces GLI2 expression (Fig. 1B). 
It has been demonstrated that ATOH1 regulates the SHH 
signaling pathway in GNPs (22). Furthermore, the overex-
pression of ATOH1 in GNPs under active SHH signaling 
conditions accelerates MB progression, however, prolifera-
tion was decreased in the absence of SHH (21). ATOH1 may 
enhance GNP proliferation by activating GLI2 and indirectly 
increasing the activity of the SHH signaling pathway via the 
inhibition of the transmembrane receptor patched 1 (PTCH1; 
Fig. 1B) (21,59,76).

It has been reported that <25% of MB cases are associated 
with constantly active mutations of the SHH pathway (85). 
Additionally, <20% of MB cases carry a loss‑of‑function 
mutation in PTCH1 (85). Since PTCH1 and the SHH 
pathway have been demonstrated to have an antagonistic 
relationship, hyperactive SHH mutants and loss‑of‑function 
mutations in PTCH1 strongly enhanced the progression of 
MB (Fig. 1B) (59). The markedly increased methylation of the 
HIC1 promoter results in the silencing of HIC1 expression in 
PTCH1 heterozygous mutant mice (21,76). Furthermore, the 
loss of PTCH1 may cause HIC1 silencing (Fig. 1B), which 
in turn deregulates its function to transcriptionally inhibit 
ATOH1 expression, potentially causing an increased expres-
sion of ATOH1. In addition, Ptch1 not only inhibits SHH to 
eliminate the enhancement function of SHH in proliferation, 
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but also induces GNP differentiation (22). Hence, ATOH1 may 
repress GNP cell differentiation by downregulating PTCH1 
(Fig.  1B). However, ATOH1 inhibits bone morphogenetic 
protein (BMP) 2/4 induced GNP cell differentiation by down-
regulating multiple BMP target genes. These genes, including 
distal‑less homeobox 1/2 and hedgehog interacting protein, are 
required for GNP cell differentiation (Fig. 1B) (86‑88).

Previous studies have revealed that ATOH1 expression 
can be transcriptionally inhibited by HIC1 and post‑tran-
scriptionally downregulated by BMP2/4 (79). Through the 
rapid proteasome‑mediated protein degradation of ATOH1, 
BMP2/4 is able to inhibit MB progression (Fig. 1B) (21,79). 
However, BMP2/4 may also inhibit ATOH1 by activating 
the ATOH1 inhibitors inhibitor of DNA binding 1 HLH 
protein (ID1) and inhibitor of DNA binding 2 (ID2) (79,89). 
ID1/2 are transcriptional repressors, which interact with 
ATOH1 to prevent ATOH1‑DNA binding (79,90). BMPs, 
a subgroup of the transforming growth factor‑β super-
family of proteins, act as MB suppressors not only via 
the downregulation of ATOH1 expression, but also via its 
regulatory effect on cell differentiation and proliferation. It 
has been revealed that BMPs antagonize SHH‑dependent 
proliferation by activating Smad phosphorylation and 
downregulating SHH‑induced genes that are required for 
the proliferation of GNPs in MB. In vitro and in vivo data 
have also revealed that BMPs promote the differentiation of 
GNPs in MB by increasing the expression of multiple genes 
for cell differentiation (79).

Several genome‑wide studies on gene expression profile 
assessing the up and downregulation of ATOH1 in MB GNPs 
have revealed that the outcome candidates are primarily 
involved in two biological processes: Cell differentiation 
and proliferation. Among these ATOH1 related genes, nearly 
two thirds are involved in differentiation and less than one 
third are associated with cell proliferation (79,91). Others are 

associated with cell adhesion, cell migration, metabolism and 
chromosome modulation (21,92‑94). A comparative study on 
the categorical differences in upregulated and down regulated 
gene expression between the two MB groups induced by 
the overexpression of ATOH1 or GLI1 revealed that genes 
involved in neuronal differentiation, migration and adhesion, 
were significantly enriched in ATOH1 overexpressing MB. 
However, genes that regulated cell cycle progression were 
similarly expressed both MB groups (21). The results indicate 
that ATOH1 has more profound effects on controlling neuronal 
differentiation to promote the viability of GNPs and maintain 
the progenitor.

MB therapeutic intervention. As an aggressive embryonic 
cerebellum tumor, MB is the most common malignant pedi-
atric brain tumor that exhibits a high mortality. The continued 
analysis of the mechanism that genetically and epigenetically 
regulates the relative gene expression of MB has permitted a 
deeper elucidation of therapeutic targets. The success of using 
Smoothened inhibitors, cyclopamine (a plant steroid alkaloid) 
and HhAntag (a benzimidazole derivative) as therapeutic 
drugs, has revealed their important regressional effect on 
controlling the SHH signaling pathway in MB (95,96). These 
agents not only decrease the proliferation of tumor cells, but 
also induce apoptosis of MB cells (97). However, the efficiency 
of these treatments are limited for MB with hyperactive SHH 
signaling and/or a high expression of ATOH1, since ATOH1 
directly activates GLI2 expression at the transcriptional level 
and high GLI1/2 expressions may reduce drug efficiency. 
Therefore, targeting certain downstream proteins, including 
GLI1/2, may be more efficient (98,99). Recent reports using 
melanoma cell lines have demonstrated that GLI inhibitor 
GANT61 treatment was able to repress melanoma cells (100), 
indicating that additional GANT61 treatment may be effective 
in multiple anti‑MB targeted therapy.

Figure 1. Schematic of granule neuron development and the genetic interactions of genes involved in medulloblastoma. (A) Diagram representing the expres-
sion and regulation of ATOH1 during granule neuron development. ATOH1 is expressed in granule neuron precursors but not in differentiated granule neurons. 
(B) Schematic of the medulloblastoma associated gene interaction network of ATOH1. ATOH1 promotes medulloblastoma by up regulating genes such as 
GLI2 to enhance proliferation and inhibit differentiation. ATOH1, atonal bHLH transcription factor 1; GLI2, GLI family zinc finger 2; SHh, sonic hedgehog; 
EGL, external granule layer; IGL, internal granule layer; HIC1, hypermethylated in cancer 1; Mycn, MYCN proto‑oncogene bHLH transcription factor; Hhip, 
hedgehog interacting protein; Ccnd1/2, cyclin D1/2; Id1, inhibitor of DNA binding 1 HLH protein; Id2, inhibitor of DNA binding 2; BMP, bone morphogenetic 
protein; Dlx1/2, distal‑less homeobox 1/2; Ptch1, patched 1; PN‑1, protease nexin‑1. 
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Although the downregulation of SHH signaling activity 
does not affect ATOH1 expression and a high ATOH1 expres-
sion in SHH subgroup MB represents only 25‑35% of all MB 
cases (101), the expression of ATOH1 should still be taken into 
account when SHH signaling is used as a therapeutic target 
in MB. Despite transcription factors being difficult targets for 
small molecule drug development, for SHH subgroup MB, 
ATOH1 may still serve as a good potential therapeutic target, 
due to its regulatory function on GNPs in MB. 

Epigenetic therapy, which reverses DNA promoter meth-
ylation in clinical treatment of myelodysplastic syndrome, 
has been reported (21,96). This method may be utilized to 
restore Hic1 function by demethylating the Hic1 promoter, 
thereby blocking ATOH1 expression. Another possible way 
to downregulate ATOH1 is via BMPs treatment. It has been 
demonstrated that BMPs reduce GNP proliferation and 
promote differentiation, as well as induce apoptosis in human 
MB cells (102). BMPs may therefore be used in therapeutic 
interventions. However, high levels of ATOH1 can override 
the neuronal differentiation induced by BMP by inhibiting 
the expression of a multiple BMP target genes (21). Therefore, 
similar to SHH targeting therapy, ATOH1expression levels 
should be considered when BMPs are used as treatment 
for MB.

As tumors are heterogeneous entities with different causes 
of disease progression, previous studies have combined two or 
more drugs to tackle multiple targets. For example, GNP‑like 
MB is inhibited via effective treatment with BMPs and cyclo-
pamine (79). Although there is no clear evidence indicating 
the direct effect on ATOH1 by blocking PN‑1, loss of function 
studies on PN‑1 in PTCH1+/‑ mice revealed the loss of ATOH1 
expression and the reduction of MB formation (Fig. 1B) (74). 
Therefore, it may be worthwhile to combine the smoothened 
frizzled class receptor inhibitor with the PN‑1 inhibitor to 
prevent relapse due to single drug resistance. For clinic treat-
ment, theoretical and practical caution should be taken. Recent 
study that has performed multivariate Cox regression analysis 
has proposed a multi‑gene model for MB risk prediction (81). 
They have also provided a quantitative analysis method for the 
identification of molecular markers and for the evaluation of 
these markers on influencing clinical behavior. More effort is 
required to optimize the outcome of therapeutic treatment.

5. ATOH1 in gastrointestinal cancer

Expression of ATOH1 in intestinal cells. The intestinal epithe-
lium is a self‑renewing tissue that is comprised of several cell 
lineages (Fig. 2A). Within the intestinal epithelium, the major 
cell types can be classified as absorptive (colonocytes/entero-
cytes) or secretory (goblet, Paneth and enteroendocrine), based 
on their distinct genetic programs. In the intestinal epithelium 
of mice, ATOH1/Math1 expression is maintained throughout 
embryonic and adult phases (25). The expression of ATOH1 in 
the intestinal epithelium is essential for the specification and 
regulation of proliferation of the secretory cell lineage (25). 
The negative regulation of intestinal epithelial cell prolifera-
tion by ATOH1 and the failure to develop all types of secretory 
cells in ATOH1/Math1 null mice further confirms the func-
tions of ATOH1 in the intestinal epithelium  (103,104). In 
addition, interaction between the ATOH1 and Notch signaling 

pathway regulates the lineage differentiation of different types 
of intestinal cells. More specifically, inhibition of ATOH1 via 
Hes, a Notch signaling pathway downstream gene, promoted 
the absorptive vs. the secretory fate (Fig. 2A) (105). Therefore, 
ATOH1 is required in epidermal progenitors, in their progeny 
to specific MCs (106) and in their commitment to neuroen-
docrine cells  (107). These results indicate that ATOH1 is 
involved in the general neuroendocrine differentiation of 
epithelial cells.

Abnormal ATOH1 expression in CRC. It is well known that 
ATOH1 and Notch signaling inhibit one and another, and are 
involved in the development of the secretory and absorptive cell 
lineages. It has been demonstrated in several previous studies 
that intestinal ATOH1 regulates cell cycle arrest and represses 
proliferation, hence promoting differentiation or stimulating 
apoptosis (26,41). A significant decrease in ATOH1 mRNA 
levels has been detected in ~70% of CRC cases (24,26). In 
addition, the Notch signaling pathway has been determined 
to be associated with human colon adenocarcinomas (108). In 
addition to inhibiting ATOH1, Notch signaling functions to 
maintain stem cells in an uncommitted state (Fig. 2B) (109). 
Active Notch1/2 and its transcriptional target HES1 have been 
detected in human colon adenocarcinomas and CRC cell lines 
and were enriched in adenomas from adenomatous polyposis 
coli (APC) mutant mice (27,110‑113). 

Previous studies have revealed that at least one copy dele-
tion of ATOH1 is present in ~50% of tumors and ATOH1 
CpG methylation has been detected in ~70% of tumors 
(Fig. 2B) (26). Other evidence obtained from the analysis of 48 
patients with colon cancer has revealed that ATOH1 mRNA 
levels drop ~20‑fold and goblet cell populations are markedly 
reduced in colon adenocarcinomas (114). These data indicate 
that genetic and epigenetic mechanisms may be involved in 
the silencing of ATOH1 expression in CRC, and that ATOH1 
is required for goblet lineage development. 

Not all cases of CRC exhibit a low expression of ATOH1 
mRNA (24,115,116). Previous studies have reported the loss 
of ATOH1 protein but the presence of ATOH1 mRNA (115). 
In addition to the aberrant Notch signaling pathway, the 
proteasomal degradation of ATOH1 by glycogen synthase 
kinase 3 β (GSK3β) in CRC suggested a protein level regula-
tion on ATOH1 in CRC (Fig. 2B) (117). Aberrant constitutively 
activated Wnt/GSK3 signaling via truncated mutations of 
the APC gene is observed in ~80% of CRC cases (118,119). 
This aberrant Wnt/GSK3β signaling induces the continuous 
expression of β‑catenin, which promotes the proliferation of 
intestinal progenitors and the proteasomal degradation of the 
ATOH1 protein, indicating that it is the most critical trigger 
for colon carcinogenesis (Fig. 2B) (117). A recent structural 
and functional study of ATOH1 identified a highly conserved 
critical serine site in the second helix domain, which, when 
phosphorylated, results in the quick inactivation and degrada-
tion of the ATOH1 protein (120). This result further proves 
the existence of another layer of ATOH1 protein regulation. 
However, treatment with GSK inhibitors or mutating the 
serine residues of ATOH1to alanine on the aforementioned or 
multiple serine sites may stabilize the expression and activity 
of ATOH1 (117,120), resulting in the induction of colon cancer 
cell differentiation to goblet cells (117). Another previous study 
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also demonstrated that blocking ATOH1 protein phosphory-
lation promoted secretory differentiation and inhibited its 
involvement in the self‑renewal of progenitors (121). A recent 
study also provided evidence that microRNA‑613 promoted 
CRC by down regulating ATOH1 (122). The results therefore 
indicate that ATOH1 is down regulated in CRC. 

In vitro and in vivo experiments have revealed that the up 
regulation of ATOH1 induces progenitor cell differentiation to 
goblet cells, inhibits proliferation and promotes apoptosis via 
the JNK/MAPK pathway (26,41), as indicated by the tumor 
suppressive nature of ATOH1 in colon adenocarcinoma and 
gastrointestinal carcinoma.

ATOH1 in CRC‑associated genetic networks. The majority 
of colorectal tumors originate from epithelial cells  (123). 
The mucus layer produced by goblet cells is part of the 
innate immune system and is required for intestinal homeo-
stasis (124,125). Mucus is composed of transmembrane and 
secretory proteins, such as mucin (Muc) 1 and 2, respectively, 
that construct a semi‑permeable passage between the intes-
tinal lumen and the underlying epithelium (126,127). Previous 
studies have revealed that Muc2 serves as a tumor suppressor 
in CRC (128,129). Although wild type ATOH1 was determined 
to be degraded in CRC, a stable ATOH1 form or an ATOH1 
phosphorylation‑null mutant form alone is sufficient to induce 
Muc2 expression to initiate the differentiation of colon cancer 
cells  (114,117). Apart from the direct activation of Muc2, 
previous studies on ATOH1 null mutant mice revealed the 
absence of the ETS family transcription factor SPDEF (SAM 
pointed domain ETS factor) and the loss of intestinal secre-
tory cells, indicating that ATOH1 is required for the activation 
of SPDEF (130‑132). Gain of function studies have indicated 
that SPDEF not only promotes the terminal differentiation 

of goblet/Paneth cells into goblet cells, but also inhibits the 
proliferation of intestinal progenitors (130‑132).

The cell cycle inhibitor p27 has been determined to be 
activated by ATOH1 and repressed by Notch signaling via 
Hes1 (Fig. 2B) (114,133). ATOH1 induces cell cycle exit by 
inhibiting the cell cycle marker gene CCND1 either directly 
or via p27, blocking the proliferation of intestinal progeni-
tors (103). ATOH1 therefore serves as a tumor suppressor, 
which promotes differentiation and inhibits the proliferation 
of intestinal progenitors.

Active Notch signaling represses p27 and ATOH1 via 
Hes1 activation, thereby indirectly enhancing cell proliferation 
and maintaining cancer stem cells (130,133,134). Similarly, 
the aberrant activation of Wnt/GSK3 signaling promotes 
cell proliferation indirectly by activating the β‑catenin 
protein (117), whilst indirectly inhibiting cell differentiation 
and enhancing cell proliferation by degrading ATOH1 (115).

CRC therapeutic intervention. It has been demonstrated 
that a high Notch activity and an accumulation of β‑catenin 
protein as a result of aberrant Wnt/GSK3 signaling, together 
with the inactivation of ATOH1, induces carcinogenesis and 
maintains the undifferentiated state of colon cancer  (135). 
Therefore, treatment with GSK3 inhibitors (GSK3I), such as 
APC, and Notch signaling inhibitors (such as Notch‑targeting 
antibodies or γ‑secretase) may represent a novel therapeutic 
approach (109).

GSK is considered to be a key enzyme in various 
biological processes. Therefore, the development of a drug 
targeting Wnt/GSK signaling is difficult due to its complex 
protein‑protein interactions and various functions in different 
cell types (113). The risk of treatment and pathological safety 
should becarefully evaluated. One particular GSK3 inhibitor, 

Figure 2. Schematic of intestinal epithelium cell differentiation and the genetic interactions of genes involved in CRC progression. (A) Diagram representing 
ATOH1 expression and regulation during the differentiation of multiple cell lineages of the intestinal epithelium. ATOH1 is necessary for the differentiation 
of secretory lineages in the intestine, including enteroendocrine, goblet and Paneth cells. The differentiation of different intestinal cell types is regulated by 
a contrary interplay between ATOH1 and Notch signaling pathways. (B) Schematic of the CRC associated gene interaction network of ATOH1. In intestinal 
development, ATOH1 is required for regulating target genes, which either enhances differentiation or inhibits proliferation. However, ATOH1 is downregu-
lated by CpG methylation or GSK3β inhibition in CRC. CRC, colorectal cancer; ATOH1, atonal bHLH transcription factor 1; GSK3β, Glycogen synthase 
kinase 3 β; Hes1, hes family bHLH transcription factor 1; GSK3I, GSK3 inhibitor; APC, adenomatous polyposis coli; NICD, intracellular domain of the notch 
protein; GSI, γ‑secretase inhibitor; p27, H3 histone pseudogene 23; CSC, cancer stem cells; Ccnd1; cyclin D1; APN, adiponectin; TNF‑α, tumor necrosis 
factor‑α; SPDEF, SAM pointed domain containing ETS transcription factor; MUC2, mucin 2.
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lithium chloride, serves a protective effect against colon 
cancer and exerts no detectable pathological changes in other 
major organs while being used to treat bipolar disorder treat-
ment (136). Previous studies assessing the molecular pathways 
and mechanisms involved in the cancer suppressive effect 
of GSK3I were performed in cell lines and rodent model 
systems (137‑139). In addition, inactivation of the Wnt/GSK 
signaling pathway via the overexpression of a full‑length APC 
gene in colon cancer cells revealed the stabilization of ATOH1 
and that the degradation of β‑catenin (Fig. 2B) results in cell 
differentiation (115). Combination with other treatments may 
provide a sufficient effect when compared with single GSK3I 
therapies for CRC (140). For instance, the overexpression of 
ATOH1 or the stabilization of ATOH1 protein in combina-
tion with GSK3I treatment may serve as a potential cancer 
therapy  (135). However, detailed analyses and evaluations 
are required to optimize drug dosages, multiple treatments 
and tissue specificity. Certain cases of CRC exhibit an undif-
ferentiated proliferative phenotype caused by constitutively 
activated Notch signaling (111,112,141). Maintaining a negative 
regulative Notch activity is initiated via the release and entry 
of the active domain of Notch into the nucleus. The release 
of the Notch signaling receptor active domain and intracel-
lular domain requires γ‑secretase activity. Theoretically, 
antibody‑mediated Notch inhibition and γ‑secretase inhibitors 
(GSIs) would be good candidates to inhibit colonic cancer. 
However, antibody‑mediated Notch inhibition exerts a weak 
effect on blocking CRC growth (142). A previous study on 
γ‑secretase inhibitor treatment in colon cancer cell lines and 
primary human CRC cell cultures revealed that GSI treatment 
upregulates ATOH1 expression and increases Muc2 and p27, 
resulting in the reduction of anchorage independent cellular 
growth and increasing Muc2 positive cells in ATOH1 positive 
CRC, but no detectable effect in ATOH1 negative CRC (134). 
In addition, a significant proapoptotic effect on CRC cell 
lines has been observed in GSI treatment (111). These data 
indicate that ATOH1 is crucial to the tumorigenesis regula-
tory network of CRC. Undifferentiated CRC represents only 
a fraction of colonic cancers. There are also moderately and 
well‑differentiated classes of CRC (143). Furthermore, the 
hyper activation of β‑catenin signaling overrides the forced 
differentiation induced by GSI treatment  (27). These data 
indicate that multiple treatments or the combination of other 
drugs is required to obtain improved outcomes in patients.

Currently, certain cytotoxic drugs, including taxanes 
or platinum compounds, have been studied in CRC cell 
lines (144,145). However, more detailed analyses are required 
for further clarification. Assessing the possibility and opti-
mizing the proper conditions of GSK3I and GSI co‑treatment 
in CRC should be considered. Another gene, SPDEF, has been 
revealed to regulate the terminal differentiation of intestinal 
goblet cells. In breast and prostate cancer, SPDEF acts as tumor 
suppressor by inhibiting invasion and metastasis  (26,116) 
and/or tumor growth and survival  (24). In CRC, SPDEF 
serves as a key mediator of ATOH1 for tumor suppressive 
activity (130). Future studies are therefore worthwhile to assess 
whether SPDEF upregulating treatment alone or in combina-
tion with GSK3I and/or GSI is sufficient to activate goblet cell 
differentiation and block proliferation in ATOH1‑null CRC 
cells. However, since ATOH1 is a potential anti‑tumor gene 

in CRC, whether it is sufficient to block tumor growth by 
elevating ATOH1 levels or by force expressing ATOH1, should 
be elucidated. A previous study assessing the role of adipo-
nectin (APN) in the prevention of goblet cell apoptosis and the 
differentiation of epithelial cells to goblet cells revealed that 
APN may block goblet cell apoptosis by inhibiting TNF‑α and 
promoting differentiation by upregulating ATOH1 and Muc2, 
and downregulating Hes1 (74) (Fig. 2B). Therefore, APN may 
serve as a potential clinical target candidate for CRC.

6. Conclusions

The effect of ATOH1on the tumorigenesis of different tissue 
organs and the possibility of targeted clinical therapy indi-
cated that variations in the mechanisms of tumorigenesis 
existed in different type of tumors. ATOH1 serves as a 
tumor suppressor in MCC and CRC but is an oncogene in 
MC and SCLC/SCC. The expression profile of the ATOH1 
protein also exhibits a differential change in different 
types of tumors. In MCC and CRC, ATOH1 expressions 
are downregulated. By contrast, ATOH1 expressions were 
upregulated in MC and SCLC/SCC. However, regardless 
of these specificities, ATOH1 displayed a common feature 
that ATOH1 influenced tumorigenesis by promoting the 
transcription of its target genes for cell proliferation and 
differentiation. In the case of MCC and CRC, these genes are 
required for enhancing differentiation and inhibiting prolif-
eration. The opposite is observed in MC and SCLS/SCC. 
The abnormal expression of ATOH1 results in an unpaired 
balance between differentiation and proliferation, which 
promotes the progression of cancer.

Crucial proteins are more often deregulated in multiple 
ways at different levels, such as at the transcriptional, trans-
lational and post translational level and during mRNA and/or 
protein stability. The present discussion of ATOH1 in MB 
and CRC indicated that the temporal/spatial regulation of 
protein and protein functions with tissue/context specificity 
are observed not only during development but also in cancer 
progression. Clinical drug treatments should therefore address 
the specificity and regulatory aspects of their targets. The 
cross‑interaction of proteins causes single drug therapeutic 
treatments to be ineffective. Optimal target selection or a 
combined treatment approach for cancer therapy should there-
fore consider this cross‑effect. Multiple targeted treatments 
have revealed a more efficient effect during cancer therapy. 
An improved understanding of the mechanisms of tumorigen-
esis and cancer regulatory networks would improve clinical 
approaches. The core reason for the formation of cancer is 
the unpaired balance of biological systems to a certain extent. 
Instead of assessing genes or pathways as clinical targets, 
understanding how this balance is disturbed and subsequently 
elucidating an approach for adjusting this would be another 
direction of cancer therapy.
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