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Abstract

In trials with non-compliance to assigned treatment, researchers might be interested in estimating 

a per-protocol effect – a comparison of two counterfactual outcomes defined by treatment 

assignment and (often time-varying) compliance with a well-defined treatment protocol. Here, we 

provide a general counterfactual definition of a per-protocol effect and discuss examples of per-

protocol effects that are of either substantive or methodologic interest. In doing so, we seek to 

make more concrete what per-protocol effects are and highlight that one can estimate per-protocol 

effects that are more than just a comparison of always taking treatment in two distinct treatment 

arms. We then discuss one set of identifiability conditions that allow for identification of a causal 

per-protocol effect, highlighting some potential violations of those conditions that might arise 

when estimating per-protocol effects.

Keywords

per-protocol effect; randomized controlled trials; noncompliance; causal inference; identifiability

Introduction

In randomized controlled trials (RCTs) with non-compliance, the intention-to-treat effect 

cannot be interpreted as an estimate of treatment efficacy.1 In such cases, researchers may 

wish to estimate effects that would have been observed if study participants had (possibly 

contrary to fact) followed a pre-designated protocol. These per-protocol effects require 

careful consideration and handling of the potentially time-varying causes of non-

compliance, as has been discussed in previous papers.1–5
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However, prior work on per-protocol effects has rarely (if ever) explicitly stated the 

counterfactual definition of the target parameter, which could lead to some confusion 

regarding the definition of a per-protocol effect. There are also different target per-protocol 

parameters that can be used to answer different research questions or provide insight 

regarding the validity of our models or causal assumptions. Thus, we here provide a general 

counterfactual definition and describe several example per-protocol effects. We then 

comment on one sufficient set of conditions needed to identify these effects, as these have 

also not been explicitly discussed in relation to per-protocol effects.

Defining per-protocol effects

Let R denote randomized treatment. Participants are followed until outcome Y or end of 

follow-up. Compliance is assessed in time intervals (J = 1,…,m) where Cj = 1 means the 

participant was compliant for time-point j. Looking at compliance across follow-up, we also 

define compliance history C for each participant. While our example is general, note that 

estimating per-protocol effects requires clearly defined compliance protocols that directly 

correlate with the research question of interest and with substantive knowledge. Other work 

has explored in detail best practices for defining protocols.5

We define a per-protocol effect as:

E Y r = p1, c = γ1 − E Y r = p2, c = γ2

Where r = p is a given randomized treatment and c = γ is a given compliance history. 

Suppose we were interested in two trial arms, R={0,1} and C defined by always- or never-

complying with the same protocol regardless of arm. We can then define six basic per-

protocol effects (Table), three of which we discuss here.

Under relevant identifiability conditions (listed below), contrast A is the effect of treatment 

relative to comparator under full compliance to the protocol and will most closely reflect the 

effect of the treatment’s active ingredient. If the protocol is static and requires taking 

treatment every day, A would be the maximum possible effect. If a dynamic protocol is 

specified (e.g., take treatment until some clinical event occurs), this effect will best 

approximate the biologic effect over the relevant time scale. A is arguably the effect of 

primary interest in many settings and has been the target parameter in most modern per-

protocol analyses.1,6

It is additionally possible to use the other parameters to triangulate this effect.7,8 Subtracting 

C from B yields A due to cancellation of the E Y r = 0, c = 0  term, as such:

E Y r = 1, c = 1 − E Y r = 0, c = 0 − E Y r = 0, c = 1 − E Y r = 0, c = 0 = E Y r = 1, c = 1

− E Y r = 0, c = 1
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B − C = A

Similar triangulation can be obtained with D and E. The benefit of triangulating A in this 

way is methodologic. If the results from taking B – C and D – E were reasonably similar to 

A (acknowledging that random error might make them non-identical), we might feel 

reassurance that we had specified our statistical or causal models correctly. However, if 

estimates differ, this signals potential problems that should be explored further, although we 

cannot ascertain the exact source of error.

Contrast B is the joint effect of being assigned to treatment and always-complying with the 

protocol, relative to assignment to the comparator and never-complying. This effect will 

capture a combination of the treatment’s biologic effect and the effect of protocol 

compliance. B could be used to assess the maximum benefit under various protocols, 

perhaps by varying the protocol of the treatment from “take every day for all of follow-up” 

to “take every day for a specific time period” to “take x times per week.” Unlike A, this 

effect includes the impact of being engaged with a treatment protocol, which might be 

valuable to understand before applying a protocol in a real-world setting. Comparing B to A 

could reveal whether the act of staying compliant with a given protocol leads to additional 

benefit (or harm) beyond that seen from the biologic effect alone.

F is the effect of being assigned to treatment and never-complying with the treatment 

protocol versus being assigned to comparator and never-complying with the comparator 

protocol and is useful as a tool for model validation. In a study where one expects any sub-

optimal compliance to mean the participant will experience no effect of treatment or 

comparator, F should be null (or close to null, given the possibility of random error). While 

previous studies have used contrast C for model validation,9,10 a non-null F could also 

indicate problems with the statistical or causal models that may be undermining the validity 

of other effects estimates.

For information on how to estimate per-protocol effects, we point readers toward several 

published papers, including Lodi, Cain, Murray, and Toh.6,9,11,12 While these papers have 

focused on estimating contrast A, the methods could be used to estimate any of the contrasts.

Identifying per-protocol effects

One sufficient set of conditions to identify a causal effect is exchangeability, positivity, and 

counterfactual consistency.

Exchangeability (specifically, conditional exchangeability) requires the potential outcomes 

Y r, c to be independent of observed treatment and compliance at each time-point, conditional 

on compliance history prior to that time point and a set of covariates L representing 

confounder history.13–16 Any variables that affect compliance and the outcome should be 

included in L. Particular consideration should be given to whether L will differ by treatment 

arm or protocol.
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Positivity requires the probability of being exposed or unexposed, given L, be bounded away 

from 0 and one; we must here consider exposure defined by randomization and compliance. 

If the per-protocol effect of interest was the comparison of a given treatment under always-

complying versus never-complying, it is possible that there would be very few individuals 

who were assigned to that treatment who genuinely never took the treatment according to 

the rule. Another challenge to positivity could arise because a large number of participants in 

a given arm choose to no longer comply with the treatment because of side effects (typically 

included in L). This is one reason to specify a protocol in which a participant is still 

compliant if they stopped treatment after experiencing a side effect. However, this decision 

should be dictated by substantive concerns – not merely because positivity is violated.

Counterfactual consistency requires that any variation in how participants did or did not 

comply with the protocol is irrelevant for the effect on the outcome.17 Such variations could 

include taking treatment 7 days instead of 5 days or taking treatment with water, fruit juice, 

or a caffeinated beverage. Consistency might be particularly difficult to assume when the 

comparator group is “standard of care,” which could be defined differently from patient to 

patient.

Beyond the above, we typically also assume no model misspecification. In RCTs with 

noncompliance, data could be complex, due to the presence of numerous time points and a 

large set L. In such cases, researchers often use parametric models, which require strict, 

often unrealistic model form assumptions. Indeed, the primary methods that have been used 

to estimate per-protocol effects, namely inverse probability weighting and g-computation,
1,6,11,15,18–21 generally require the use of parametric models. Unlike the above, though, 

violations of correct model specification are a statistical, rather than causal, concern.22

Any of these assumptions may not be credible for a given trial, and there are a number of 

practical limitations which could preclude one from estimating or identifying the described 

per-protocol effects.5 For instance, insufficient samples of continuously non-adherent 

participants could make estimating parameter F impractical. Small sample sizes in general 

could mean one would be underpowered to detect any difference between parameter A or 

one of its triangulation parameters – not to mention the difficulty in assuming positivity. 

Additionally, one might lack the data one would need to identify the effect of interest. In 

particular, a trial might not measure all the confounders of the relationship between 

adherence and the outcome, and adherence itself may be poorly measured. Such practical 

limitations must be considered prior to estimating any per-protocol effect.

Regardless, these conditions (or a different sufficient set)23 are necessary to identify per-

protocol effects. While most of the assumptions are not testable using observed data, 

sensitivity analyses can be conducted,24,25 and there exist estimators that can relax some of 

these assumptions. For example, the positivity assumption is not required for incremental 

propensity score effects,26 while machine learning can be used with double robust estimators 

to relax parametric modeling assumptions.8,27–30
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Discussion

When assessing the role of compliance to assigned treatment in an RCT, researchers can 

define a wide range of protocols and per-protocol effects. We here provided potential 

contrasts that might be of substantive or methodologic interest and discussed several 

important considerations when attempting to identify per-protocol effects. The key piece 

underlying per-protocol effect estimation is the specification of the protocol, which should 

primarily be based on the research question. All other considerations, including the 

contrast(s) of interest, estimation approach, and ability to meet identifiability conditions, 

follow from the chosen protocol.
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Table.

Summary of six basic per-protocol parameters given randomization to a binary treatment and constant 

compliance or noncompliance across follow-up

Parameters Counterfactual Notation

A E Y r = 1, c = 1 − E Y r = 0, c = 1

B E Y r = 1, c = 1 − E Y r = 0, c = 0

C E Y r = 0, c = 1 − E Y r = 0, c = 0

D E Y r = 1, c = 1 − E Y r = 1, c = 0

E E Y r = 0, c = 1 − E Y r = 1, c = 0

F E Y r = 1, c = 0 − E Y r = 0, c = 0
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