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Key Summary Points

Recently it has been hypothesized that
DPP4 inhibitors can have a beneficial
effect on SARS-CoV-2 infection through
immunoregulating activity.

Experimental study on streptozotocin-
treated rats showed that liraglutide was
able to stimulate the expression of
pulmonary angiotensin converting
enzyme 2 (ACE2) and angiotensin (1–7).

Liraglutide modulated different elements
of the renin angiotensin system (RAS),
significantly increasing ACE2 and Mas
receptor (MasR) mRNA expression in pup
lungs from food-restricted mothers.

Some action mechanisms support the
hypothesis of a protective action of GLP-
1R agonists, capable of mitigating a more
serious clinical course among SARS-CoV-
2-infected individuals with T2DM.

Type 2 diabetes mellitus (T2DM) represents
an important risk factor for a more severe evolu-
tion associated with higher lethality of the
infection from the new coronavirus disease 2019
(COVID-19; caused by severe acute respiratory
syndrome coronavirus 2, SARS-CoV-2), respon-
sible for the current pandemic that originated
from the epidemic which initially affected the
Wuhan region in China in December 2019 [1].
SARS-CoV-2 uses as a receptor for the infection of
respiratory epithelial cells—the angiotensin-
converting enzyme 2 (ACE2) receptor [1]; this
was also the case for SARS coronavirus (SARS-
CoV), responsible for the epidemic that affected
more than 8000 peoplemainly inAsia during the
2002–2003 period [2]. In contrast, Middle East
respiratory syndrome (MERS) coronavirus,
which caused (as of November 2019) 2494 con-
firmed cases of infection reported to the World
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Health Organization and 858 deaths [3], uses as a
cellular receptor—the enzyme dipeptidyl pepti-
dase 4 (DPP4) [4]. This enzyme is able to degrade
glucagon-like peptide 1 (GLP-1), an enterohor-
mone produced by the L cells of the ileum in
response to the intestinal transit of glucose (so-
called incretin effect) [5].

People with T2DM are frequently treated
with orally delivered DPP4 inhibitors drugs
(sitagliptin, vildagliptin, and saxagliptin with
mimetic inhibition mechanisms, and alogliptin
and linagliptin non-mimetic inhibitors) or GLP-
1 receptor agonists (GLP-1 RAs) with daily (ex-
enatide BID, lixisenatide, liraglutide) or weekly
(semaglutide, exenatide LAR, dulaglutide) sub-
cutaneous administration, or once-daily oral
administration (semaglutide) [6, 7]. Recently it
has been hypothesized that these two antidia-
betic drug classes can have a beneficial effect on
SARS-CoV-2 infection. DPP4 inhibitors seem to
act through an immunoregulating activity by
regulating M1/M2 macrophage polarization [8],
whereas GLP-1 RAs have been considered
excellent candidates for the treatment of
patients with COVID-19 with or without T2DM
owing to their multiple beneficial effects on
excessive inflammation-induced acute lung
injury [9].

Indeed, multiple preclinical studies per-
formed in mice and rats with experimental
induced lung injury demonstrated that GLP-1
RAs attenuate pulmonary inflammation,
through inhibitory activity on cytokine release
[10, 11], as a result of their interference with
nuclear factor-kB signaling pathways [12].

In particular, an experimental study con-
ducted on streptozotocin-treated rats showed
that liraglutide was able to stimulate the
expression of pulmonary ACE2 and
angiotensin (1–7) [A(1–7)] and to increase the
production of the lung surfactant proteins A
and B (SP-A and SP-B) [13].

More recently a study conducted in an ani-
mal rat model showed that liraglutide signifi-
cantly restored the SP-A mRNA expression in
pup lungs from food-restricted mothers [14].
Moreover, liraglutide modulated different ele-
ments of the renin angiotensin system (RAS),
significantly increasing ACE2 and Mas receptor

(MasR) mRNA expression in pup lungs from
food-restricted mothers [14].

Several studies have demonstrated the pro-
tective role of ACE2 in acute respiratory distress
syndrome (ARDS) in many lung diseases par-
tially as a consequence of restored A(1–7) pro-
duction [15], and it has been suggested that
ACE2 can favorably modulate the SARS-CoV
infection [16].

In relation to SARS-CoV-2 infection, it has
been hypothesized that the RAS dysregulation
can be an important causative event leading to
ARDS and multi-organ dysfunction [17].

Both ACE and ACE2 are zinc metallic
enzymes. ACE cleaves C-terminal dipeptide
residues from susceptible substrates, originating
in angiotensin II (AII) from angiotensin I with
vasoconstrictor action mediated by AII recep-
tor 1 (AT1R) activation [17]. ACE2 acts as a
simple carboxypeptidase that can hydrolyze AII
to A(1–7) which exerts numerous salutary and
opposite effects to those of AII through an effi-
cient binding with the G protein-coupled
receptor MasR [18]. Therefore, the
ACE2 ? A(1–7) ? MasR axis is counter-regula-
tory to the ACE ? AII ? AT1R axis [17]. More-
over, the ACE2 ? A(1–7) ? MasR axis activity
has an important antithrombotic effect through
prostacyclin and nitric oxide production [19]
which opposes the pro-thrombotic effects of AII
[20].

AII is able indeed to determine the overpro-
duction of interleukin-6 (Il-6), tumor necrosis
factor alpha (TNFa) and other pro-inflammatory
cytokines [21]. Moreover it is noteworthy to
consider that AII is also able to activate the
disintegrin and metalloproteinase domain-con-
taining protein 17 (ADAM17) Zn-dependent
enzyme, which cleaves the membrane-an-
chored ACE2, thereby releasing a circulating
form of ACE2 with loss of the catalytic activity
of the remaining part of the membrane-an-
chored enzyme [22]. The endocytosed spike
SARS-CoV-2 viral proteins stimulate ADAM17
activity, too [22]. Moreover, ADAM17 (also
known as TNFa-converting enzyme) is able to
mediate the extracellular domain shedding and
activation of TNFa, which exhibits auto- and
paracrine functionality [22]. TNFa activation of
its tumor necrosis factor receptor represents a
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third pathway elevating ADAM17 activity, thus
increasing ACE2 shedding and impaired pro-
duction of A(1–7), with further RAS-mediated
detrimental effects in a positive feedback cycle
[22]. The enhanced AII and TNFa activation,
along with systemic cytokines released as a
result of SARS-CoV-2 infection, can indeed
exacerbate the ‘‘cytokine storm’’ ultimately
leading to ARDS [22] (Fig. 1).

Therefore the capacity of GLP-1 RAs to
enhance the activity of the ACE2 ? A(1–7)-
? MasR axis by directly stimulating ACE2
expression would contribute to reduce the pro-
gression of inflammatory and thrombotic pro-
cesses frequently associated with the poor
prognosis of SARS-CoV-2 infection [23],
through the fostering of an antithrombotic and
anti-inflammatory milieu.

It should also be considered that ACE2 is
mainly expressed by type II pneumocytes,
which represent the Sp-A- and SP-B-producing
cells and the progenitor cells of the type I
pneumocytes [17]. The damage of type II
pneumocytes due to SARS-CoV-2 infection
causes loss of lung surfactant, alveolar collapse,
and impaired tissue repair capacity.

The aforementioned ability of GLP-1 RAs to
induce the synthesis of thepulmonary surfactant
proteins [13, 14], which exhibit anti-inflamma-
tory and immune-modulating protective prop-
erties against bacterial and viral infections [24],
can directly preserve the type II pneumocytes
with consequently ARDS-preventing effect.

In addition the expression of ACE2 by
intestinal enterocytes, where ACE2 has a RAS-
independent function, regulating the intestinal
amino acid homeostasis and the gut micro-
biome [25], can represent a second site of SARS-
CoV-2 infection, with consequently intestinal
barrier leakage and bloodstream invasion from
endotoxin and other intestinal bacterial
metabolites, exacerbating the multi-organ dys-
function and septic shock [22]. Therefore, the
ability of GLP-1 RAs to restore the
ACE2 ? A(1–7) ? MasR axis can exert a pro-
tective intestinal effect, with a further favorable
effect on the clinical course of SARS-Cov-2
infection.

In conclusion, it is nowadays unclear whe-
ther GLP-1 RAs can play a role in modulating
SARS-CoV-2 infection, but it is conceivable that
administration of these drugs can exert a pul-
monary protective effect, as it has been

Fig. 1 Possible role of dysregulation of RAS during SARS-CoV-2 infection at lung level and potential beneficial effects of
GLP-1 RAS therapy (see text for details)

Diabetes Ther (2020) 11:1909–1914 1911



hypothesized regarding other therapeutic
approaches to increase the ACE2 ? A(1–7)-
? MasR axis activity [22, 26]. Particularly
regarding as the possible role of AT1R blockers
(ARBs), it has been hypothesized that chronic
treatment with ARBs, already in place in
patients infected with SARS-CoV-2, would
stimulate greater ACE2 activity (ACE2 is the
recognized viral receptor), and that this para-
doxically would play a protective role against
acute lung injury due to viral infection rather
than promoting it [27].

Moreover the current position statements of
the Council of Hypertension of the European
Society of Cardiology (www.escardio.org) clarify
that ACE inhibitors and ARBs should be con-
tinued during SARS-Cov-2 infection [11]. Two
trials of losartan as additional treatment for
SARS-CoV-2 infection in hospitalized
(NCT04312009) or non-hospitalized
(NCT04311177) patients have been announced
and it is hoped that the results of these trials
will answer this question [17].

Nevertheless, regarding the protective role of
these antihypertensive drugs, it is noteworthy
to consider that they lack any action on the
synthesis of pulmonary surfactant proteins and
lack direct inhibitory activity on the synthesis
of pro-inflammatory cytokines, exerting anti-
inflammatory properties through the inhibition
of unbalanced AT1R activation [28]. It is there-
fore conceivable that the GLP-1 RAs can exert
an adjunctive anti-inflammatory and anti-
thrombotic activity beyond the enhancing
effect of ACE2 ? A(1–7) ? MasR axis activity.

To better explore this issue the percentage of
people with T2DM treated with GLP-1 RAs in
the general population should be compared
with that of inpatients with T2DM presenting
serious symptoms of SARS-CoV-2 infection, as
already suggested [9, 11]. If the latter percentage
turned out to be significantly smaller, this
would support the hypothesis in favor of a
protective action of GLP-1 RAs, capable of mit-
igating a more serious clinical course among
SARS-CoV-2-infected individuals with T2DM.
As shown in Fig. 1, SARS-CoV-2 depresses ACE2
activity, thus imbalancing the RAS towards
predominantly ACE activity and ADAM17 acti-
vation. This leads to a pro-thrombotic milieu

and overproduction of pro-inflammatory
cytokines that, along with systemic cytokines
released as a result of SARS-CoV-2 infection, can
exacerbate the ‘‘cytokine storm’’. The cited pre-
clinical studies have shown that GLP-1 RAs can
significantly increase ACE2 and MasR mRNA
expression at pulmonary level [13, 14]. Thus,
increased ACE2 levels could shift the RAS
toward A(1–7) production exerting two differ-
ent protective effect: increased prostacyclin and
nitric oxide levels, which could reduce the
thrombotic complications of SARS-Cov-2 infec-
tion, and reduced AT1R activation counteract-
ing its detrimental effects.

Finally, it is conceivable that the rebalancing
of ACE2 ? A(1–7) ? MasR axis activity
through ACE2 expression enhancement can at
least partially account for the well-documented
anti-atherosclerotic and cardiovascular protec-
tive effects of GLP-1 RAs [29]. These ACE2-me-
diated favorable effects are entirely insulin-
independent and may be of particular relevance
in those pathological conditions of reduced
ACE2 production and RAS dysregulation like
T2DM. In addition, it is conceivable that the
documented renal protective effects of GLP-1
RAs [30] may also be at least partially mediated
by the stimulation of ACE2 and A(1–7) expres-
sion. Further clinical and experimental studies
are therefore warranted in the near future to
demonstrate the importance of ACE2 in medi-
ating the favorable multi-organ extraglycemic
effects of GLP-1 RAs.

This study was conducted in conformance
with good clinical practice standards. No
human or animal data are present in the paper
for which compliance with the ethical guideli-
nes of the Helsinki Declaration and subsequent
versions are not applicable.
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