'l) Check for updates

Increased Power and Accuracy of Causal Locus
Identification in Time Series Genome-wide Association
in Sorghum?!'°"EN!

Chenyong Miao,? Yuhang Xu,” Sanzhen Liu,c Patrick S. Schnable,? and James C. Schnable®?3

’Quantitative Life Science Initiative, Center for Plant Science Innovation, Department of Agronomy and
Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

PDepartment of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green,
Ohio 43403

“Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506

9Department of Agronomy, Iowa State University, Ames, lowa 50011

ORCID IDs: 0000-0002-0904-3707 (C.M.); 0000-0002-9513-855X (S.L.); 0000-0001-9169-5204 (P.S.S.); 0000-0001-6739-5527 (J.C.S.)

The phenotypes of plants develop over time and change in response to the environment. New engineering and computer vision
technologies track these phenotypic changes. Identifying the genetic loci regulating differences in the pattern of phenotypic
change remains challenging. This study used functional principal component analysis (FPCA) to achieve this aim. Time series
phenotype data were collected from a sorghum (Sorghum bicolor) diversity panel using a number of technologies including
conventional color photography and hyperspectral imaging. This imaging lasted for 37 d and centered on reproductive
transition. A new higher density marker set was generated for the same population. Several genes known to control trait
variation in sorghum have been previously cloned and characterized. These genes were not confidently identified in genome-
wide association analyses at single time points. However, FPCA successfully identified the same known and characterized
genes. FPCA analyses partitioned the role these genes play in controlling phenotypes. Partitioning was consistent with the
known molecular function of the individual cloned genes. These data demonstrate that FPCA-based genome-wide association
studies can enable robust time series mapping analyses in a wide range of contexts. Moreover, time series analysis can increase

the accuracy and power of quantitative genetic analyses.

Quantitative genetic approaches are widely used
across all domains of biology to identify genetic loci
controlling variation in target traits. Many genes where
naturally occurring functionally variable alleles control
variation in agronomically relevant traits have been
identified. Both quantitative trait locus (QTL) mapping
(structured populations) or genome-wide association
studies (GWAS; association panels) have been used to
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identify these loci (Huang et al., 2010; Chen et al., 2016;
Navarro et al., 2017). Collecting phenotypic data from
the hundreds to thousands of accessions required for
QTL mapping or GWAS has historically been a time-
and resource-intensive undertaking. Hence, most at-
tempts to identify genes controlling variation in a target
trait employ data from a single time point, usually ei-
ther at maturity or after a fixed number of days from
planting. However, recent engineering advances, such
as wearable devices, automated phenotyping green-
houses, field phenotyping robots, unmanned aerial
vehicles, and computer vision advances, are lowering
the barriers and activation energy required to score
traits from multiple points throughout development
(Furbank and Tester, 2011; Moore et al., 2013; Honsdorf
et al., 2014; Holman et al., 2016; Fernandez et al., 2017;
Orenetal, 2017; Feldman et al., 2017, 2018). Plant growth
and development is a dynamic process, responding to
environmental perturbations. It is regulated by differ-
ent suites of genes at different times and in different
environments (Yan et al.,, 1998, Wu and Lin, 2006;
Moore et al., 2013; Wiirschum et al., 2014; Feldman
et al., 2017, 2018; Muraya et al., 2017). The availabil-
ity and use of time series trait data from mapping and
association populations has the potential to increase
the accuracy and power of gene mapping studies
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(Moore et al., 2013; Sang et al., 2019). It may also
provide greater insight into the biologically distinct
roles different loci play in determining final phenotypes.
However, integrating time series data into statistical
frameworks originally envisioned for single-trait mea-
surements across large populations is not straight-
forward. A range of approaches are currently being
explored by the research community.

There are several approaches to the use of time-
series phenotypic data in mapping studies. The most
straightforward is to conduct QTL mapping or GWAS
separately at each time point and then summarize the
mapping results (Yan et al., 1998; Wu et al., 2010;
Osman et al., 2013). However, this approach is not ro-
bust when faced with missing data or when subsets of
the population are scored on alternating time points.
This procedure also requires complex approaches to
multiple testing correction given the partially corre-
lated nature of both linked genetic markers and mea-
surements of the same trait in the same individuals at
multiple time points. A second widely employed
method is to summarize patterns of change over time
using predefined functions with discrete numbers of
variables (Ma et al., 2002; Wu et al., 2004; Paine et al.,
2012). QTL mapping or GWAS can then be conducted
for the values of the different variables within the
equation, as that function is fit to data from different
individuals. This approach can be powerful and is able
to impute missing data points in individuals. However,
this approach can fail when the pattern of phenotypic
change over time follows an unknown function, is too
complex to fit, or does not conform to the expected
function (Feldman et al., 2018). Functional principal
component analysis (FPCA), as a more general method,
provides some of the strengths of fitting parametric
functions sharing data across time points. This includes
the ability to impute missing values without requiring
that patterns of phenotypic change over time fit any
particular function (Kwak et al., 2016; Xu et al., 2018a,
2018b). A variation of nonparametric functional prin-
cipal component-based mapping has been successfully
employed to identify loci controlling the gravitropism
response in Arabidopsis (Arabidopsis thaliana) seedlings
(Moore et al., 2013; Kwak et al., 2016). Kwak et al. (2016)
concluded that dimensional reduction via FPCA may
increase the power to detect QTL in recombinant inbred
populations relative to prior approaches that include
trait data from each time point. Muraya et al. (2017)
employed an FPCA method adapted from Kwak et al.
(2016) to identify several trait-associated single nucleo-
tide polymorphisms (SNP) for maize (Zea mays) biomass
accumulation in vegetative development. This repre-
sented an advancement over parametric regression,
which had not been able to identify any trait-associated
SNPs using the same trait and marker dataset. However,
none of the identified loci coincided either with markers
identified in single time point analyses or with known
loci controlling the trait of interest.

Three-cloned sorghum (Sorghum bicolor) genes con-
trolling height (dwarfl [Dw1], dwarf2 [Dw?2], and dwarf3
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[Dw3]) are segregating in the sorghum association
panel (SAP). Dwl (Sobic.009G229800) was cloned by
two independent fine-mapping studies (Hilley et al.,
2016; Yamaguchi et al., 2016). The function of the Dw1
gene appears to act in the brassinosteroid signaling
pathway to influence sorghum plant height by reduc-
ing cell proliferation activity in the internodes (Hirano
etal., 2017). Dw2 (Sobic.006G067700) on chromosome 6
is in tight linkage with maturityl (Ma1; Sobic.006G057866),
a gene with a large effect on sorghum flowering time. In
many cases, both loci are introgressed together during the
backcrossing and conversion process of adapting tropical
sorghum germplasm to grow in temperate latitudes
(Quinby, 1974; Higgins et al., 2014). The Dw?2 gene encodes
a protein kinase that is homologous to KIPK in Arabidopsis
and influences sorghum plant height by reducing the
length of internodes (Hilley et al., 2017). Mal gene has the
largest impact on flowering time through encoding the
pseudoresponse regulator protein 37 (PRR37) to modulate
flowering time in sorghum (Murphy et al, 2011). Dw3
(Sobic.007G163800) encodes a MDR transporter ortholo-
gous to brachytic2 in maize and appears to influence cell
elongation through a role in polar auxin transport (Multani
et al., 2003). Previous sorghum height mapping studies
identified epistatic interactions between Dw1 and Dw3, but
no significant epistatic interactions have been reported
between Dw?2 and either Dw1 or Dw3 (Brown et al., 2008;
Hilley et al., 2016; Yamaguchi et al., 2016).

In this study, we employed a new approach to FPCA
of nonparametric regression data (Xu et al., 2018a). The
procedure’s effectiveness at both controlling false pos-
itives and identifying known true positives in sorghum
was evaluated. A phenotypically constrained subset of
the SAP was utilized (Casa et al., 2008). This population
was grown and imaged through vegetative and re-
productive development in a high-throughput phe-
notyping facility. Organ-level semantic segmentation
from hyperspectral images was employed to extract
phenotypic values (Miao et al., 2020). Genome-wide
association using the functional principal component
scores derived from the FPCA approach described by
Xu et al. (2018a) could be used to successfully identify
all three known dwarf genes. Three novel signals were
also detected. The signal on chromosome 3 was inde-
pendently validated in data from a previous study of a
different sorghum population. These results favorably
contrasted with terminal phenotyping or time point by
time point analyses in the same population and provide
additional insight into the distinct biological roles of three
known dwarf genes in determining sorghum height.

RESULTS

Loss of Association Power in Phenotypically
Constrained Populations

The classical sorghum dwarfing genes have large
effects on plant height and are segregating within the
SAP (Morris et al., 2013; Li et al., 2015). Field-collected
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plant height data for 357 lines from the SAP correctly
identified both Dw1 and Dw?2 (Fig. 1A) as well as a third
previously reported locus known to influence variation
in height in this population (Li et al., 2015). Thirty-eight
lines from the field study exceeded the physical limit on
maximum height for the imaging facility employed in
this study (Fig. 1B). After the exclusion of these 38 lines
as well as an additional 27 lines that failed to germinate
or thrive in the greenhouse, field-measured height data
for the remaining 292 lines was still sufficient to identify
Dw1, albeit with substantially reduced statistical sig-
nificance. However, after the removal of these pheno-
typically extreme lines, signals from Dw?2 and the other
previously reported height-controlling loci were no
longer statistically significant (Fig. 1C). Dw3, located on
the long arm of chromosome 7, was not identified in
association analyses using either field data on terminal
plant heights from the complete set of 357 SAP lines or
in analyses of data only from the phenotypically con-
strained subset of SAP lines employed for greenhouse
experiments. Excluding lines in the mapping popula-
tion not only decreased the total population size, but
also reduced the minor allele frequency of SNPs near
genes known to control variation in sorghum height
(Supplemental Fig. S1).

Genetic Associations with Sorghum Height at Different
Time Points

The phenotypically constrained subset of 292 SAP lines
was imaged at the University of Nebraska’s Greenhouse
Innovation Center. Imaging lasted ~1 month and cen-
tered on reproductive development. Each plant was im-
aged using a set of five cameras, including top views
and side views from multiple angles and hyperspectral
imaging from a single side view perspective (Ge et al.,
2016; Liang et al., 2018; Miao et al., 2020). Two methods

KHL: Mal}iDw2

were employed to extract plant height at individual time
points. The first was whole-plant segmentation, an ap-
proach widely used in plant image analysis (Gehan et al.,
2017): segmentation of an image into plant pixels and not
plant pixels and measuring height by the difference be-
tween the minimum and maximum y axis values for plant
pixels (Fig. 2A). The second approach was a recently de-
scribed method (Miao et al., 2020) to semantically seg-
ment plant pixels of sorghum plants into separate stalk,
leaf, and panicle classes (Fig. 2B; Supplemental Fig. S2).
There are many different ways to measure the plant
height (Brown et al., 2008; Miao et al., 2020). Generally,
researchers in the field have preferred to benchmark on
the height of stalk, height to the uppermost leaf collar, or
the height to the tip of the inflorescence rather than the
height to the highest leaf tip. An advantage of the latter
method, semantic segmentation, is that it can be used to
measure a version of plant height, which more closely
approximates how height is measured in the field (Miao
et al,, 2020). Sorghum plant height measured by whole-
plant segmentation tended to oscillate over time as new
leaves emerged, whereas sorghum plant height measured
via the semantic segmentation method tended to be
monotonically increasing (Fig. 2C). Generally, researchers
in the field have preferred to measure the height of stalk
or the height of inflorescence rather than the height to the
highest point on the plant, which is often a leaf tip. The
semantic segmentation approach makes it possible to
measure height using a definition for plant height that
corresponds to the definition of plant height used by
sorghum geneticists in the field (Miao et al., 2020).

A second challenge faced by many time series
imaging studies is the maximum daily throughput
provided by fixed imaging infrastructure. In this par-
ticular study, individual plants were divided into two
groups imaged on alternating days. Therefore, there
was no single time point at which image or height data
were available for all individual plants (Supplemental
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Figure 1. Reduced power to identify causal loci in phenotypically constrained populations. A, A genome-wide association
analyses for plant height, defined as the distance between the soil surface and the top of the panicle at maturity, using field
collected data for 357 lines from SAP and the set of genotype call data used in this study. The location of Dw1, Dw2, and MaT are
indicated with dashed lines, as is an additional known height locus (KHL) identified in multiple prior GWAS conducted on height
in this population using different genetic marker data. B, Distribution of observed heights for the 357 lines employed for asso-
ciation analysis in A. The set of 38 lines above 2 m in height are marked in red. C, A genome-wide association analysis identical to
that shown in A but with the exclusion of lines with the field heights >2 m (38 lines) and those which we were not able to

successfully germinate and phenotype in this study (27 lines).
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Figure 2. Different methods to define and measure plant height produce different outcomes. A, Conventional RGB images of a
single sorghum plant (Pl 576401) taken on eight different days spanning the transition from vegetative to reproductive devel-
opment. Pixels identified as “plant” through whole plant segmentation are outlined in red. Measured plant height, defined as the
distance between the plant pixels with the smallest and greatest y axis value, is indicated by the horizontal blue bar in each image.
B, Semantically segmented images of same plant taken on the same day from a moderately different viewing angle using a
hyperspectral camera. Pixels classified as “leaf” are indicated in green, pixels classified as “stem” are indicated in orange, and
pixels classified as “panicle” are indicated in purple. Measured plant height, defined as the distance between stem or panicle
pixels with the smallest and greatest y axis value, is indicated by the horizontal red bar in each image. C, Observed and imputed
plant heights for the same sorghum plant on each day within the range of phenotypic data collection. Blue and red circles indicate
measured height values from whole plant segmentation of RGB images and semantic segmentation of hyperspectral images,
respectively. Solid blue and solid red lines indicate height values imputed for unobserved time points using nonparametric re-

gression for whole plant and semantic height datasets, respectively.

Fig. S3A). In order to estimate the height of each indi-
vidual plant at each individual time point, nonpara-
metric regression was employed to impute all missing
data points (Supplemental Fig. S3B). To assess the ac-
curacy of this imputation, the percent of variance in
height explained by genetic factors was assessed at in-
dividual time points for subsets of the population using
either height measured directly from images or height
imputed from nonparametric curves. In most cases,
the proportion of variance in imputed height that could
be explained by genetic factors matched or exceeded
the equivalent value for directly measured height
(Supplemental Fig. 54). This is consistent with previous
work, which found that missing values in time-series
plant phenomics data can be imputed accurately from
nonparametric curves (Xu et al., 2018b).

Independent genome-wide association analyses
were conducted for imputed sorghum height as mea-
sured via semantic segmentation on each day from 41 to
76 d after planting (DAP). Consistent with observations
from field-collected plant height data, almost no sig-
nificant trait/marker associations were observed in the
analyses for 65 to 76 DAP (Supplemental Fig. S5;
Supplemental File S1). In the early days of the experi-
ment, statistically significant signals were identified all
over the genome, likely as a result of extreme height
values for a small number of lines. Those lines experi-
enced reproductive transition and panicle emergence
prior to the start of imaging (Supplemental Fig. S6).
Excluding extreme lines led to the identification of
signals near Dwl, Dw3, and Ma3 in data from some
early time points mixed in among approximately a
dozen other repeatedly identified loci across the ge-
nome. A loss of detectable genetic associations between

Plant Physiol. Vol. 183, 2020

54 and 66 DAP corresponded roughly to booting and
panicle exertion in many sorghum accessions. The pe-
duncle length is under the control of a distinct set of
genetic factors from plant height below the flag leaf (Li
et al., 2015), and the timing of panicle exertion is under
the control of a third distinct set of factors, namely
maturity genes (Quinby and Karper, 1945; Quinby,
1967). We speculate that, once a large proportion of
lines advanced to the booting stage or beyond, the role
these three sets of genetic factors played in determining
plant height diluted the total variance attributable to
any one single genetic locus, reducing power to identify
statistically significant associations.

A second set of analyses were conducted where
nonparametric curves calculated for individual plants
were aligned based on time relative to panicle emer-
gence (e.g. days after panicle emergence [DAPE])
rather than time relative to planting (DAP; Fig. 3;
Supplemental File S1). Given variation in the date of
panicle emergence and the dangers of extrapolating
nonparametric curves beyond the range of observed
data points, it must be noted that this approach meant
that data were available only for distinct subsets of the
original 292 phenotyped sorghum lines at any given
time point. Day-by-day GWASs were conducted from
14 d prior to panicle emergence to 10 d after panicle
emergence, as described above (Fig. 4). No known sor-
ghum flowering-time loci were identified using this ap-
proach, with the exception of Mal. However, due to the
strong linkage between Mal and Dw2 genes based on
previous studies, it is not possible to exclude the possi-
bility that the significantly associated markers near Mal
reflect the effect of Dw2 on plant height (Quinby, 1974;
Higgins et al., 2014). The signal corresponding to Dw?2
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Figure 3. Comparison of change in plant height over time for members of the SAP population when anchoring either on planting
date (DAP) or panicle emergence date (DAPE). A, Growth curves imputed using nonparametric regression for 20 representative
sorghum genotypes, anchored for comparison based on sharing the same date of planting. B, Growth curves imputed using
nonparametric regression for the same 20 sorghum genotypes shown in A, anchored for comparison based on sharing the same
date of panicle emergence. Lines with identical colors in A and B indicate data taken from the same plants. Regression lines are
not extended beyond the range of observed data points. As panicle emergence occurred less than 18 d after the start of imaging for
some lines and less than 17 d before the last day of imaging for others, curves in B are incomplete.

was identified in the DAPE GWAS analysis for 6 d be-
tween —14 and —5 DAPE with the signal 323 kb from the
known locus. The signal corresponding to Dwl was
identified from —14 to +1 DAPE and was located only
15 kb away from the known location of Dw1 on sorghum
chromosome 9. This was closer than the 114-kb distance
between the gene and the closest significant SNP iden-
tified in DAP GWAS results (Supplemental Fig. S6). Dw3
did not show any statistically significant signal in the
DAPE-based analysis but was identified in some time
points when plant data were compared using DAP.
Hence, whereas it was possible to identify all three
known true-positive genes controlling sorghum plant
height through genome-wide association analyses at
individual time points, in no case were all three identi-
fied in a single analysis across the ~60 total GWASs ei-
ther conducted at different time points or using different
developmental landmarks. Many other confounding
associations were also identified. In many cases, both the
single most significantly associated SNP and the “hot
zone” of SNPs all showing strong significant association
with trait variation were quite distant from the known
causal locus. However, they were still within the range
expected given observed linkage disequilibrium decay
rates in sorghum (Morris et al., 2013; Miao et al., 2019).

Mapping Genes Controlling Variation in Growth Curves

All three known true positive height genes were
identified by sequential time point-based GWAS.
However, there was no single time point, nor any single
treatment of the data (DAP or DAPE), where all three of
said genes were identified. Many other loci not previ-
ously reported to be linked to height were also identi-
fied with equal or greater statistical support to known
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true positive genes across many time points. In order to
conduct the individual time point analyses, it was
necessary to fit nonparametric curves to each individ-
ual plant to impute unobserved values. Functional
principal component analyses (Fig. 5A) was employed
to decompose variation among the curves into four
functional principal components that combined to ex-
plain >99% of the total variance in curve shape among
the plants in the population. The first two functional
principal components were able to explain >97% of
total variation (Fig. 5, B and C).

As the first two functional principal components
described the vast majority of the variation in patterns
of change in plant growth over time, genome-wide as-
sociation analyses were conducted to identify genes
controlling variation in these two phenotypic descrip-
tors (Fig. 6; Supplemental File S1). Sorghum lines with
negative scores of the first functional principal com-
ponent tended to be taller overall and exhibited greater
increases in height during panicle emergence than lines
with positive scores of the second functional principal
component (Fig. 6, A and B). Both Dwl and Dw2
showed statistically significant associations with vari-
ation in the first functional principal component, as did
a single locus on the short arm of chromosome 3
(Fig. 6E). Sorghum lines with negative functional
principal component two scores tended to be taller
prior to panicle emergence but exhibited limited addi-
tional increases in height during panicle emergence.
Moreover, lines with positive functional principal
component two scores started out shorter but exhibited
big increases in height during panicle emergence. This
second set of lines was taller at the end of the experiment
(Fig. 6, C and D). Dw3 showed a statistically significant
association with variation in the second functional prin-
cipal component, as did two other regions of the genome

Plant Physiol. Vol. 183, 2020
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Figure 4. Several known causal loci show statistically significant as-
sociations with plant height when sequential genome-wide association
studies are conducted using data anchored to the date of panicle
emergence. A summary of where statistically significant trait-associated
SNPs were identified in separate genome-wide association studies
conducted using height data for each day between —14 to +10 DAPE.
Each vertical column summarizes the results from one of the 25 inde-
pendently conducted genome-wide association studies. Each sorghum
chromosome is divided into 16 bins containing equal numbers of SNP
markers. Each cell in each vertical column is color coded based on the
single most significant P-value observed for any marker within that bin
on that day. Light pink cells indicate bins that contain no markers that
exceed the multiple testing-corrected threshold for statistical signifi-
cance. The locations of the two cloned dwarf genes and the one cloned
maturity gene which were successfully identified in analysis of data
from at least one time point are indicated with horizontal dashed lines.

close to the centromeres of sorghum chromosomes
5 and 9 (Fig. 6F). As was seen in Figure 3, none of the
hits identified here overlapped with known sorghum
maturity genes with the exception of Mal. However,
another potential explanation was that previously
uncharacterized loci were controlling flowering time
in the environmental conditions used to conduct this
study. A genome-wide association analysis for days to
panicle emergence identified three well-supported
loci: Mal on chromosome 6 and two loci on sorghum
chromosomes 1 and 10. These loci do not correspond
to known sorghum maturity genes (Supplemental Fig.
57). However, with the exception of Mal, these loci
did not overlap with regions of the genome associ-
ated with height or patterns of change in height when
using panicle emergence as a developmental land-
mark (Figs. 3 and 6).

The distance between the nearest SNP significantly
associated with functional principal component one
and Dw1 (Sobic.009G229800) is approximately 35 kb.
The hot region of SNPs on chromosome 6, which is
significantly associated with functional principal
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component one, spans both Dw2 (Sobic.006G067700)
and Mal (Sobic.006G057866). The novel hit for func-
tional principal component one on chromosome 3 was
also identified in sequential DAPE GWAS analysis
(Fig. 4). The same small interval on chromosome 3
where this novel hit was identified was previously
linked to variation in sorghum height in an indepen-
dent QTL mapping population (Brown et al., 2006).
This hit is associated with a large (17 complete genes or
gene fragments) tandem array of wall-associated kinase
(WAK) genes. WAKSs play a role in cell elongation and
expansion, and previous antisense experiments target-
ing genes in this family in Arabidopsis produced dwarf
phenotypes (Lally et al., 2001; Wagner and Kohorn,
2001). The distance between the nearest SNP signifi-
cantly associated with functional principal component
two and Dw3 (Sobic.007G163800) is approximately 39
kb. The other two significant signals for functional
principal component two on chromosome 5 and 9 were
not associated with any immediately obvious candidate
genes. This may reflect the location of these hits in low-
recombination/high linkage-disequilibrium regions of
the genome, expanding the potential distance between
a trait-associated genetic marker and the causal locus.

DISCUSSION

Engineering and computational advances are mak-
ing it increasingly practical to dynamically monitor the
trait values for organisms across time and develop-
ment. Time series data provide opportunities to un-
derstand the role individual genetic loci play in shaping
phenotype. At the same time, extracting the greatest
possible insight from time series data requires modifi-
cations to quantitative genetic approaches traditionally
employed for linking genotypic variation to phenotypic
variation across an entire population at a single point in
time. Time series data from a phenotypically con-
strained diversity population in sorghum was used to
evaluate a number of approaches for leveraging time
series data to identify and characterize how different
loci play different roles in determining phenotype at
different stages of development. A key feature that
enabled the analyses was that three known large-effect
loci controlling height were segregating in the popula-
tion of plants analyzed. However, these loci were not
consistently identified in conventional single-point
GWAS given the phenotypically constrained set of the
plants employed in the study (Fig. 1). In field studies, it
is often necessary to restrict the range of phenotypic
diversity exhibited by an association population key
trait in order to obtain meaningful and comparable trait
data in a single environment (Hansey et al., 2011). Ar-
tificial selection also tends to reduce the range of phe-
notypic variation present within elite populations used
for crop improvement (Yamasaki et al., 2007).

Different plants proceed through different stages of
their life cycle at different rates. Comparisons across
varieties must, explicitly or implicitly, employ life-cycle
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Figure 5. Two functional principal components explain >97% of variance in the sorghum growth curves observed in this study.
Functional principal component analysis seeks to describe the pattern of change in height over time of each observed plant using
a mean function combined with variable weightings of a set of eigenfunctions. A, Comparison of the empirical mean function
(red) for all growth curves observed in this study (gray) and the mean function estimated using functional principal component
analysis (blue). B, lllustration of how changing the score for functional principal component one alters the resulting growth curve.
C, Illustration of how changing the score for functional principal component two alters the resulting growth curve.

landmarks to enable comparisons across individuals. In
many field studies, traits are collected from terminal-
stage plants, using physiological maturity as the life-
cycle landmark for comparisons across individuals. In
several other studies, including many greenhouse- or
growth chamber-based ones, comparisons are per-
formed at a fixed number of days after planting or days
after germination, i.e. using planting or germination as
the life cycle landmark. The SAP employed in this study
is sampled primarily from sorghum conversion lines
collected from around the world (Casa et al., 2008).
Despite the introgression of photoperiod insensitivity
loci as part of the conversion process, lines vary sig-
nificantly in total days spent in vegetative development
before transitioning to reproductive development. We
experimented with using either time of planting or time
of panicle emergence as the life cycle landmark for
phenotypic comparisons. For these particular analyses,
using panicle emergence as a landmark provided sig-
nificantly cleaner results with identification of known
height-related loci (Fig. 4). In general, time series trait
data enable researchers to experiment with using dif-
ferent landmarks for comparisons across individuals in
a population. The correct choice in any given case will
depend on the specific goal of the analyses.

Plant heights at different time points were extracted
from hyperspectral images using a semantic segmen-
tation approach (Miao et al., 2020). Compared to widely
used thresholding-based whole-plant segmentation
approaches in RGB (red-green-blue) images, semantic
segmentation is able to classify each plant pixel to the
corresponding organ, which provides more plant
height estimations at different stages of development.
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These estimations are more comparable to measure-
ments made by hand by biologists. The approach
shows generalizability within sorghum between ma-
ture plants and plants at the late vegetative stage, prior
to visible reproductive development but after clear leaf
and stalk separations (Miao et al., 2020). However, one
source of error with this classification approach is a
tendency to misclassify leaf midribs as stem pixels,
particularly early in development. In early vegetative
development of sorghum, the shoot apical meristem
remains below the soil surface, and the apparent stem is
simply a whorl of multiple leaf sheaths. As the dataset
evaluated here consists of plants from 40 DAP on-
wards, it is not possible to draw strong conclusions
about how this approach would perform for sorghum
seedlings.

Simulation studies based on fitting parametric
models have demonstrated that integrating longitudi-
nal measures of phenotypes in a single population can
provide increased resolution and power to identify
QTLs (Sang et al., 2019). Here, we employed nonpara-
metric models that required fewer initial assumptions
about the pattern of how phenotypes change over time
(Yang et al., 2009). Like parametric models, nonpara-
metric models can be used to accurately impute trait
values at unobserved time points (Xu et al., 2018b). This
enables the combined analyses of time data from larger
populations given a fixed capacity in terms of number
of individuals phenotyped per day. Relative to previ-
ously published functional principal component anal-
yses, the statistical approach employed here is robust to
small with uneven numbers of time point observations
per sample.

Plant Physiol. Vol. 183, 2020
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Figure 6. Mapping genes associated with variation in functional principal component scores among sorghum genotypes. A,
Distribution of functional principal component one scores among the 292 genotypes phenotyped as part of this study. Genotypes
with the most negative values for functional principal component one are indicated in red, and genotypes with the most positive
values for functional principal component one are indicated in blue. B, Growth curves for a subset of genotypes with the most
negative values for functional principal component one are indicated in red. Growth curves for a subset of genotypes with the
most positive values for functional principal component one are indicated in blue. C, Distribution of functional principal
component two scores among the 292 genotypes phenotyped as part of this study. Genotypes with the most negative values for
functional principal component two are indicated in red, and genotypes with the most positive values for functional principal
component two are indicated in blue. D, Growth curves for a subset of genotypes with the most negative values for functional
principal component two are indicated in red. Growth curves for a subset of genotypes with the most positive values for functional
principal component two are indicated in blue. E, Results of conducting a genome-wide association analysis for functional
principal component one scores. F, Results of conducting a genome wide association analysis for functional principal component
two scores. In Eand F, the positions of three cloned dwarf genes Dw1, Dw2, and Dw3 as well as the cloned maturity gene MaT are
indicated using vertical dash lines. Horizontal dash lines indicate multiple testing corrected cutoff of a statistically significant

association.

GWASs based on functional principal component
weightings assigned to the time series data from indi-
vidual plants, collected on separate days, successfully
identified all three known true positive genes control-
ling height in sorghum. Both Dw1 and Dw2 were as-
sociated with variation in the first functional principal
component of sorghum height, which exhibited a con-
sistent effect on height both before and after panicle
emergence and exertion (Fig. 6, A, B, and E). Dw3 was
instead associated with the second functional principal
component of sorghum height, which exhibited oppo-
site directions of effect on height before and after pan-
icle emergence and exertion (Fig. 6, C, D, and F).
Previous studies suggest that epistasis exists between
Dwl and Dw3, but they are thought to act through
different mechanisms or pathways to influence sor-
ghum plant height (Yamaguchi et al., 2016; Hirano
et al.,, 2017). Dw1 influences plant height through the
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brassinosteroid signaling pathway (Hirano et al., 2017).
It reduces the length of all internodes by reducing the
number of cells in each internode (Hilley et al., 2016;
Yamaguchi et al., 2016). However, Dw3 and its maize
ortholog brachytic2 appear to influence plant height
through auxin transport. Dw3 primarily reduces the
lengths of lower internodes rather than all the inter-
nodes and acts by decreasing the length of cells rather
than decreasing the total cell number (Multani et al.,
2003; Yamaguchi et al., 2016). The molecular function
of Dw2 (Sobic.006G067700) is still not clear, but the
Sobic.006G067700 loss of function phenotype includes
reductions in the length of all internodes, which is
similar to the loss-of-function phenotype of Dw1(So-
bic.009G229800) and dissimilar to the loss-of-function
phenotype of Dw3 (Sobic.007G163800; Hilley et al.,
2017). These known phenotypes and molecular func-
tions of the three sorghum dwarfing genes are consistent
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with the pattern observed in the FPCA-based GWAS
analyses where Dwl and Dw2 are associated with a
consistent effect before and after panicle emergence.
At the same time, Dw3 is associated with a functional
principle component that switches the direction of effect
before and after panicle emergence.

In addition to successfully identifying all three
known true positive height genes in sorghum, func-
tional principal component-based mapping for plant
height exhibited much greater enrichment for these
genes. Three statistically significant loci were identified
outside of the predefined known true positive set: the
signal on the short arm of chromosome 3 for the first
functional principal component and two signals in the
pericentromeric regions of chromosomes 5 and 9 for the
second functional principal component. Given the
broader mapping intervals and slower linkage dise-
quilibrium decay in pericentromeric regions, it was not
possible to confidently conclude whether the signals on
chromosomes 5 and 9 correspond to specific previous
reports from QTL mapping or genome-wide associa-
tion in sorghum. However, the chromosome three sig-
nal associated with WAK genes was also identified in
the DAPE-based sequential GWAS results around
panicle emergence (Fig. 4). This indicates it may play an
important role in a shift in the speed that booting stage
occurs. This signal was also validated as corresponding
to a tightly mapped sorghum plant height QTL identi-
fied in a separate recombinant inbred line population
(Brown et al., 2006).

Compared to the GWAS results on terminal height
collected from the field in the phenotypically con-
strained population (Fig. 1C), FPCA-based GWAS
analyses recovered Dwl and Dw?2 identified using the
whole population and also identified Dw3 as well as
several additional loci (Figs. 1A and 6, E and F). How-
ever, the known height locus on chromosome 6, which
was identified in the field-based data presented in this
paper as well as in previous GWAS for sorghum height,
was not recovered (Li et al, 2015). Mapping genes
controlling height or most other highly polygenic traits
in different field seasons or locations will tend to
identify only partially overlapping sets of loci. This can
be a result of genotype by environment interactions,
where certain loci influence variation in a given trait in
some environments but not others. It can also be a result
of stochastic noise in phenotypic measurements. The
statistical approaches used for GWAS are designed to
minimize false positives and accept a very high false-
negative rate. As a result, modest-effect loci will rise
above the noise in some experimental replications but
not others. Consistent with either of these explanations,
the known height locus on chromosome 6 was not
statistically significant in a GWAS analysis for genes
controlling sorghum height conducted by Morris et al.
(2013) but was statistically significant in a separate
analysis conducted for the same trait by Li et al. (2015).

Time series trait data are rapidly becoming more
widely available and collected in a broad range of
contexts: model organisms, crops, livestock, humans,
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etc. Integrating functional principal component analy-
ses into GWASs allows the identification of known true
positive genes controlling phenotypic variation in
populations where these genes cannot be confidently
identified from data at any single time point. In addi-
tion, this study demonstrates that the associations of
different known true positive genes with different
functional principal components describing variation in
the target trait are consistent with the known biological
roles and previous quantitative genetic associations of
those genes. This in turn suggests that functional prin-
cipal component-based GWASs of time series data can
provide greater insight into the distinct roles different
trait-associated loci play in determining variation in a
single phenotype. A statistical approach to decompos-
ing patterns of phenotypic variation over time into
functional principal components was employed that is
robust to incomplete and used uneven observations of
different subsets of the population at different time
points. This robust approach should aid the broader
adoption of functional principal component-based
genome-wide association in a wider range of quanti-
tative genetics contexts.

MATERIALS AND METHODS
Plant Materials and Growth Conditions

Three-hunderd and fifty seven sorghum (Sorghum bicolor) lines from the SAP
were planted, grown, and phenotyped at (latitude 41.162°, longitude —96.407°)
part of the University of Nebraska-Lincoln’s Eastern Nebraska Research and
Extension Center in 2016. Plant height, defined as the distance from emergence
from the soil to the top of the uppermost panicle, was manually scored at
maturity. Due to the height limitation of the imaging chamber equipped in the
high-throughput phenotyping facility in the University of Nebraska-Lincoln’s
Greenhouse Innovation Center (UNL-GIC; latitude 40.83°, longitude —96.69°),
38 lines with heights in the field >2 m were excluded from subsequent green-
house experiments. Seeds from the remaining 319 sorghum SAP lines were
sown in the greenhouse of UNL-GIC on June 15, 2016. Sorghum seeds were
sown in 9.46-L pots with Fafard germination mix supplemented with 8.8 kg 3-
to 4-month Osmocote and 8.8 kg 5- to 6-month Osmocote, 1 tablespoon (15 mL)
of Micromax micronutrients, and 1800 g lime per 764.5 L (1 cubic yard) of soil.
Twenty-seven sorghum lines failed to germinate or failed to grow healthily
under greenhouse conditions. These sorghum lines were omitted from down-
stream analyses, leaving a total of 292 lines for phenotyping. Phenotyped plants
were grown under a target photoperiod of 14:10 day:night with supplementary
light provided by light-emitting diode growth lamps from 7 am to 7 pm each day.
The target temperature of the growth facility was between 20°C to 28.3°C. After
growing in the greenhouse for 40 d, all the plants were moved on to the con-
veyor belt, which transferred each pot to the imaging chamber every 2 d and to
the watering station each day to keep all the plants growing under a good
condition. At the watering station, plants were weighed once per day and
watered back to a target weight, including pot, soil, carrier, and plant of 6,300 g
from July 25 to August 9, 7000 g from August 9 until the termination of the
experiment August 31 to 76 DAP.

Image Data Acquisition

The imaging of all phenotyped sorghum lines commenced on July 26 and
continued until August 31, 41 to 76 DAP. Image data were collected using the
high-throughput phenotyping facility in UNL-GIC previously described (Ge
et al., 2016). Each plant was imaged every other day by a visible camera
(piA2400-17gm, BASLER, with PENTAX lens) and a hyperspectral camera
(Headwall Photonics). The visible camera was used to capture RGB images
with the resolution 2354 X 2056 including two different zoom levels. The first
zoom level was applied at 41 to 53 DAP. Each pixel represented an area of
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approximately 0.45 mm? for objects in the range between the camera and the
pot containing the plant. The second zoom level with each pixel representing an
area of approximately 1.8 mm? was applied after 54 DAP until the termination
of the experiment (76 DAP). The hyperspectral camera has a spectral range of
546 to 1700 nm and 243 image bands. Plants were arranged so that most leaves
perpendicularly face to the hyperspectral camera. A hyperspectral cube for each
plant was captured at a resolution of 320 X 560 pixels. For each hyperspectral
cube, a total of 243 separate intensity values were captured for each pixel
spanning the range of light wavelengths between 546 to 1700 nm. A constant
zoom level was applied for all the hyperspectral images throughout the whole
experiment, with each pixel representing an area of ~8.8 mm?.

Height Extraction from RGB and Hyperspectral Images

The estimate of plant height in RGB images uses the green index threshold
method based on the Equation 2 Xgreen/(red + blue; Ge et al., 2016). In this
study, the green index threshold 1.12 was applied to separate plant pixels from
background pixels. After the whole-plant segmentation was done, the number
of pixels from the lowermost to the uppermost of the plant in the vertical di-
rection were counted to represent the plant height in the pixel unit. The stalk
plus panicle height from hyperspectral images were estimated using a semantic
segmentation method based on the hyperspectral signatures of different sor-
ghum organs (Miao et al., 2020). A linear discriminant analysis model was
adopted from the previous sorghum semantic segmentation project to classify
each pixel to background, leaf, stalk, or panicle (Miao et al., 2020). After the
semantic segmentation, the stalk plus panicle plant height in the pixel unit was
estimated by counting the number of stalk and panicle pixels on the vertical
direction. Manual proofing of growth curves was used to identify and correct a
modest number of cases in early time points where leaf midrib pixels were
misclassified as stalk pixels, resulting in incorrect estimation of plant heights.
These cases could also be identified as poor fits of nonparametric regression
curves to the problematic data point relative to its neighbors. The real plant
heights from RGB and hyperspectral images were obtained by using the pixel
height multiplied by the ratio of the real size and pixel size based on the cor-
responding zoom level.

Nonparametric Fitting of Growth Curves and Missing
Heights Imputation

The growth curve of each sorghum line was obtained by fitting the heights at
different time points using the nonparametric regression. The missing
heights were also imputed. Let Y;; be the jth observed phenotype of the ith
plant, made at day t;;, i = 1,2, ..., n,j = 1,2, ..., m;, where m; is the total
number of days observed for the ith plant. To model the plant growth, the
following nonparametric model was employed:

Vi = n(ti) +e(t;) @

where u(-) is a mean function of the phenotype development and e(t;) is a zero-
mean process associated with ith plant observed at t;;. Let B(t) = (By, ..., Bx)" ()
be a vector of B-spline basis functions, where K is the number of basis functions.
The estimated mean function can be expressed as ji(t) = B (f)c = Y5 _ , Bi(t)ck,
where ¢ is a vector of coefficients of length K obtained using penalized least-
squares approach (Ramsay and Silverman, 2005; Xu et al., 2018b).

FPCA

The plant growth curves over time were summarized using functional
principle component scores. In FPCA, the process e(t;) in Equation 1 is
decomposed into two parts:

ety) = X161 (ty) + 55 @

where ¢;; are zero-mean principal components scores with variance A;, @(t;)
are eigenfunctions corresponding to principal components scores, and &;; are
zero-mean measurement errors with constant variance. In FPCA, eigenfunc-
tions are orthonormal, namely (@, ()@, (t)dt = 0, foralll; #1, and [ @7 (t)dt =1,
so the characteristics of phenotype development for the ith genotype can be
represented by its principal component scores &;;, I = 1,2, ..., L. The variance of
the principal component scores, A;l = 1,2, ..., L, are sorted in decreasing order,
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so the first few principal component scores usually capture the majority of
variation in the phenotype data. B-spline bases were employed for the ap-
proximation of eigenfunctions. The variance A; and eigenfunctions @(-) are
estimated by eigenvalue decomposition, and the principal components scores
&, 1=1,2, ..., L are estimated using best linear unbiased prediction (Ramsay
and Silverman, 2005; Xu et al., 2018a).

Genotyping the SAP

DNA was extracted from seedling-stage plants grown in the Beadle Center
Greenhouse complex at University of Nebraska-Lincoln using the same seed
employed for phenotyping. Sequencing libraries generated using a modified
tGBS (tuneable-Genotyping-By-Sequencing) protocol (Ott et al., 2017) were
constructed and paired-end (151-bp read length) sequenced in eight lanes of an
Mumina HiSegX instrument. This produced an average of 4 million paired-end
reads per sample. The quality of raw reads was controlled using the Trimmomatic
v0.33 software with the parameters “TRAILING:20,” ‘SLIDINGWINDOW:4:20,’
and ‘MINLEN:40" (Bolger et al., 2014). High-quality reads were mapped to the
sorghum reference genome (V4; McCormick et al., 2018) using the BWA v0.7.17
MEM algorithm with default parameters (Li and Durbin, 2009). After the
alignment, the GATK v4.1 HaplotypeCaller function was used to perform SNP
calling with default parameters (McKenna et al., 2010) and the raw VCF file
including 358 samples was generated. Quality controls of the raw VCF in-
cluding missing data rate (<0.7), minor allele frequency (>0.01), and hetero-
zygous rate (< 0.05) were applied using customized python scripts (https://
github.com/freemao/schnablelab). Missing data were then imputed using
Beagle v4.1 with parameters ‘window = 6600, overlap = 1320” (Browning and
Browning, 2016). The sizes of sliding windows and the overlap windows were
set to capture 10% of all SNPs on a given chromosome and 2% of all SNPs on a
given chromosome, respectively. A final set of 569,305 high-confidence SNPs
was generated and employed in all downstream analyses.

GWAS Analyses

Three kinds of GWAS were conducted in this study: (1) sequential GWAS of
plant height based on DAP (DAP sequential GWAS); (2) sequential GWAS of
plant height based on DAPE (DAPE sequential GWAS); and (3) GWAS of the
dynamic trait of the plant growth curve (FPCA GWAS).

For DAP sequential GWAS, the plant heights of 292 lines at each time point
were used as the phenotypes. As different subsets of the population were
phenotyped on alternating dates, height values for all plants on individual data
were drawn from the values for the nonparametrically fit curves for that gen-
otype, as described above. Genotype data for the set of 292 lines imaged at each
time point was taken from the complete genotype dataset described above which
included all of these 292 lines in addition to some further lines from the SAP
which were not phenotyped in this study.. After subsetting to the data from the
292 phenotyped SAP lines, any SNPs that now fell below the previous criteria
used to filter SNPs for the full set of 358 lines—minor allele frequency (>0.01)
and the heterozygous rate (<0.05)—were excluded. A total of 36 GWAS were
conducted from 41 DAP to 75 DAP using the same genotype data. For the
DAPE sequential GWAS, x axis (time) values for individual plant growth
curves were recentered based on the date of panicle emergence. The panicle
emergence was defined when the tip of the panicle is visible from the sorghum
flag leaf sheath in the image. In all but 13 cases, panicle emergence occurred
within the window in which image data were collected. In one case, panicle
emergence occurred prior to the first day of imaging, and in 12 cases, panicle
emergence occurred subsequent to the last day of imaging. As a result, the
number of lines with observed data was inconsistent across individual time
points. Analyses were conducted between —14 and 10 DAPE. Within this in-
terval, observed height values were present for at least 235 lines at each time
point. For each time point, genotype information was subset and refiltered
based on the set of lines with available trait data, as described above. A total of
25 GWAS were conducted from —14 to 10 DAPE using the corresponding
customized marker datasets generated for phenotyped lines at each individual
time point. For the FPCA GWAS, the first and second principal component
scores of each sorghum line were used as trait values. The genotype data used
was identical to that employed for the DAP sequential GWAS analyses.

All the GWASs were conducted using mixed linear models (MLMs)
implemented by GEMMA v0.95 (Zhou and Stephens, 2012). The first five
principal components derived from the genotype data using Tassel v5.0
(Bradbury et al., 2007) were fitted to MLMs as the fixed effect. Meanwhile, the
kinship matrix calculated using the “gemma -gk 1” command was fitted to
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MLM as the random effect. All 63 GWAS jobs were run on the Holland Com-
puting Center’s Crane cluster at the University of Nebraska-Lincoln. The
number of independent SNPs in each genotype data were determined using the
GEC v0.2 software (Li et al., 2012). A Bonferroni corrected P-value of 0.05 cal-
culated based on the number of independent SNPs in each specific analysis was
applied as the cutoff for statistical significance in each separate GWAS analysis
(Yang et al., 2014).

Data and Code Availability

Both imputed and unimputed genotype datasets used in this study have been
deposited on Figshare (Miao and Schnable, 2019). Raw image data, including
RGB and hyperspectral collected from each plant at each time point are being
deposited and disseminated through CyVerse (https://doi.org/10.25739/
p39b-dz61). The R code implementing the nonparametric regression and FPCA
used in this study has been deposited on GitHub (https://github.com/
freemao/FPCA_GWAS).

Accession Numbers

Sequences for the four major genes /proteins mentioned in this paper, Dwarf1
(Sobic.009G229800), Dwarf2 (Sobic.006G067700), maturity1 (Sobic.006G057866),
and Dwarf3 (Sobic.007G163800), were retrieved from v3.1.1 of the sorghum
genome as provided in Phytozome v12.1.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. The distributions of minor allele frequency of
SNPs around dwarf genes in unconstrained (blue) and constrained (yel-
low) populations.

Supplemental Figure S2. Semantic segmentation of an example sorghum
plant using a hyperspectral image.

Supplemental Figure S3. Imputing unobserved height values for sorghum
genotypes through nonparametric regression.

Supplemental Figure S4. Proportion of variance explained for observed
and imputed plant heights.

Supplemental Figure S5. Summary of significant SNPs identified in inde-
pendent GWAS for each time point anchoring on days after planting
rather than DAPE.

Supplemental Figure S6. Manhattan plots for GWAS on height measured
at 41 DAP and 72 DAP.

Supplemental Figure S7. Manhattan plot for GWAS on the date of panicle
emergence.

Supplemental Table S1. Significant SNPs identified by DAP
Sequential GWAS.
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