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During the last 20 years there has been an intense
focus on posttranscriptional regulation of gene ex-
pression, and the role played by ribonucleases (RNases)
in this process. Most research has centered on cyto-
plasmic and nuclear RNA decay enzymes, particularly
those involved in mRNA regulation, and in proteins
mediating nucleus-localized coding and noncoding RNA
processing. These efforts have created a well-defined
picture of RNA homeostasis in eukaryotes, including
plants (Schmid and Jensen 2018; Sieburth and Vincent
2018; Towler and Newbury, 2018; Matsui et al., 2019).
Thus, cytoplasmic degradation of mRNAs in plants (see
Box 1), which involves deadenylation, decapping, and
degradation by 39-59 and 59-39 exoribonucleases, has been
extensively studied and reviewed (e.g. Zhang and Guo
2017; Sieburth and Vincent 2018; Sorenson et al., 2018;
Lange et al., 2019). Similarly, different roles for the nuclear
exosome and other RNases in nuclear RNA processing
and decay have been established (Lange et al., 2014;
Sikorska et al., 2017; Tomecki et al., 2017; Sáez-Vásquez
and Delseny 2019). RNA decay mediated by small RNAs
associated to RNA-induced silencing complexes and the
processing and decay of small RNAs (sRNAs) have also
been the focus of intense research efforts (Fukudome and
Fukuhara 2017; Yu et al., 2017; Wang et al., 2019).

On the other hand, RNases that do not reside in the
cytoplasm or nucleus have received significant less

attention, even though their activities are important for
plant growth, development, and response to biotic and
abiotic stimuli from the environment. As we will de-
scribe, organellar RNases are essential tomaintain RNA
homeostasis in chloroplasts and mitochondria. Plants
also express members of the RNase T2 protein family,
associated with the secretory pathway, which are in-
volved in the maintenance of normal cellular homeo-
stasis, with diverse roles, from stress responses to
control of self-pollen rejection. This review will provide
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a summary of the present knowledge on these RNases,
from enzymatic characterizations to biological func-
tions, and highlight questions that should be addressed
in the future.

SECRETORY RIBONUCLEASES

Secretory RNases are enzymes targeted to the cellular
secretory system and thus localized in organelles or the
extracellular space. In plants, characterized secretory
RNases belong to the RNase T2 family, a group of en-
zymes typified by the fungal RNase T2 purified from
Aspergillus oryzae (MacIntosh 2011). Enzymes from the
T2 family are endoribonucleases without sequence or
base specificity that degrade single-stranded RNA
through a 2’,39 cyclic phosphate intermediate, in a re-
action catalyzed by two absolutely conserved His resi-
dues that define the active site (Irie 1999). It has been
proposed that their enzymatic mechanism involves a
two-step (transphosphorylation and hydrolysis) gen-
eral acid–base catalysis (Irie 1999; Thorn et al., 2012).
Interestingly, fungal enzymes can complete both steps
and yield 39 nucleotide monophosphates as final pro-
duct, but bacterial enzymes end the reaction after the
first step, resulting in the production of nucleotides (nt)
with a 2’,39 cyclic phosphate (Nicholson 1999; Fontaine
et al., 2018). Although notmany plant RNase T2 proteins
have been characterized enzymatically, biochemical
analyses of extracellular and vacuolar tomato enzymes
indicated that plant RNase T2 enzymes generate 2’,39
cyclic nucleotide monophosphates as primary product
(Nürnberger et al., 1990; Löffler et al., 1992).
The RNase T2 family is conserved in almost all eu-

karyotes so far analyzed, with the exception of try-
panosomes and Schizosaccharomyces pombe (Shang et al.,
2018; Fricker et al., 2019) and is also found in a large
number of bacteria and several viruses. In most non-
plant organisms, only one gene belonging to this family
is found in each genome (Hillwig et al., 2009; Ambrosio
et al., 2014); however, in plants, the RNase T2 protein
repertoire has expanded, and individual proteins have
been adapted for a variety of functions. At least four
genes are found in each seed plant genome that has
been sequenced (MacIntosh et al., 2010; Ramanauskas
and Igić 2017), and there is evidence of frequent du-
plications/gene losses that resulted in different number
of RNase T2 gene in different species. In addition, gene
expression and functional analyses have shown that
these proteins have acquired a variety of biological
roles, including participation in the cellular house-
keeping salvage pathway, production of tRNA-derived
sRNAs, defense activities, and a central role in game-
tophytic self-incompatibility in several plant families
(Table 1). Phylogenetic analyses allowed separation of
plant RNase T2 enzymes in three clades (Igic and Kohn
2001; MacIntosh et al., 2010; Ramanauskas and Igić
2017) that define three classes of proteins roughly as-
sociated with different functions: Class I are proteins
associated with a variety of stress responses and show

evidence of gene duplications and gene sorting that
provide large variability to this class, with variable
number of class I proteins in individual species; Class II
enzymes are conserved in all seed plants, in general
with only one gene per genome, and their function has
been related to RNA salvage; and Class III enzymes are
mainly associated with self-incompatibility, although
other functions have also been assigned to this class
(Table 1). Historically, Class III enzymes were named
S-RNases, whereas other plant T2 proteins are referred
to as S-like RNases (McClure et al., 1990; Taylor et al.,
1993). Class I and II proteins are found in all land plants,
whereas Class III proteins are found only in core
eudicots (Ramanauskas and Igić, 2017). Some plant
RNase T2 proteins in the three classes have lost their
catalytic activity (MacIntosh et al., 2010; Ramanauskas
and Igić 2017). A monocot-specific class I subclade of
proteins without RNase activity is particularly con-
served (MacIntosh et al., 2010). Some of these proteins,
for example OsRNS4 (Table 1), seem to have significant
stress-related functions (Zheng et al., 2014), although
their specific biological activity is not known.
For brevity, this review will focus on two plant RN-

ase T2 functions for which significant advances have
occurred in recent years: ribosomal RNA (rRNA)
turnover and tRNA processing.

Housekeeping Role Recycling rRNA, the Ancestral
Function of Eukaryotic RNase T2 Enzymes

The presence of RNase T2 enzymes in almost all eu-
karyote genomes suggests that these enzymes carry out
an important biological function. Phylogenetic and
gene expression analyses suggested that enzymes in
Class II carry out a housekeeping function in plants,
and that this role is likely the ancestral function of
RNase T2 enzymes (Hillwig et al., 2009; MacIntosh
et al., 2010). RNS2, the Class II enzyme present in
Arabidopsis (Arabidopsis thaliana), is localized mainly in
the vacuole (Hillwig et al., 2011a). Characterization of
rns2 mutants showed that the enzyme is necessary for
normal rRNA turnover, because the half-life of 28S
rRNA and 18S rRNA almost doubled in the null mutant
rns2-2 (Hillwig et al., 2011a), and rRNA accumulated in
mutant vacuoles (Floyd et al., 2015). Plants lacking
RNS2 activity showed a constitutive autophagy phe-
notype, indicating that housekeeping turnover of rRNA
is an essential process to maintain cellular homeostasis
(Hillwig et al., 2011a; Floyd et al., 2015). Characteriza-
tion of rns2-1, a mutant expressing an active RNase
missing the last 14 amino acids, determined that the C
terminus of the protein contains a putative vacuolar
localization signal, as the truncated RNS2 protein is
mislocalized outside the vacuole and secreted outside
of the cells. Moreover, rns2-1 mutants present a con-
stitutive autophagy phenotype identical to the rns2-2
null mutant; thus, vacuolar activity of this enzyme is
essential to maintain normal cellular functions (Floyd
et al., 2017). Although the mechanism of ribosomal or
rRNA transport from the cytoplasm to the vacuole is
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still not well understood, evidence suggests that a se-
lective transport mechanism that uses part of the pro-
teins necessary for the autophagy process, specifically
ATG5 (Autophagy-Related Gene 5, a protein indis-
pensable for autophagic vesicle formation; Le Bars
et al., 2014), participates in the transport of ribosomes
or rRNA to vacuoles for degradation (Floyd et al., 2015).

RNase T2-mediated RNA turnover is part of the
salvage pathway that maintains normal cellular levels
of nucleosides/nucleotides. Lack of vacuolar RNA
turnover in the rns2 mutant causes metabolic changes,
primarily in carbon flux through the pentose phosphate
pathway, as a way to generate ribose-phosphate for de
novo nucleotide synthesis (Morriss et al., 2017). A
similar role for RNase T2 enzymes has been described
in other organisms, including yeast (Saccharomyces cer-
evisiae; Huang et al., 2015), zebrafish (Danio rerio; Haud
et al., 2011), and nematodes (Caenorhabditis elegans; Liu
et al., 2018). Although RNS2, and potentially RNS2
orthologs in other plants, are necessary for normal
rRNA turnover and homeostasis maintenance, rRNA
still decays in rns2 mutants even if the rate is reduced
(Hillwig et al., 2011a). This observation implies that
other RNases can attack rRNA in vivo. Whether this

turnover occurs in the vacuole or the cytoplasm is not
known, but because rns2 plants have a constitutive
autophagy phenotype, it is tempting to speculate that
this process could transport extra RNase activities to
the vacuole that could contribute to rRNA turnover. For
example, in stress situations the presence of P-bodies,
cytoplasmic complexes involved in mRNA transla-
tion repression and RNA decay, increases in plants.
P-bodies contain several ribonucleases including the
decapping complex, CCDR and CAF1 deadenylases
and XRN4 (Chantarachot and Bailey-Serres, 2018), and
it has been shown that P-bodies are processed through
an autophagic process (granulophagy) in yeast and
mammalian cells (Buchan et al., 2013; Frankel et al.,
2017). It can thus be hypothesized that P-body-associ-
ated RNases could contribute to rRNA decay in the rns2
mutants.

As mentioned, it has been hypothesized that the role
in RNA salvage (and perhaps P scavenging) is the an-
cestral function of RNase T2 enzymes (MacIntosh 2011).
However, despite their almost absolute conservation,
these enzymes are not strictly essential, although sig-
nificant cellular and developmental phenotypes have
been observed in plants and animals defective in RNase
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T2 activity (see above). It is still clear that the presence
of T2 enzymes may provide a significant advantage to
the organism that results in the conserved presence of
these enzymes in eukaryotes. It is important to note that
although the “ancestral” biological role has been
assigned to RNS2 in Arabidopsis, neofunctionalization
and gain/loss of gene duplications may have shifted
the function to other T2 homologs in other species. For
example, the Class II RNase T2 in tomato, RNase LER,
seems to have a prominent role in guard cells, and it
seems to localize exclusively to the ER (Köthke and
Köck, 2011), whereas class I enzymes are found in the
tomato vacuole and could be in charge of the RNA/
nucleotide salvage function in this plant (Abel and
Köck, 2001). For a more detailed analysis of phyloge-
netic relationships and evolution of the RNase T2
family in plants, the analysis by Ramanauskas and Igić,
(2017) is recommended.

A Shared Role in the Biosynthesis of tRNA-Derived
Small RNAs

Among the ever-growing collection of small RNA
species found in living organisms, tRNA-derived small
RNAs (tsRNAs) are a recent addition. tsRNAs vary in
size, ranging from 19 to 35 nt, and are derived from
different parts of tRNAs. Two main categories can be
found in all eukaryotes: (1) 59tsRNAs that are likely the
result of cleavage in the tRNA D-loop and 39tsRNAs
produced by cleavage of the T-loop, commonly referred
as tRNA-derived fragments (tRFs); and (2) 59 tRNA
halves and 39 tRNA halves (tRHs) that result from
processing at the anticodon loop (Dou et al., 2019).
Note that nomenclature for these tsRNAs is not fully

established, and some authors refer to all tsRNAs as
“tRFs” and differentiate between “long tRFs” (;30–35
nt) and “short tRFs” (,28 nt; Megel et al., 2015). Al-
though the function of tsRNAs is less well understood
than that of other sRNAs, their association with Argo-
naute (AGO) proteins indicate participation in post-
transcriptional regulation of gene expression, with
miRNA-like activity (Kumar et al., 2014). In addition,
AGO-independent functions have been proposed, in-
cluding regulation of both positive and negative
regulation of translation, competitive binding to RNA-
binding proteins, and modulation of mRNA secondary
structures (reviewed by Dou et al., 2019). Given the
significant conservation among tRNA sequences, it is
not surprising that some tsRNAs are also highly con-
served among organisms as divergent as mammals and
bacteria (Kumar et al., 2014).
Analyses of tsRNA populations have been charac-

terized in a variety of plants and relative abundance of
individual tsRNAs is tissue specific and alsomodulated
by biotic and abiotic stress conditions (reviewed by Zhu
et al., 2018). The biosynthetic pathway(s) responsible
for production of tRFs and tRHs is controversial. Re-
cently, Martinez et al. (2017) described tRFs in the 18 to
25 nt range in Arabidopsis, and identified 19 nt 59tRF
species that accumulate preferentially in pollen. These
59tRFs also accumulate in pollen from rice (Oryza sativa)
and maize (Zea mays), and a similar phenomenon can
be observed in the gametophyte/sporophyte of Phys-
comitrella patens (Martinez et al., 2017). The authors
found a similar increase in 19 nt 59tRFs in the ddm1
mutant that is defective in the DDM1 swi/snf family
chromatin remodeler protein. Moreover, the accumu-
lation of these 19 nt 59tRFs depends on the Dicer RN-
ase DCL1. These DCL1 products are found in AGO1

Table 1. Classification of plant RNase T2 proteins and proposed functions

Class and Functions Examples References

Class I
Defense, antiviral RNS1 (Arabidopsis), ZnRNase II (Zinnia elegans) Kim et al., 2019; Trifonova et al., 2012
Defense,

antimicrobial
RNase NE (Nicotiana tabacum) Hugot et al., 2002

Defense, wounding RNS1 (Arabidopsis), RNase LE (Solanum lycopersicum), OsRNS4
and OsRNS5 (O. sativa)

Hillwig et al., 2008; Gross et al., 2004;
MacIntosh et al., 2010

Stress, drought/
salinity

OsRNS4 (O. sativa), PvRNS3 (Phaseolus vulgaris) Zheng et al., 2014; Diaz-Baena et al., 2020

Stress, P-starvation RNS1 (Arabidopsis), EsRNS1 (Eutrema salsugineum), RNase LX and
RNase LE (S. lycopersicum)

Bariola et al., 1999; Velasco et al., 2016; Köck
et al., 1995

tsRNA synthesis RNS1 and RNS3 (Arabidopsis) Alves et al., 2017; Megel et al., 2019
Development/PCD RNase LX (S. lycopersicum), ZRNase I (Z. elegans) Lehmann et al., 2001; Lers et al., 2006;

Fukuda 2000
Class II

RNA/nucleotide
salvage

RNS2 (Arabidopsis) Hillwig et al., 2011a

Stress, P-starvation RNS2 (Arabidopsis) Bariola et al., 1999
Class III

Self-incompatibility S-RNases (Solanaceae, Plantaginaceae, Rubiaceae, Rosaceae) Ramanauskas and Igić, 2017
Defense,

antimicrobial
S1-RNase and SX-RNase (Petunia hybrida), SA2-RNase (Nicotiana

alata)
Hillwig et al., 2011b; Silva et al., 2020

Stress, P-starvation NnSR1 and SX-RNase (N. alata) Rojas et al., 2015; Rojas et al., 2018
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complexes and target transposon elements (TE).
These results indicated that the tRFs are produced by
a Dicer-dependent pathway and act in a miRNA-like
manner to control TE expression. However, other
authors have found that the overall population of
59tRF and 39tRF is only modestly affected in dcl1-4
Arabidopsis mutants (Nowacka et al., 2013; Alves
et al., 2017).

On the other hand, Alves et al. (2017) found that
several 59tRF and 39tRFs accumulate to higher levels
in Arabidopsis plants overexpressing RNS1, a Class I
RNase T2, suggesting that this enzyme could be in-
volved in tRF production in plants. A more definitive
demonstration of the role of plant RNase T2 enzymes
in tsRNA production was recently presented by
Megel et al. (2019), who used RNA sequencing (RNA-
seq) and in vitro tRNA cleavage assays to demonstrate
that tRF abundance is not affected in the quadruple
Arabidopsis mutant dcl1234 and that protein extracts
from this mutant are still able to process tRNAs in vitro
to produce tRFs and tRHs. The same biochemical ap-
proach was used to demonstrate that RNS1 and RNS3,
another class I RNase T2 protein from Arabidopsis,
and to a minor extent RNS2, can produce tRF and tRHs
in vitro. Expression analyses also indicated that rns1
mutants fail to accumulate tRFs and tRHs that are
normally induced after Pi-starvation (Megel et al.,
2019).

These conflicting results could indicate that specific
tRFs and tRHsmay be produced by different pathways,
and, hypothetically, alternative biosynthetic pathways
may be associated with different biological roles and
mode of action, although both Dicer-dependent and
-independent tRFs associate with Argonaute proteins in
plants (Alves et al., 2017; Martinez et al., 2017). Also
intriguing is the fact that a large number of plastid-
derived tRFs accumulate in the cytoplasm and can as-
sociate with AGO1, although the RNases involved in
their processing are not known (Cognat et al., 2017).
Similarly, at least two pathways have been proposed
for the formation of tsRNAs in human (Homo sapiens)
cells. Cole et al. (2009) identified a large number of
tsRNAs in HeLa cells, and determined that accumu-
lation of a 19-nt 59tsRNA derived from tRNAGln is
Dicer dependent and showed that purified Dicer
can cleave this tRNA in vitro. On the other hand,
Yamasaki et al. (2009) identified stress-induced tRHs
in human U2OS cells that depend of the activity of
angiogenin, a member of the vertebrate-specific RN-
ase A family, and overexpression of this enzyme in-
creases accumulation of the tsRNAs in the absence of
stress. Moreover, Rny1 is also responsible for the
production of stress-induced tsRNAs in S. cerevisiae
(Thompson and Parker 2009), several RNase T2 en-
zymes contribute to the production of tsRNAs in the
ciliate Tetrahymena thermophila (Andersen and Collins
2012), and purified human RNASET2 can process
tRNAs in vitro (Megel et al., 2019), suggesting that
RNase T2 enzymes may have a conserved role in
tsRNA production in eukaryotes.

Connecting Secretory RNases with their Substrates

Strong data support a role for plant RNase T2 pro-
teins in the turnover of rRNA, and increasing evidence
indicate that they also participate in the production of
tsRNAs. However, the enzymes and their substrate are
not normally found in the same subcellular location.
Both tRNAs and rRNAs accumulate in the cytoplasm,
but RNS2 is a vacuolar enzyme (Bariola et al., 1999;
Hillwig et al., 2011a; Floyd et al., 2017) and RNS1 (and
likely RNS3, given its similarity to RNS1) is mainly
secreted outside of the cell (Bariola et al., 1999). As
mentioned, autophagy-dependent mechanisms partic-
ipate in the transport of rRNA to the vacuole where it
can be attacked by RNS2, but data regarding the loca-
tion where tRNA processing to produce tsRNAs takes
place is missing. Whether tRNAs are transported to an
organelle or whether the RNases are released into the
cytoplasm to act on tRNAs (and/or rRNAs?) is not
known. If the latter were true, the mechanisms that
prevent cytotoxic effects of releasing RNases with little
substrate specificity into the cytoplasm should also be
investigated (see Outstanding Questions).

Many class I RNases are also associated with re-
sponses to abiotic and biotic stresses (Table 1). In some
cases, it is possible to envision a substrate directly re-
lated to a biological function, for example, in defense
against RNA viruses, or during phosphate starvation.
But in other cases, their potential substrates and the
specific role in stress responses is less evident. It is
tempting to hypothesize that the role of RNase T2 en-
zymes in stress responses may also be connected to
their ability to generate tsRNAs, thus having a regula-
tory role in these processes.

PLASTIDIAL RNASES

Both exo- and endo-ribonucleases have a dominant
role in creating the chloroplast functional transcript
population. They are responsible for intercistronic RNA
cleavage along with 59 and 39 processing and RNA
decay (Stoppel and Meurer 2012; Germain et al., 2013).
Although seventeen chloroplastic RNases were pre-
dicted by mining the Arabidopsis genome for RNase
annotations (Stoppel and Meurer, 2012), this figure
certainly needs to be revised. Some predicted RNases
were indeed shown to carry other functions (see, for
example, the L-PSP/RidA enzyme;Niehaus et al., 2014),
and new RNases keep being discovered in bacteria,
some of them with a chloroplast homolog awaiting
characterization (see, for example, the Rae1/YacP
endoribonuclease; Condon et al., 2018). Indeed, as di-
rect evidence of its cyanobacterial origin, nearly all
chloroplast RNase homologs are present in bacteria
(Stoppel and Meurer, 2012; Germain et al., 2013; dos
Santos et al., 2018). Based on their chlorotic or
embryo-lethal phenotypes and the associated disrup-
tion in RNA patterns, there are five major RNases
whose putative roles are discussed below. Following
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transcription, the 59-39 exoribonuclease RNaseJ pro-
cesses the 59 ends, whereas two 39-59 exoribonucleases,
polynucleotide phosphorylase (PNPase) and RNR1,
cooperatively mature the 39 ends. Intercistronic cleav-
age is performed by endoribonucleases, but the divi-
sion of labor between RNaseJ, RNaseE, and CSP41 is
unclear (Fig. 1A; Germain et al., 2013 for a model of
chloroplast RNA maturation). These RNases are not
specific and act on a wide variety of transcripts.

Exoribonucleases

Absence of either of the two prominent exoribonu-
cleases, PNPase and RNase R, leads to defects in 39 end

maturation for both mRNAs and rRNAs, and deple-
tion of both causes embryo lethality in Arabidopsis
(Germain et al., 2011; Germain et al., 2012).

PNPase

PNPase was the first discovered enzyme able to
synthesize RNA in vitro (Grunberg-Manago et al.,
1955). Its main role is, however, to degrade RNA
through a phosphorolytic 39-59 exoribonuclease activity,
and the balance between the two activities depends on
the relative concentration of nucleoside diphosphates
and Pi: the addition of Pi stimulates degradation,
whereas nucleoside diphosphates promote degradation

Figure 1. The roles of ribonucleases in chloroplast andmitochondrial mRNAmetabolism. A, (i) In chloroplasts, RNase J processes the
59 end of polycistronic mRNAs, whereas PNPase and RNR1 cooperatively mature the 39 ends. The transcript is also subject to inter-
cistronic cleavage by several endoribonucleases, but the division of labor between RNase J, RNase E, and CSP41 is unclear. A, (ii)
Another round of exoribonuclease digestion gives the final termini. Mature transcript ends are protected from exoribonuclease deg-
radation by sequence-specific RNA binding proteins (for example, PPR proteins) and secondary structures. A, (iii) Illegitimate, partially,
ormisprocessed transcripts are then digested at the 39 end by PNPase following the addition of a poly(A) tail. RNase J also participates in
RNA degradation and surveillance. Its major role preventing the formation of double stranded RNA is not represented. B, (i) In mi-
tochondria, endoribonucleases have amajor role in defining 59 ends through their interactions with PPR proteins that specifically bind
RNA targets. Cleavage by PRORP1, MNU1/2, or yet unknown endoribonucleases occurs downstream of the PPR binding site. Al-
ternatively, PRORP1andTRZ3/4 can cleave tRNAs or t-elements between twogenes and releasemature or intermediate 59 and39 ends.
As in chloroplasts, PNPase and RNR1 cooperatively mature the 39 ends. B, (ii) Mature 39 ends are protected from exoribonuclease
degradation byRBPs and/or secondary structures. B, (iii) Illegitimate, partially, ormisprocessed transcripts are thendigested at the 39 end
by PNPase, following the addition of a poly(A) tail. Additionally, the 39-59 exoribonuclease PARN appears to regulate the poly(A) status
of correctly processed transcripts; however, the significance of this activity is unclear. RNase, RNase; PNPase, polynucleotide phos-
phorylase; RNR1, RNase R homolog 1; CSP41, chloroplast stem loop binding protein of 41 kD; PRORP1, PROTEINACEOUS RNASE
P1; MNU, mitochondrial nuclease; TRZ, RNase Z; RBP, RNA binding protein;. Figure inspired by Germain et al. (2013).
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(Yehudai-Resheff et al., 2001). In vivo, the polymerase
activity is responsible for the addition of short hetero-
polymeric A/U-rich tails to RNAs, but their biological
role is still unclear (Germain et al., 2011). Different from
the Escherichia coli enzyme, the active form purified
from chloroplast is a complex of three PNPase mono-
mers that does not seem to physically interact with
other ribonucleases (Baginsky et al., 2001; Yehudai-
Resheff et al., 2003). Extensive in vitro research has
shown that PNPase is necessary to process RNA 39
extensions and that its activity is inhibited by stem
loops structures or tightly bound RBPs (Hayes et al.,
1996; Yehudai-Resheff et al., 2001; Yehudai-Resheff
et al., 2003; Prikryl et al., 2011). PNPase has a high af-
finity for poly(A) sequences, making it amajor player in
poly(A)-assisted RNA decay in chloroplast (Lisitsky
et al., 1996; Yehudai-Resheff et al., 2003; Schuster and
Stern, 2009). Arabidopsis PNPase mutants have chlo-
rotic young leaves and are smaller than wild type but
can still grow to full maturity (Marchive et al., 2009;
Germain et al., 2011). Under phosphorus deprivation,
Arabidopsis mutants fail to initiate lateral roots,
whereas PNPase-depleted Chlamydomonas cells cannot
survive in the same condition (Yehudai-Resheff et al.,
2007; Marchive et al., 2009). PNPase was the first chlo-
roplastic RNase whose influence on RNA maturation
was investigated using RNA-seq (Hotto et al., 2011;
Castandet et al., 2013; Castandet et al., 2019). This
analysis, in association with traditional molecular bi-
ology techniques, showed that PNPase-deficient Ara-
bidopsis plants accumulate numerous RNAs with 39
extensions along with additional defects in RNA
splicing and editing. Studies in Arabidopsis and maize
determined that all types of RNAs are affected, in-
cluding mRNAs, rRNAs, tRNA precursors, antisense
RNAs, and spliced intron products (Walter et al., 2002;
Marchive et al., 2009; Williams-Carrier et al., 2010;
Germain et al., 2011; Hotto et al., 2011; Castandet et al.,
2013; Ruwe et al., 2013; Castandet et al., 2019).

RNR1

In bacteria, members of the RNaseII/R 39-59 exori-
bonuclease superfamily mainly involved in mRNA
metabolism are named RNaseII, whereas the ones dis-
playing significant activity on rRNA are named RNR
(Li and Deutscher, 2004). This interpretation of division
of labor is, however, likely to be an oversimplification
(Cheng and Deutscher, 2005). The Arabidopsis RNa-
seII/R homolog, RNR1, is dually localized to chloro-
plast and mitochondria (Kishine et al., 2004; Perrin
et al., 2004b; Bollenbach et al., 2005) and combines the
two activities described in bacteria (Germain et al.,
2012). The rnr1 null mutants can only germinate on
Suc, have white cotyledons that accumulate anthocya-
nins, and show retarded growth and pale green rosette
leaves (Kishine et al., 2004; Bollenbach et al., 2005).
Photosynthesis is impaired in the mutants, and electron
microscopy revealed a lack of stacked thylakoids
(Bollenbach et al., 2005). rnr1 mutants overaccumulate

rRNA precursors at the expense of the mature forms
(Kishine et al., 2004; Bollenbach et al., 2005; Germain
et al., 2012). Additionally, mature rRNAs contain short
39 extensions consistent with the ability of the recom-
binant enzyme to process the 39 end of the rrn5S pre-
cursor in vitro (Bollenbach et al., 2005). It was noticed
that the impaired maturation of the rrn5S transcript in
the mutant is associated with the accumulation of an
antisense RNA (asRNA), and this defective maturation
was recapitulated in transplastomic plants artifi-
cially overexpressing the asRNA (Hotto et al., 2010;
Sharwood et al., 2011b). Based on the ability of the
E. coli enzyme to unwind RNA duplexes in vitro, it can
be speculated that RNR1 might degrade the asRNA
in vivo Sharwood et al., 2011b; Chu et al., 2017). Amore
thorough investigation of the rnr1 RNA patterns also
demonstrated the essential role of the enzyme inmRNA
39 maturation, in cooperation with PNPase. Most
mRNAs in the rnr1 mutant accumulate short 39 exten-
sions, a feature probably explained by the ability of
the enzyme to come closer than PNPase to the sec-
ondary structures and RBP binding sites marking the
mature mRNA 39 ends (Germain et al., 2012). Precursor
mRNAs accumulate in nonpolysomal fractions and are
more stable in the rnr1 mutant than wild type, sug-
gesting a close link between RNA maturation and
degradation (Germain et al., 2012).

The Endo- and Exoribonuclease RNase J

RNase J belongs to the metallo-b-lactamase family
of ribonucleases (Condon and Gilet 2011), and its role
in chloroplast RNA metabolism has recently been
reviewed (Hotto et al., 2020). Initially described as an
endoribonuclease in Bacillus subtilis, most members
harbor both endo- and 59-39 exoribonuclease activity
(Even et al., 2005; Mathy et al., 2007; Condon and Gilet
2011). As an illustration of its essential role in plant and
chloroplast development, RNase J null mutants are
embryo lethal (Tzafrir et al., 2004; Chen et al., 2015).
Virus-induced gene silencing (VIGS) was therefore
used to deplete RNase J in both Arabidopsis and to-
bacco chloroplasts (Sharwood et al., 2011a; Luro et al.,
2013), and it showed that RNase J matures the 59 end of
several transcripts, with RBPs acting as a barrier to its
activity (Luro et al., 2013). This result is in agreement
with earlier in vitro studies that used commercial 59-39
exoribonucleases and recombinant RBPs (Prikryl et al.,
2011; Hammani et al., 2012). The most striking effect
in VIGS plants, however, was the accumulation of
RNA species antisense to genic transcripts that could
form duplexes preventing translation (Sharwood et al.,
2011a). Because RNase J degrades preferentially single-
stranded over double-stranded RNA in vitro, it is likely
that its role in vivo is to degrade asRNAs before the
formation of duplexes (Sharwood et al., 2011a; Halpert
et al., 2019), making it an essential player in chloroplast
RNA quality control. Interestingly, VIGS plants did
not accumulate longer or unprocessed polycistronic
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precursors in place of mature transcripts, suggesting
that RNase J does not mediate endonucleolytic pro-
cessing (Sharwood et al., 2011a). This is in contrast with
in vitro results where, similar to its bacterial homologs,
Arabidopsis RNase J displays both activities (Halpert
et al., 2019). On the other hand, although Chlamydomo-
nas chloroplasts likely contain a 59-39 exoribonuclease
activity (Drager et al., 1998; Drager et al., 1999), its
RNase J acts only as an endoribonuclease in vitro
(Liponska et al., 2018). One of the peculiarities of the
plant enzyme is that it contains a C-terminal extension
with high similarity to the GT-1 DNA binding domain
usually found in transcription factors. It has been pro-
posed that this domain could confer substrate specificity
to the enzyme (Hotto et al., 2020). Finally, the possibility
that chloroplast RNase J might also be involved in
transcription termination of stalled RNA polymerase
complexes, as recently described for the Bacillus enzyme
(Šiková et al., 2020), has not been explored yet.

Endoribonucleases

CSP41

All photosynthetic organisms contain the CSP41
(Chloroplast Stem loop binding Protein of 41 kD)
endoribonuclease whose elusive functions have re-
cently been reviewed (Leister 2014). CSP41 proteins are
highly abundant RNA binding proteins that display
strong endoribonuclease activity on stem loops in vitro
(Yang et al., 1996; Yang and Stern 1997; Bollenbach and
Stern 2003a, b), a structure they preferentially bind
(Yang et al., 1996). According to this characteristic, it
was proposed that CSP41 cleaves the psbT-psbH tran-
script intergenic region (Chevalier et al., 2015). Chlo-
roplasts contain two homologous proteins, CSP41A
and CSP41B, which can form homo- and heterodimers
(Bollenbach et al., 2009; Qi et al., 2012) and bind ribo-
somes (Beligni and Mayfield 2008; Bollenbach et al.,
2009). Although the csp41a null mutant does not dis-
play any obvious phenotype, the csp41b null mutant
shows mild chlorosis that is stronger under stress.
Moreover, the absence of CSP41B also destabilizes
CSP41A, resulting in similar phenotypes for the csp41b
mutant and the csp41ab doublemutant (Bollenbach et al.,
2009; Qi et al., 2012). RNA immunoprecipitation-
microarray (RIP-Chip) analyses more recently showed
that CSP41 proteins are able to bind a large variety of
transcripts and that their role is more likely to be RNA
stabilization rather than cleavage (Qi et al., 2012). It has
been proposed that the endoribonuclease activity could
be regulated in vivo, making active forms behave like
ribonucleases and inactive forms like stabilization fac-
tors (Leister 2014). If true, this hypothesis could reconcile
the conflicting results obtained in vitro and in vivo.

RNase E

Chloroplast-localized homologs of E. coli RNase E
can be found in most plants and green algae with the

notable exception ofChlamydomonas (Schein et al., 2008).
It is an essential endoribonuclease in E. coli, involved in
both mRNA maturation and degradation (Aït-Bara and
Carpousis, 2015). In vitro RNA cleavage assays confirmed
that the plant enzyme is an endoribonuclease with a
preference for single-stranded RNA with A/U rich se-
quences and 59 monophosphate, a result in line with the
described behavior of the bacterial enzyme (Mudd et al.,
2008; Schein et al., 2008). RNase E is found in high Mr
complexes in the soluble fraction of the chloroplast stroma,
probably in an oligomeric state (Schein et al., 2008). Null
rne mutants grow extremely slowly compared with wild
type, are chlorotic, and contain smaller chloroplasts,
demonstrating the essential role of RNase E in plants
(Mudd et al., 2008; Walter et al., 2010). They accumulate
very long transcripts precursors at the expense of pro-
cessed,matureproducts, suggesting that the enzymecould
be involved in intercistronic cleavage of the long mRNA
precursors (Walter et al., 2010; Stoppel et al., 2012). It was
indeed proposed that the strong phenotype observed for
rnemutantswas the consequence of themutant inability to
properly express some of the chloroplast-encoded ribo-
somal proteins transcripts (Walter et al., 2010). It is, how-
ever, important to note that mature transcripts still
accumulate in the mutant, albeit at a lower extent than in
wild type, suggesting that other enzymes can partially
complement RNase E deficiency (Walter et al., 2010;
Stoppel et al., 2012). Coimmunoprecipitation showed that
RNase E forms a;800 kD complex with an RNA binding
protein, RHON1, which has been hypothesized to confer
endonucleolytic cleavage specificity (Stoppel et al., 2012).
RHON1 seems particularly important for the processing of
the rbcL-accD and rrn23S-4.5S intergenic area, but the exact
role of the interaction with RNase E is still unclear. It was
indeed shown that RHON1 is involved in transcription
termination downstream of rbcL independently of RNase
E (Chi et al., 2014) and that it interacts with the plastid-
encoded RNA polymerase to prevent the formation of
detrimental R-loops during transcription-replication-head-
on conflicts (Yang et al., 2020).

Other Ribonucleases

Besides the five major RNases previously described,
chloroplasts contain additional RNases that are more
specific to their substrate. Chloroplast tRNAs are pro-
cessed at the 59 end by a protein-only RNase P enzyme
named PRORP1 (PROTEINACEOUS RNASE P1;
Gobert et al., 2010; Gutmann et al., 2012) that is dually
localized to both the mitochondria and the chloroplast
(see “Mitochondrial Endoribonucleases”) and at the 39
by the RNase Z TRZ2 (Canino et al., 2009). Several other
ribonucleases are involved in the processing of the
rRNA transcriptional unit.

Mini-RNase III

Most plants contain one homolog of the Bacillus
subtilis mini-III endoribonuclease. These enzymes are
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active on double-stranded RNA (dsRNA) and only
contain the catalytic domain of the RNase III enzyme,
without the dsRNA binding domain (Redko et al., 2008;
Hotto et al., 2015). Arabidopsis plants contain two
paralogs, RNC3 and RNC4, whose null mutants do
not display any macroscopic phenotype. Double
rnc3/4 mutants are, however, smaller than wild type
and display reduced chlorophyll accumulation in
mature leaves. Both gene-specific and genome-wide
approaches (RNA-seq) demonstrated that mini-III
processes the 59 end of the 23S rRNA and the 39 of the
4.5S rRNA. The enzyme is also involved in the pro-
cessing of an RNA antisense to the 4.5S rRNA and plays
a role in intron degradation following splicing (Hotto
et al., 2015).

YbeY

In both E. coli and B. subtilis, rRNA 16S 39 end is
matured by an endoribonuclease of the YbeY family
(Baumgardt et al., 2018). In vitro, the Arabidopsis ho-
molog AtYbeY preferentially cleaves rRNA substrates
but is not able to recapitulate the correct rRNA 16S 39
end processing. Null mutants do not survive on soil,
and plants with a reduced amount of YbeY grow
slowly, have pale-green cotyledons and leaves, and
completely altered chloroplast development. Mutants
contain 59 and 39 extensions on the 16S, 23S, and 4.5S
rRNA species, but mRNAs accumulate normally.
AtYebY is therefore likely to be an endoribonuclease
specific to the rRNA operon maturation (Liu et al.,
2015).

ERIL1

ERI-1 proteins are conserved eukaryotic 39-59 exori-
bonucleases from the DEDDh family that participate in
small RNA pathways (Thomas et al., 2014). The Ara-
bidopsis homolog, ERIL1, is conserved in all sequenced
plant genomes and targeted to the chloroplast. Knock-
down mutants in Arabidopsis and tobacco showed
mild chlorosis and smaller leaves compared with wild
type. Recombinant ERIL1 possess a 39-59 exoribonu-
clease activity on single-stranded but not double-
stranded RNA in vitro. The mutants showed incorrect
processing of the 23S to 4.5S rRNA precursor and a
decrease in mature 4.5S and 5S rRNA, but the exact
molecular defects remain unclear (Mermigka et al.,
2016).

PPR proteins

Present in all eukaryotes, the pentatricopeptide re-
peat (PPR) protein family has greatly expanded in
plants and is involved in every step of plastidial gene
expression (Barkan and Small, 2014). Molecular analy-
ses of the crr2 (CHLORORESPIRATORY REDUC-
TION2) Arabidopsis mutant showed an accumulation
of the unprocessed rps7-ndhB dicistronic transcript
(Hashimoto et al., 2003). The CRR2 protein has 9 PPR

domains and characteristic E and DYW domains found
in many PPR proteins. Because some DYW domains
(including the one present in CRR2) have endor-
ibonucleolytic activity in vitro, it was proposed that
CRR2 was a sequence-specific endoribonuclease re-
sponsible for the precise ndhB 59 end processing, the
specificity being conferred by the PPR repeats
(Nakamura and Sugita 2008; Okuda et al., 2009). Recent
analyses, however, suggest that CRR2 role in rps7-ndhB
processing is probably to protect the ndhB 59 end from
exoribonucleases (Ruwe et al., 2019). The PPR SMR is
another subfamily of PPR proteins that potentially
contain sequence specific endoribonucleases (Zhang
and Lu 2019). Arabidopsis mutant for the PPR SMR
SOT1 (SUPPRESSOR OF THYLAKOID FORMA-
TION1) protein has retarded growth, virescent leaves,
and abnormal chloroplast structures, whereas maize
mutants for the PPR53 ortholog are chlorotic and have
an impaired NDH complex (Zoschke et al., 2016; Zhou
et al., 2017). Molecularly, sot1 and ppr53 mutants ac-
cumulate incorrectly processed 23S to 4.5S rRNA pre-
cursor and mature forms, a possible explanation to the
lower chloroplast protein synthesis observed (Wu et al.,
2016; Zoschke et al., 2016; Zhou et al., 2017). Recombi-
nant SOT1/PPR53 proteins can specifically bind the 59
end of the 23S rRNA through their PPR domain, pro-
tecting the transcript from RNase degradation. Addi-
tionally, the SMR domain is necessary for correct rRNA
maturation in vivo, and it can cleave the 59 region of the
23S rRNA in vitro. Interestingly, the SMR domain
expressed alone can cleave both Arabidopsis DNA and
total RNA, whereas the full-length recombinant SOT1
specifically cleaves in the 59 region of the 23S rRNA,
around 19 to 20 nt downstream of its binding site (Zhou
et al., 2017). It is, therefore, likely that the addition of a
sequence-specific PPR domain to a nonspecific endo-
nucleolytic SMR domain created a sequence-specific
endoribonuclease in chloroplast. Arabidopsis chloro-
plasts contain at least five additional PPR SMR whose
role as ribonucleases have not been explored yet (Liu
et al., 2013; Zhang and Lu 2019).

Toward a Plastome View of RNase Action?

So far, analyses of RNA phenotypes for RNases
mutants or silenced (VIGS) plants have been done with
tedious and time-consuming gene by gene molecular
techniques, leading to a general focus on a few heavily
studied transcripts or clusters along with the rRNA
operon. A consequence is that the knowledge has often
been built on conflicting results from in vitro and/or
in vivo analyses. For example, the relevance of strong
in vitro endonuclease activity for CSP41 (Yang et al.,
1996) does not easily reconcile with roles suggested
by in vivo mutant analyses (Bollenbach et al., 2003;
Beligni and Mayfield 2008; Bollenbach et al., 2009; Qi
et al., 2012). Additionally, mutants for the endor-
ibonuclease RNase E, its specificity partner RHON1,
RNase J, and others, accumulate unique and apparently
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unprocessed transcripts, but the precise sites of cleav-
age are still unknown (Walter et al., 2010; Stoppel et al.,
2012; Luro et al., 2013). These limitations have recently
started to be overcome with the use of RNA-seq based
approaches that have been instrumental in understand-
ing the global role of two chloroplast ribonucleases, the
exoribonuclease PNPase and the endoribonucleasemini-
III (Hotto et al., 2011; Castandet et al., 2013; Ruwe et al.,
2013; Hotto et al., 2015; Castandet et al., 2019). Com-
bining a transcriptome-wide view to a single-nt resolu-
tionmap of the chloroplast RNAprocessing sites is likely
to speed up any future functional analysis of poorly
studied chloroplastic ribonucleases whose RNA targets
are still unknown.

MITOCHONDRIAL RNASES

Similar to chloroplast, 39 ends of mitochondrial
transcript are mainly matured through the cooperative
action of the two 39-59 exoribonucleases, PNPase and
RNR1. The major difference between the two organelle
lies in the generation of mature 59 ends: whereas the
RNase J 59-39 exoribonuclease activity is essential in
the chloroplast, there is no evidence of such an activity
in plant mitochondria. Mature 59 ends are, rather,
generated through the action of various endor-
ibonucleases whose identities have only begun to be
revealed (Fig. 1B).

Mitochondrial 39 to 59 Exoribonucleases

As evidence of its essential role in plant and mito-
chondria physiology, mitochondrial PNPase null mu-
tants are embryo lethal (Perrin et al., 2004b). In vivo
studies using plants where the enzyme was down-
regulated showed the accumulation of unprocessed
transcripts containing long 39 extensions (Perrin et al.,
2004a; Perrin et al., 2004b). These plants also accu-
mulate misprocessed, truncated, and cryptic poly-
adenylated transcripts that are not, or barely, detectable
in wild-type plants. This is consistent with the known
role of PNPase in the polyadenylation‐stimulated deg-
radation pathway that is conserved from bacteria to
organelles. No heteropolymeric tails could, however, be
identified in these plants, suggesting that the mito-
chondrial PNPase might not function as a polymerase
in vivo (Holec et al., 2006). Although plant mitochon-
dria contain their own PNPase, RNR1 is dually targeted
to both the chloroplast and mitochondria (Bollenbach
et al., 2005; Perrin et al., 2004b). Mutants for RNR1
showed the accumulation of partially processed mito-
chondrial transcripts containing short 39 tails that could
be removed by the enzyme in vitro. This suggests that
PNPase first removes large 39 extensions, whereas
RNR1 processes the remaining 39 tails to produce ma-
ture 39 ends. Like in chloroplast, secondary structures
and RBPs can specify the correct site of processing by
acting like barriers against 39 to 59 degradation (Forner
et al., 2007; Haïli et al., 2013; Ruwe et al., 2016). It is

important to note that such amodel has so far only been
validated for a few mitochondrial transcripts and still
awaits global validation.
Plant mitochondria contain a third 39 to 59 exoribo-

nuclease, the eukaryotic deadenylase PARN [poly(A)-
specific RNase; Hirayama et al., 2013]. PARN contains
three Exo domains characteristics of the RNase D
family, and its homologs are widely distributed among
eukaryotes (Chiba et al., 2004; Reverdatto et al., 2004).
Null mutants are embryo lethal, and a weak allele is
dwarf, with short roots, and displays hypersensitivity
to the plant hormones abscisic acid and salicylic acid
(Chiba et al., 2004; Reverdatto et al., 2004; Nishimura
et al., 2005). The partially defective mutant accumulates
39 polyadenylated mitochondrial mRNAs (Hirayama
et al., 2013). It was shown in vitro that PARN only de-
grades the poly A tail and not the rest of a substrate
RNA; however, it is unclear whether PARN is involved
in vivo in the removal of poly A tract only or more
largely in RNA degradation and/or processing
(Reverdatto et al., 2004). Different from PNPase, the
PARN mutant did not accumulate defective or mis-
processed transcripts, suggesting that these two RN-
ases have distinct roles in poly(A)-dependent RNA
metabolism. The PARN role is, however, conserved
in embryophytes as the enzyme from Marchantia
polymorpha can complement the Arabidopsis mutant
(Kanazawa et al., 2020).

Mitochondrial Endoribonucleases

Endoribonucleases have a major role in generating
mitochondrial RNA termini, especially at the 59 end
(Binder et al., 2016). Termini mapping of mRNAs
revealed that some 59 and 39 ends were located directly
at the processing sites of adjacent tRNAs and t-elements
(for tRNA-like elements), suggesting the involvement
of RNase P and RNase Z endonucleases (Forner et al.,
2007). The RNase P PRORP1 is a member of the PPR
protein family and also contains a conserved NYN (for
Nedd4-BP1, YacP Nuclease) metallonuclease domain
(Matelska et al., 2017). Null mutants are lethal, but
VIGS plants depleted for PRORP1 showed an altered
mitochondrial structure with disorganized cristae. The
enzyme can process in vitro a mRNA containing a
t-element similarly to what is observed in vivo, and the
same transcript is unstable in VIGS plants (Gobert et al.,
2010; Gutmann et al., 2012). tRNAs and t-elements 39
ends are processed by TRZ3 and TRZ4, two of the four
RNase Z homologs encoded in the Arabidopsis genome.
Single knock-out lines are viable but the double null
mutant is lethal, pointing to a functional redundancy.
Recombinant TRZ3 and TRZ4 correctly process tRNA
and t-elements 39 ends in vitro, at the exact mRNA site
described in vivo (Forner et al., 2007; Canino et al., 2009).
Most mRNAs are, however, independent from tRNAs

or t-elements and generated through the action of
endoribonucleases. Mitochondrial nuclease1 (MNU1)
andMNU2, two othermembers of theNYN family, also
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play a role in mitochondrial transcript maturation.
Although single and/or double mutants did not dis-
play any obvious macroscopic phenotypes, large, 59-
extended mRNA precursors accumulated at the ex-
pense of somematuremRNAs in themutants. This was,
however, not true for most mRNAs and the endor-
ibonuclease activities have not been tested in vitro (Stoll
and Binder 2016). Coimmunoprecipitation and yeast
two-hybrid assays recently showed that PRORP1 phys-
ically interacts with MNU2, and the latter also plays a
role in tRNA accumulation (Bouchoucha et al., 2019).
Because several sequence specific PPR proteins are
known or predicted to bind upstream of mitochondrial
mRNA 59 mature ends (Ruwe et al., 2016), the current
model is that they direct unspecific endoribonucleases to
the correct site of processing (Binder et al., 2016). This
mode of action is convincingly supported by an experi-
ment with the RNA binding protein RPF2 that was al-
tered to bind to a new transcript, different from its
natural cognate. This induced a new endoribonuclease
cleavage site downstream of the modified RPF2 binding
site (Colas des Francs-Small et al., 2018). Similarly,
binding of the PPR protein RFL2 to the mitochondrial
orf291 transcript induces a cleavage by PRORP1 around
70 nt downstream of the binding site (Fujii et al., 2016).

CONCLUSION

RNA homeostasis is essential to maintain proper
cellular function. In addition to the “usual suspects”
that participate in cytoplasmic and nuclear RNA me-
tabolism, it is clear that organellar and secretory RN-
ases have an important role in this homeostatic
regulation. RNases located in plastids and mitochon-
dria maintain a functional transcriptome, affecting not
only mRNA accumulation but also adequate synthesis
of rRNA and other noncoding RNA species essential for

their function. Similarly, secretory RNases connect
RNA levels to primary metabolism, and have also been
recruited for a variety of stress response mechanisms.
Despite their importance, we still do not have a full un-
derstanding of their activities and the actual number of
RNases that are located in organelles. More important, in
some cases we do not know the in vivo substrate of these
RNases and whether the substrates are recruited to the
RNase location or RNases translocate to carry out their
specific functions. Finally, although it is clear thatmanyof
these RNases have to coordinate their activity to achieve
the desired RNA outcome, either in a synthetic or cata-
bolic pathway, very little information exists on partners of
organellar and secretory RNases, and posttranslational
regulatory mechanisms that could control their activity
(see Outstanding Questions). This is best exemplified by
the unresolved question of the RNA quality control in
chloroplast, where the same ribonucleases in charge of
transcript processing also function in RNA degradation:
How do they “know” whether to preserve or degrade
RNA? In addition to the known polyadenylation-assisted
degradation (Schuster and Stern, 2009; Germain et al.,
2013) and the protective action of secondary structures
and RNA binding proteins (Hayes et al., 1996; Perrin
et al., 2004b; Manavski et al., 2018), three main hypothe-
ses have been proposed. First, biochemical evidence
showed that RNases do not act alone and are part of high
Mr complexes, where they interact with multiple un-
known partners that support their functions (Hayes et al.,
1996; Stoppel et al., 2012). It is easy to speculate that some
of these partners could play a role in cleavage specificity.
Specific RNA binding proteins could also direct a RNase
to a specific RNA target, similarly to what has been de-
scribed inmitochondria. Second, proteomics studies have
shown that RNases can be post translationally modified,
for example through phosphorylation. As proposed for
CSP41, this could represent a way to regulate the RNase
specificity and/or activity (Leister 2014). Third, RNase
activity could be regulated through the spatial localiza-
tion of both enzymes and substrates, similarly towhat has
been described in bacteria (Redder 2016). It was for ex-
ample proposed that the cooperation between PNPase
and RNR1 could be based on their preferential localiza-
tion in the chloroplast nucleoid and stroma, respectively
(Germain et al., 2012). These questions should drive re-
search in the near future if we are to have a systems un-
derstanding of RNA homeostasis in plants.
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