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Abstract

Hepatocellular carcinoma (HCC) is the most common form of primary adult liver cancer. After 

nearly a decade with sorafenib as the only approved treatment, multiple new agents have 

demonstrated efficacy in clinical trials, including the targeted therapies regorafenib, lenvatinib and 

cabozantinib, the anti-angiogenic antibody ramucirumab, and the immune checkpoint inhibitors 

nivolumab and pembrolizumab. Although these agents offer new promise to patients with HCC, 

the optimal choice and sequence of therapies remains unknown and without established 

biomarkers, and many patients do not respond to treatment. The advances and the decreasing costs 

of molecular measurement technologies enable profiling of HCC molecular features (such as 

genome, transcriptome, proteome and metabolome) at different levels, including bulk tissues, 

animal models and single cells. The release of such data sets to the public enhances the ability to 

search for information from these legacy studies and provides the opportunity to leverage them to 

understand HCC mechanisms, rationally develop new therapeutics and identify candidate 

biomarkers of treatment response. Here, we provide a comprehensive review of public data sets 
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related to HCC and discuss how emerging artificial intelligence methods can be applied to identify 

new targets and drugs as well as to guide therapeutic choices for improved HCC treatment.

Hepatocellular carcinoma (HCC) is the most common form of primary adult liver cancer and 

the fourth leading cause of cancer-related death worldwide in 2018 (REF.1). In 2015, there 

were 854,000 incident liver cancers and 810,000 deaths globally2. With a mortality to 

incidence ratio of 0.95, liver cancer is one of the deadliest cancers. In the USA, the 

incidence and mortality of most cancers have been on the decline over the past decades; 

however, the burden of HCC has continued to increase, with HCC now the fastest rising 

cause of cancer death3. According to the American Cancer Society, it is estimated that 

42,030 people will be diagnosed with liver cancer in the USA in 2019, and that 31,780 

people will die from this malignancy4.

The aetiology of HCC is well defined5, with major risk factors being chronic infection with 

hepatitis B virus (HBV) or hepatitis C virus, alcohol intake and metabolic syndromes, 

including non-alcoholic fatty liver disease. For patients with early-stage HCC, surgical 

resection is the first-line option and it confers 5-year survival rates of 70%6. For patients 

with an inadequate liver function reserve or unfavourable tumour location for surgery, liver 

transplantation is another curative-intent therapy7. However, this approach is limited by the 

availability of donor livers and the fact that tumour burden exceeds transplant criteria in the 

majority of patients. Owing to the lack of specific symptoms and unfavourable tumour 

biology, most patients with HCC are diagnosed in the late stages of the disease and, 

consequently, are not suitable for these curative treatment strategies. For intermediate-stage 

disease, locoregional therapies, such as transcatheter arterial chemoembolization or 

radioembolization, are frequently used8. Until 2017, the multi-receptor tyrosine kinase 

(RTK) inhibitor sorafenib was the only therapy with established survival benefit for patients 

with advanced-stage HCC, after it demonstrated substantial survival prolongation in two 

pivotal international trials9,10. Over the past 2 years, multiple additional agents have 

demonstrated clinical efficacy, including other multi-RTK inhibitors such as lenvatinib11, 

regorafenib12 and cabozantinib13; a monoclonal antibody to vascular endothelial growth 

factor receptor 2 (VEGFR2), ramucirumab14; and the immune checkpoint inhibitors 

nivolumab15 and pembrolizumab16. In the first-line setting, sorafenib remains the standard 

of care worldwide. In a randomized phase III trial, lenvatinib demonstrated non-inferiority to 

sorafenib for overall survival along with higher rates of tumour regression11, leading to FDA 

approval as another first-line treatment option in 2018. In patients who progressed on first-

line sorafenib, regorafenib demonstrated survival prolongation compared with placebo, 

leading to regulatory approvals in multiple countries. Cabozantinib also improved survival in 

second-line and third-line advanced HCC settings13, and ramucirumab improved survival in 

patients with α-fetoprotein (AFP) concentrations ≥400 ng/mL after failure of sorafenib14. 

Immune checkpoint inhibitors have also shown encouraging results in patients with HCC in 

clinical trials published in the past few years, leading to accelerated approvals for nivolumab 

and pembrolizumab17. Multiple additional agents and combinations are now being studied in 

clinical trials. Examples include the combination of PD-L1 blockade using atezolizumab 

with the antiangiogenic bevacizumab in a phase III trial (NCT03434379)18. With a rapidly 

expanding treatment landscape, comprehensive molecular profiling is essential to define 
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biological subgroups and biomarkers to guide therapeutic selection and treatment, and to 

discover improved therapeutics.

Translational research in HCC has benefited from the advances in and the decreasing costs 

of various omics technologies as well as the increasing adoption of high-throughput 

technologies19,20. The past few years have witnessed the generation of large amounts of 

molecular data across multiple modalities — from bulk tissues to single cells, from cancer 

cells to microorganisms, from cell lines to genetically modified mice and to individual 

patients, and from single time points to longitudinal profiling (FIG. 1). Such voluminous 

data points in HCC enable charting of its genomic landscape, delineating molecular 

mechanisms and, ultimately, providing guidance for rational treatments for this fatal 

malignancy. In this Review, we first describe the current outstanding big data sets in HCC 

with a focus on therapeutic discovery, and then discuss computational approaches to 

translating data points into therapeutics and candidate biomarkers. We also briefly survey the 

emerging artificial intelligence (AI) methods that could be useful for advancing HCC 

research.

Big data in HCC

In this section, we highlight outstanding open data sets related to HCC research (TABLE 1) 

and refer interested readers to a review on open data sets commonly used for translational 

cancer research19. Our Review focuses on the application of big data in translational 

research of HCC rather than on specific molecular therapies and targets in HCC, which have 

been extensively reviewed elsewhere21.

Omics data from samples from patients with HCC

Genomics.—Research conducted by The Cancer Genome Atlas (TCGA) Research 

Network has provided the most comprehensive genomic characterization of HCC, including 

examination of somatic mutations and DNA copy number variations in 363 patients, and 

measurement of DNA methylation, mRNA expression, microRNA (miRNA) expression and 

protein expression in 196 patients22. Integrative analyses of these molecular measurements 

in combination with clinical features revealed unexpected disease biology and potential 

therapeutic targets. For instance, unsupervised clustering of five data types (DNA copy 

number, DNA methylation, mRNA expression, miRNA expression and protein expression) 

revealed three molecular HCC subtypes, including one associated with poorer prognosis 

than the other two subtypes. The unique molecular features of each subtype and their 

different prognoses imply that each subtype might require a distinct therapeutic strategy. 

Whole-genome sequencing combined with mutation analysis confirmed 18 mutated genes 

previously reported in HCC — for example, TERT (mutations are present in 44% of 

tumours with HCC), TP53 (31%), CTNNB1 (27%) and ARID1A (7%) — and identified 

eight new candidate driver genes (including LZTR1, EEF1A1 and SMARCA4)22 (FIG. 2). 

Among these, TP53 and CTNNB1 were also identified independently by another 10 

studies22. TERT, TP53, CTNNB1, ALB and APOB are each mutated in at least 10% of 

tumours with HCC; unfortunately, none of these genes are directly druggable at present. 

Copy number analysis revealed 28 recurring focal amplifications, including known driver 
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oncogenes such as CCND1, FGF19, MYC, MET, VEGFA and MCL1. Inhibitors targeting 

MYC23 and MCL1 (REF.24) have been intensively studied in preclinical models, and 

inhibitors targeting FGF19 (REF.25), MET13 and VEGFA26 have been investigated in 

clinical trials for patients with HCC (FIG. 2). The most frequently deleted genes are NCOR1 
(22%), RB1 (19%), ERRF11 (13%) and CDKN2A (13%). Methylation profiling using 

TCGA data identified 298 hypermethylated genes, including 81 genes reported to be 

hypermethylated and 28 genes reported to be downregulated. Taken together, the following 

potential therapeutic targets for HCC were suggested from the TCGA integrative analysis: 

WNT signalling (CTNNB1 mutation), MDM4 (an inhibitory protein of the mutated TP53), 

MET (amplification), VEGFA (amplification), MCL1 (amplification), IDH1 (mutation), 

TERT (mutation) and the immune checkpoint proteins CTLA4, PD-1 and PD-L1 (REF.22).

Several companion genomics studies have been conducted to understand the HCC genomic 

landscape and to search for new therapeutic targets. For example, exome sequencing 

analysis of 243 liver tumours uncovered 161 putative driver genes associated with 11 

recurrently altered pathways27. Genetic alterations in 28% of those tumours are potentially 

targetable by FDA-approved drugs. Whole-exome sequencing and copy number variation 

assessment in 231 patients (72% with HBV infection) with early-stage HCC identified nine 

genes with recurrent mutations and high-copy amplifications in MYC, RSPO2, CCND1 and 

FGF19 (REF.28); targeting FGF19 amplifications was proposed as a therapeutic strategy for 

HCC. Whole-genome sequencing analysis of 300 Japanese patients with liver cancer found 

that cancer-related genes such as TERT, CCND1, CDKN2A and NCOR1 were recurrently 

affected by structural variations and point mutations frequently occurring in non-coding 

regions, indicating the importance of considering structural variations and non-coding 

mutations in therapeutic discovery29. Another high-resolution copy number analysis on 

tumour tissue from 125 patients with HCC and whole-exome sequencing on a subset of 24 

of these tumours identified novel recurrent alterations in ARID1A, RPS6KA3, NFE2L2 and 

IRF2. Inactivation of IRF2 was found exclusively in HBV-related tumours, whereas 

inactivation of chromatin remodelling proteins, such as ARID1A, was mostly detected in 

alcoholic liver disease-related tumours. The analysis provided a genetic basis for 

associations between HCC and certain risk factors30.

Given that the studies discussed here have limited power and substantial population 

heterogeneity, a meta-analysis of data from different patient populations might yield more 

robust driver genes. An analysis of 503 liver cancer genomes from different international 

cohorts identified 30 candidate driver genes and 11 core pathway modules31. Among the 

putative driver genes, TERT was suggested to be a central and ancestry-independent node of 

hepatocarcinogenesis, based on the occurrence of the hotspot TERT promoter mutation, 

TERT focal amplification or viral genome integration in more than 68% of cases. 

Acknowledging population heterogeneity, a multi-modal meta-analysis study on 1,494 liver 

cancer samples revealed 10 consensus driver genes among different ethnic groups and 

revealed the large effect of these driver genes on gene expression32. It also highlighted that 

TP53, CTNNB1 and ARID1A mutations contribute to the three most densely connected 

pathway clusters32. Moreover, this study systematically associated driver mutations with sex 

(CTNNB1, ALB, TP53 and AXIN1), race (TP53 and CDKN2A) and age (RB1), indicating 
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the necessity of considering patient characteristics when translating driver mutations to 

therapeutic targets.

Functional genomics and epigenomics.—In addition to genomics, functional 

genomics (including transcriptomics, proteomics and metabolomics) and epigenomics have 

been explored for therapeutic discovery. Analysis of differential expression of proteins, 

genes or metabolites between tumour tissues and normal tissues has shown encouraging 

potential for identifying novel diagnostic markers and therapeutic targets33,34. Gene 

expression analysis was first applied to human HCC samples to identify GPC3 as one of the 

first biomarkers in HCC35,36. Emerging profiling data provide new opportunities; for 

example, the current version of the HCC cohort in the NCI Genomic Data Commons Data 

Portal includes RNA-sequencing (RNA-seq) profiles for 376 TCGA HCC samples and 50 

adjacent normal tissues. The Genotype-Tissue Expression project includes RNA-seq profiles 

from 175 liver tissue samples from healthy individuals37. The Cancer Proteome Atlas 

profiled the expression of ~220 proteins in 184 TCGA HCC samples38. Untargeted 

proteomic analysis of serum in 205 patients with HCC or cirrhosis led to the discovery of 21 

candidate protein biomarkers differentially expressed in those with HCC compared with 

patients with cirrhosis39. Proteomic and phosphoproteomic profiling of 110 paired tumour 

and non-tumour tissues of clinical early-stage HCC with HBV infection revealed three 

subtypes of HCC and identified sterol O-acyltransferase 1 (SOAT1) as a potential target40. 

The abundance of SOAT1 was higher in tumour than adjacent normal tissues in a subtype 

associated with metabolic dysregulation. High expression of SOAT1 was correlated with 

poor overall survival in multiple cohorts. Knockdown of SOAT1 suppressed proliferation 

and migration in two HCC cell lines, and a SOAT1 inhibitor suppressed tumour growth in 

patient-derived xenograft (PDX) models with high SOAT1 expression. Notably, many 

prognosis-related proteins showed little concordance between mRNA and protein 

abundance40, highlighting the importance of proteomics data in HCC therapeutic discovery.

Metabolomic characterization of 50 pairs of liver cancer samples and matched normal 

tissues revealed 105 metabolites uniquely expressed in cancer samples41. These metabolites 

were associated with elevated glycolysis, gluconeogenesis and β-oxidation, resulting in 

reduced rate of the tricarboxylic acid cycle and reduced levels of Δ−12 desaturase. Two 

metabolites, betaine and propionyl-carnitine, were able to distinguish samples with HCC 

from those with chronic hepatitis or cirrhosis. In a study to understand the implications of 

metabolites in HCC prevention and diagnosis, 11 metabolites were identified to have the 

ability to differentiate patients with HCC (n = 63) from control individuals with cirrhosis (n 
= 65)42. Data from this study suggest that metabolite profiles can be effectively combined 

with clinical covariates for the early detection of HCC. Another metabolomics study of 

serum and urine from 82 patients with HCC, 4 patients with benign liver tumours and 71 

healthy individuals as controls found 43 serum metabolites and 31 urinary metabolites in 

patients with HCC; these metabolites were involved in several key metabolic pathways such 

as bile acid, free fatty acid, glycolysis, methionine metabolism and the urea cycle43. Several 

metabolites, such as bile acids, histidine and inosine, are statistically significantly 

overexpressed in patients with HCC. Importantly, a panel of metabolite markers were able to 

differentiate patients with HCC with low AFP levels (<20 ng/ml) from healthy individuals as 
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controls, underscoring their potential for early detection and stratification of patients with 

HCC.

Alterations in epigenetic regulatory genes are common in cancers and are increasingly being 

explored for therapeutic purposes44. Analysis of HCC profiling data in TCGA revealed that 

28 hypermethylated genes are downregulated in tumours with HCC. The integration of DNA 

methylation profiles (the most characterized epigenetic modification) and transcriptomics 

led to the discovery of the tumour suppressor genes SMPD3 and NEFH in HCC45. Specific 

therapeutic strategies can be used depending on the type of mutation. For example, gain-of-

function mutations and overexpression can be targeted using small molecule inhibitors, 

whereas loss-of-function mutations can be targeted through synthetic lethality. Synthetic 

lethality exploits the relationship between two genes (or pathways), in which only the 

simultaneous loss of both (and not either one alone) leads to cell death. Thus, cancer cells 

harbouring a tumour suppressing mutation can be selectively killed by chemical inhibition of 

the second gene or pathway that the tumour suppressor interacts with. This approach 

selectively kills the cancer cells harbouring the mutation and spares the normal cells without 

the mutation44.

Omics in metastatic liver cancer.—Metastases from primary tumours account for the 

majority of cancer-related deaths and underpin the importance of characterizing metastatic 

cancers in addition to the primary tumours46. Robinson et al. performed whole-exome and 

transcriptome sequencing on over 500 samples from patients with metastatic cancer, 

including 29 (5.8%) hepatobiliary cancer samples and 134 (26.8%) tumour samples from 

metastases to the liver46. Exosome and transcriptomic analysis of all cancer samples 

revealed an average of 119 somatic mutations per patient in protein-coding regions and 34 

gene fusions per metastatic tumour46, whereas in primary HCC there were an average of 40–

60 somatic alterations in protein-coding regions21. In addition, 39.8% of all cancer samples 

harboured at least one putative pathogenic fusion, with 138 activating fusions and 103 

deleterious fusions. Compared to all primary tumours, metastatic samples were more 

heterogeneous and presented more enriched oncogenic signatures. The substantial increase 

in the number of mutations, fusions and enriched oncogenic signatures in metastases 

compared with primary tumours highlights the challenge in discovering therapeutic agents to 

target the aberrations in metastatic cancers, including metastatic HCC.

Omics in single cells.—As the molecular characterization in the described studies was 

mainly conducted on bulk tissues, which are a mixture of multiple cell types, omics analyses 

were unable to capture the variations between individual cells and their interactions. Single-

cell technologies are advancing rapidly to tackle these challenges in various cancers, 

including HCC. A deep single-cell RNA-seq analysis of 5,063 individual T cells isolated 

from peripheral blood, tumours and adjacent normal tissues from six patients with HCC 

identified 11 T cell subsets on the basis of their molecular and functional properties and 

delineated their developmental trajectory47. The distinct features of exhausted CD8+ T cells 

and regulatory T (Treg) cells suggested that regulating their activity might affect response to 

immunotherapy47. For example, LAYN is highly expressed in Treg cells and exhausted T 

cells, and higher expression of LAYN is associated with poorer prognosis in HCC. In vitro, 

Chen et al. Page 6

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2020 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overexpression of LAYN on primary CD8+ T cells decreased their production of interferon-

γ (IFNγ), a key cytokine involved in tumour killing activity, suggesting the potential of 

targeting LAYN to increase immune response47. Such heterogeneous single-cell groups exist 

even in normal human liver tissues. A single-cell RNA-seq study of normal human liver 

published in 2018 identified 20 discrete cell populations, including hepatocytes, endothelial 

cells, cholangiocytes, hepatic stellate cells and various subpopulations of immune cells. This 

study provided a comprehensive overview of the human liver at the single-cell resolution, 

and underscored the importance of understanding the unique characteristics of these discrete 

cell populations and their contributions to the hepatic microenvironment48. In the same year, 

a single-cell RNA-seq study showed that even hepatic cancer stem cells (CSCs) are 

phenotypically, functionally and transcriptomically heterogeneous. Different CSC 

subpopulations (EpCAM+, CD133+, CD24+ and Triple+) contain distinct gene expression 

signatures. Gene signatures linked to CD133 and EpCAM, but not CD24, are independent 

predictors of HCC survival49. The authors suggested that certain patterns of hepatic CSC 

distribution or organization exist and are linked to tumour biology, and therefore to 

prognosis. At single-cell resolution, different surface marker-defined CSCs were found to be 

functionally heterogeneous in terms of self-renewal capacity and differentiation potential, 

which might vary depending on the tumour microenvironment and therapy. Thus, these 

studies suggest that the diverse cell types influence tumour biology and therapeutic response 

and should be considered during drug discovery.

The studies mentioned earlier performed large-scale gene expression profiling, while another 

study, in which genomic copy number variations, the DNA methylome and the transcriptome 

of 25 single HCC cells were simultaneously measured by a single-cell triple omics 

sequencing technique, suggests that multi-omics data from the same single cells might soon 

become a great resource of target discovery50. Besides profiling cancer cells, the large-scale 

profiling of single cells of normal tissues from multiple species could potentially serve as an 

important reference for understanding HCC mechanisms at single-cell levels. For example, 

two compendia were released in 2018 comprising single-cell transcriptome data from Mus 
musculus, one covering 400,000 cells, including 6,426 single cells in the mouse liver, and 

another covering 100,000 cells from 20 organs and tissues51,52. The Human Cell Atlas 

Project initiated an international collaborative effort to define all human cell types in terms 

of distinctive molecular profiles (such as gene expression profiles)53. The new data sets are 

expected to serve as a comprehensive reference map of cells in healthy human tissues.

Big data from preclinical models of HCC

Molecular characterization of tumour samples from patients with HCC provides a means to 

gain biological insights of disease mechanisms. However, the discovery of new therapeutics 

also relies on experimental testing in preclinical models, which are biologically different 

from humans. Molecular characterization of preclinical models is expected to quantify their 

differences from humans and further guide experimental design.

Cancer cell lines.—In 2012, the Cancer Cell Line Encyclopedia (CCLE) published the 

first successful effort to collate DNA copy number, mRNA expression and mutation data for 

>1,000 cancer cell lines, including 25 liver cancer cell lines54. In 2019, the CCLE published 
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their expansion to include RNA-seq, whole-exome sequencing, whole-genome sequencing, 

reverse-phase protein array, reduced representation bisulfite sequencing, miRNA expression 

profiling, global histone modification profiling and metabolite profiling55. Similar efforts to 

profile cancer cell lines were made by other groups56,57, providing valuable resources for 

cancer research. The Cancer Proteome Atlas provides protein expression profiling of liver 

cancer cell lines, although only ~220 proteins have been studied58. To overcome the limited 

coverage of liver cancer cell lines in previous studies, Qiu et al. developed a protocol to 

establish human liver cancer cell models from patients and generated 81 cell models 

expected to represent genomic and transcriptomic heterogeneity of primary cancers with 

HCC59.

Organoid systems.—As cancer cell line models do not recapitulate the pathophysiology 

of the original tumour, near-physiological organoid culture systems are becoming more 

appealing in drug screens because they better preserve the histological architecture, gene 

expression and genomic landscape of the original tumour60. Thus, exploring the molecular 

profiles of organoid systems offers the possibility of discovering novel biological 

mechanisms and therapeutics. Broutier et al.60 established organoid cultures from eight 

individuals with three of the most common subtypes of primary liver cancer: HCC, 

cholangiocarcinoma and combined HCC-cholangiocarcinoma tumours. These organoids 

recapitulated the histological architecture, expression profile, genomic landscape and in vivo 

tumorigenesis of the parent tumour for up to 1 year of in vitro culture60. Tumour-derived 

organoids had patient-specific heterogeneous morphologies compared with the 

homogeneous structure of organoids derived from healthy liver, and their gene expression 

profiles resembled those of their parent tumour tissues. These tumour-derived organoids 

retained >80% of the genetic variants in the patients’ tissues and harboured mutations in 

frequently mutated genes such as CTNNB1 and TP53. These features make organoids a 

valuable preclinical model for therapeutic discovery. Using these organoid models to screen 

29 compounds led to the identification of the ERK inhibitor SCH772984 as a potential 

therapeutic agent for primary liver cancer60. However, current organoids lack immune 

system and stromal components and therefore do not fully model clinical liver cancer. 

Genomic profiling might help to quantify the differences between organoids and patient 

tumours to enable a greater understanding of the behaviour of organoids and their 

implications in therapeutic discovery.

Animal models.—Mouse models, including PDX, genetically engineered and carcinogen-

induced HCC models, have been widely utilized to elucidate disease mechanisms and 

evaluate therapeutics. In addition, candidate genes associated with liver cancer in studies of 

human tumours can be stably expressed in mouse hepatocytes in vivo to generate preclinical 

mouse models61. Each of these mouse models has its advantages and limitations, and they 

all offer varied insights and multiple sources of validation during the drug discovery 

process62–64. A study published in 2004 compared the transcriptome profiles of seven mouse 

HCC models with 91 human tissue samples with HCC65 to identify mouse models 

appropriate for the patient groups with distinct survival rates. For example, gene expression 

profiles of Myc, E2f1 and Myc E2f1 transgenic mice more resemble those of the improved 

survival group of human HCCs. However, as more mouse HCC models are being developed 
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in the HCC research community, a comprehensive multi-omics comparison of mouse models 

with human samples is clearly needed. Interest in collecting and harmonizing these data has 

grown over the past few years. Notable efforts include the Patient Derived Mouse Model 

Repository by the National Cancer Institute, PDX Finder by EMBL-EBI and the Jackson 

Laboratory66, OncoExpress by Crown Bioscience, OncoDB.HCC67, and PDXLiver68. More 

quantitative analyses will be needed to fully maximize the use of these sophisticated model 

systems in translational research.

Translating big data into therapeutics

Target-based therapeutic discovery

Targeting an individual alteration using either a small or a large molecule remains the main 

paradigm in drug discovery (FIG. 3). This approach has led to the discovery of many 

successful drugs in other cancers, including HER2-targeted therapies in breast and gastric 

cancer, BRAF inhibitors in melanoma, EGFR and ALK inhibitors in non-small-cell lung 

cancer, and NTRK inhibitors in solid tumours harbouring NTRK1 fusions69,70. In HCC, 

however, the most commonly altered pathways have proven difficult to target, highlighting 

one of the central challenges in HCC therapeutic discovery. For example, WNT signalling 

(mainly CTNNB1 mutation, the most frequent mutation in the WNT pathway), p53 

signalling (TP53 mutation) or the telomerase promoter (TERT) are altered in 77% of HCC 

tumours but, to date, there are no inhibitors with established clinical activity against these 

targets. Several compounds have been developed to target the WNT pathway and their 

potential in treating solid tumours (including HCC) is being studied in clinical trials 

(NCT03355066)71. p53 is considered undruggable, but its function could be regulated by 

targeting its upstream regulators (such as MDM4 or MDM2)72,73. Various strategies, 

including small molecule inhibitors and antisense oligonucleotides, have been discovered to 

target telomerase (such as to regulate gene expression of telomerase)74, which has a central 

and ancestry-independent role in hepatocarcinogenesis31. Specifically, a lipid-modified 

version of an antisense oligonucleotide known as GRN163L showed promising inhibition of 

HCC tumour growth in vitro and in vivo. GRNL163 is currently in stage I and stage I/II 

clinical trials for several cancers, though not yet including HCC. In addition to these 

frequently mutated pathways, tumours from four patients with HCC in the TCGA cohort 

were found to harbour a mutation in IDH1, encoding cytoplasmic isocitrate dehydrogenase. 

IDH1 inhibitors, approved for use in IDH1-mutant acute myeloid leukaemia, are now under 

study in patients with primary IDH1-mutant cholangiocarcinoma (NCT02989857)75. A 

survey of an in silico prescription strategy based on the identification of driver gene 

alterations in individual patient tumours across 28 tumour types (including liver) revealed 

that up to 40% of tumours could benefit from different repurposing options76. In HCC, 

~28% of tumours harbour potentially targetable driver genes27, yet all of the putative 

therapeutic options should be rigorously evaluated in relevant preclinical HCC models and, 

if promising activity is observed, further studied in human clinical trials with patient 

enrichment for the target in question.

A great challenge in translating targeted therapeutics into the clinic across tumour types, 

including HCC, is the presence of tumour heterogeneity, both across and within individual 
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patients. Whole-exome sequencing of 69 samples from 11 patients with HCC revealed that 

all patients have intratumoural genetic and epigenetic heterogeneity, with 29% of driver 

mutations being heterogeneous77. The heterogeneity of HCC underscores the urgent priority 

to define relevant molecular subgroups of patients using tumour biomarkers associated with 

response or resistance to targeted pathway inhibition78.

One approach to this challenge is to intensify efforts to develop clinical trials of targeted 

therapies that select for patients with tumours harbouring the target in question. Several 

clinical trials have pursued this approach in HCC in the past few years, including an ongoing 

trial of the FGFR4 inhibitor BLU-554 in patients with HCC tumours that overexpress 

FGF19 (NCT02508467)25. However, in the large randomized phase 3 METIV-HCC trial 

(340 patients), the MET inhibitor tivantinib failed to improve outcomes in patients with 

MET-overexpressing tumours compared with placebo, perhaps because of insufficient MET 

inhibition by tivantinib or the potential for overlapping pathways, resistance mechanisms 

and tumour heterogeneity in HCC79. A targeted inhibitor of the androgen receptor 

enzalutamide is being studied in a randomized phase 2 trial of patients with HCC without 

selection for tumour androgen receptor overexpression; there was no improvement in overall 

survival or progression-free survival with enzalutamide treatment in the overall study 

population (NCT02528643)80. A systematic analysis of the targets of the drugs investigated 

in HCC phase II or phase III trials in the past 5 years suggests that a big gap remains in 

translating genomic features into targeted therapy (FIG. 2). None of the drugs tested in phase 

II or III clinical trials are known to target commonly mutated genes, and the targets of these 

drugs are only altered in a small percentage of cancers (FIG. 2).

Aberrant tumour epigenetic features seem to be present in a high proportion of HCC 

tumours, suggesting that therapeutic targeting with agents such as histone deacetylase 

inhibitors and DNA methyltransferase inhibitors could be possible in unselected advanced 

HCC populations81. Liu et al. evaluated guadecitabine (SGI-110), a second-generation DNA 

methyltransferase inhibitor, in vitro and found that it acted as a dual inhibitor by 

downregulating polycomb repressive complex 2 genes by demethylating their gene bodies 

and by upregulating endogenous retroviruses to reactivate immune pathways. It is estimated 

that aberrant epigenetic changes in 48% of frequently altered genes in primary HCC tumours 

can be reversed by SGI-110 treatment81. A phase II clinical trial of guadecitabine 

monotherapy in HCC (NCT01752933) has completed enrolment82, and a phase I study of 

guadecitabine combined with the PD-L1 immune checkpoint inhibitor durvalumab is also 

underway in hepatobiliary cancers (NCT03257761)83.

Systems-based approaches

A multitude of abnormally expressed genes, proteins and metabolites have been discovered 

in HCC, yet targeting one alteration might not be sufficient to disrupt the complex systems 

involved. Identifying drugs that reverse the altered molecular state as a whole (comprising 

multiple abnormally expressed components) offers a promising complementary approach to 

the traditional target-based approach. Using gene expression as a representation of the 

molecular state, a number of studies have shown the potential of this method in drug 

discovery84–88. Briefly, this approach starts with the creation of a disease gene expression 
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signature by comparing disease samples and normal tissue samples, followed by a 

comparison of the disease signature and drug signatures derived from cancer cell lines. 

Drugs that present a reversal correlation with the disease gene expression signature (by 

decreasing the expression of upregulated genes and increasing the expression of 

downregulated genes) are considered as therapeutic agents (FIG. 3).

Using this approach, Chen et al. identified anthelminthic drugs as potential therapeutic 

candidates for HCC89. A robust HCC disease signature consisting of 163 upregulated and 

111 downregulated genes was created from HCC and adjacent normal liver RNA-seq 

profiles from the TCGA. This HCC signature was then compared with individual drug gene 

expression profiles to identify drugs that likely reverse the expression of HCC genes. Among 

the FDA-approved drugs that are not currently being used in HCC trials, niclosamide was 

identified as the top candidate for reversing the expression HCC of genes. The antitumour 

efficacy of its water-soluble ethanolamine salt (niclosamide ethanolamine) was confirmed in 

preclinical models of HCC, including HCC cell lines, a PDX mouse model and a genetic 

mouse model. Additionally, niclosamide ethanolamine increased the expression of 20 genes 

downregulated in HCC and reduced the expression of 29 genes upregulated in HCC in a 

PDX model studied89.

In a separate large scale analysis, Chen et al. analysed >66,000 compound gene expression 

profiles from the Library of Integrated Network-Based Cellular Signatures L1000 data set 

(including expression changes of 978 genes in cancer cells after compound treatment), >12 

million compound activity measurements from the ChEMBL database, >1,000 cancer cell 

line molecular profiles from the CCLE and >7,500 cancer patient samples from TCGA90. 

The authors quantified the reversal relationship between disease and drug-gene expression 

signatures as the Reverse Gene Expression Score, a measure of potency to reverse disease 

gene expression; they found that the Reverse Gene Expression Score of a compound 

positively correlates with its efficacy (defined by the half-maximal inhibitory concentration) 

in liver, breast and colon cancer cell lines. In liver cancer, the Spearman correlation was as 

high as 0.61, meaning that compounds presenting high potency to reverse the expression of 

liver cancer genes are also likely to be effective in liver cancer cell lines. Four compounds 

with strong reversal potency were validated to exert antitumour effects against five liver 

cancer cell lines in vitro; among them, pyrvinium pamoate (with the lowest half-maximal 

inhibitory concentration) was shown to substantially reduce the growth of subcutaneous 

xenografts of a liver cancer cell line. These studies demonstrate the potential of the systems 

approach to discover novel compounds for diseases of interest. As the TCGA study revealed 

three HCC subtypes with distinct molecular features and prognosis, it is possible to create 

gene expression signatures and identify drugs reversing each subtype, creating a platform for 

precision medicine. Along with rapid technological advances, this approach can also be 

extended to drug discovery efforts based on protein and/or metabolite signatures or even 

image-based features91.

The immune landscape of HCC

Immunotherapy is becoming a mainstay of current cancer therapeutics. Clinical trials 

published in the past few years have demonstrated the potential for robust and durable 
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radiographic responses from immune checkpoint inhibitors, including the PD-1 inhibitors 

nivolumab15 and pembrolizumab16 as well as the CTLA4 inhibitor tremelimumab92, in 

single-arm HCC studies. Multiple randomized phase III trials of immune checkpoint 

inhibitor monotherapies and combinations are also underway. Notably, a large open-label, 

non-comparative, phase I/II dose escalation and expansion trial of nivolumab in 262 patients 

with HCC showed that the objective response rate could reach up to 20% with median 

duration of response exceeding 17 months15, suggesting huge potential and leading to FDA 

approval of nivolumab after sorafenib failure. The remarkable response rates observed in 

melanoma93, lung cancer94, HCC and many other cancers have prompted the genomics field 

to investigate new neoantigens, predictive markers or combinatory agents to boost immune 

response. Open genomics databases such as TCGA provide a unique resource to gain 

insights into immunological properties in malignancies95,96. On the basis of studies 

suggesting that effector T cells at the tumour site predict favourable outcome across many 

cancers, Rooney et al. used cytotoxic T cells and natural killer cells to study immune 

effector activity in solid tumours97. They used a simple and quantitative measure of immune 

cytolytic activity based on transcript levels of two key cytolytic effectors, granzyme A and 

perforin, to systematically analyse the RNA-seq data of TCGA solid tumour samples. 

Subsequently, the authors associated cytolytic activity with other clinical and molecular 

features, including recurrently mutated genes and viral status in multiple cancers; however, 

they did not observe the association between cytolytic activity and virus status (hepatitis C 

virus and HBV) in liver cancer. A pan-cancer immunogenomics analysis published in 2018 

identified six immune subtypes, including one ‘lymphocyte depleted’ subtype, 

characterizing HCC95. This subtype displayed a more prominent macrophage signature with 

Th1 cell suppression and a high M2 macrophage response, consistent with an 

immunosuppressed tumour microenvironment for which a poor prognosis would be 

expected.

Using a non-negative matrix factorization algorithm (BOX 1), Sia et al. analysed gene 

expression profiles of tumour, stromal and immune cells from 956 patient bulk tissues and 

found that 25% of HCCs have markers of an inflammatory response, with high levels of PD-

L1 and PD-1 expression, markers of cytolytic activity, and fewer chromosomal aberrations 

than previously reported HCC molecular classifications98. They defined this group of 

tumours as the immune class; two subtypes of the immune class were further identified, 

characterized by markers of an adaptive T cell response or an exhausted immune response. 

In another study, Rohr-Udilova et al. used the CIBERSORT deconvolution method (Box 1) 

to assess the relative proportions of immune cells in samples from 41 healthy human livers, 

305 HCCs and 82 tissues adjacent to HCCs99. The model suggested that strong immune cell 

infiltration into HCC correlated with total B cells, memory B cells, T follicular helper cells 

and M1 macrophages, while weak infiltration was linked to resting natural killer cells, 

neutrophils and resting mast cells. Single-cell analysis performed by Zheng et al. revealed 

that exhausted CD8+ T cells and Treg cells are enriched in HCC tissues compared to adjacent 

liver tissues47. Specifically, Treg cells have been known to play important roles in the 

inhibition of antitumour immune responses. In melanoma, this Treg cell-mediated effect was 

found to be regulated by c-Rel, one subunit of the transcription factor nuclear factor-κB. As 

a proof-of-concept, ablation of c-Rel in mice as well as chemical inhibition of c-Rel were 
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shown to potentiate anti-PD-1 therapy and to reduce melanoma growth100. These findings 

from big data analyses across other solid tumour types warrant further studies in HCC tissue 

cohorts from patients treated in immunotherapy clinical trials. Such detailed analysis of the 

signatures of each distinct immune cell type, their functional implications and relationship to 

clinical outcomes could help suggest strategies to increase immune response in HCC as well 

as to identify candidate biomarkers of immune checkpoint inhibitor response or primary 

resistance in HCC.

Biomarkers for precision medicine

Since gene expression data obtained from microarrays have been available for almost two 

decades, HCC subtyping and prognostic biomarker identification have been widely 

researched. In 2004, Lee et al. used the transcriptome data of 91 human HCCs for Cox 

proportional hazards (BOX 1) regression modelling, and revealed two distinctive subclasses 

(proliferation and non-proliferation) of HCC that are highly associated with patient survival. 

The poorer survival group was characterized by the enrichment of cell proliferation, anti-

apoptosis, ubiquitylation and histone modification genomic signatures101. A later study 

pooled nine cohorts, with a total of 603 patients, and used unsupervised clustering methods 

to identify three distinct molecular subclasses of HCCs. Although these subclasses were 

associated with clinical factors such as tumour size, degree of cellular differentiation and 

virus infection types, how well they were related to patient survival was not assessed102. A 

study using TCGA multi-omics data and the ‘cluster of clusters’ method (BOX 1) was able 

to classify HCC samples into five subgroups. However, three of the five subgroups seemed 

to have very similar survival curves, raising the possibility of over subtyping103. Chaudhary 

et al. developed and validated a model using autoencoder-based deep learning (BOX 1) that 

is sensitive to survival outcome; they trained the deep learning model on RNA-seq, miRNA-

seq and methylation data from 360 patients with HCC in the TCGA cohort, and identified 

two subpopulations with very distinct survival outcomes (logrank P = 7.13 × 10−6)104. The 

more aggressive subtype is associated with frequent TP53 inactivation mutations, increased 

expression of sternness markers (KRT19 and EPCAM) and the tumour marker BIRC5, and 

activated WNT and AKT signalling pathways. Moreover, this model successfully predicted 

survival differences in five independent cohorts of different populations and assay platforms. 

Indeed, integrative analysis across multiple studies performed in Chaudhary et al.104 

supports the proposal that HCC can be broadly classified into two major molecular 

subsets105. The next important step will be utilizing the signatures identified in these 

subtypes to inform specific therapeutic decisions.

Identifying biomarkers from clinical cohorts is challenged by scant tumour tissue and the 

long turnaround time of clinical trials. The large-scale generation of pharmacogenomic data 

in cancer cell lines and molecular characterization of these cell lines enables the rapid 

identification of putative biomarkers at little cost. Notable resources include 265 drugs in 17 

liver cancer cell lines in the Genomics of Drug Sensitivity in Cancer data set106 and 481 

drugs in 22 liver cancer cell lines in the Cancer Therapeutics Response Portal data set107. 

For instance, the pan-cancer analysis found that activating mutations in the oncogene β-

catenin predicted sensitivity to the BCL-2 family antagonist navitoclax108. Although a 

greater number of liver cancer cell lines should be included in these data sets to increase 
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statistical power to identify robust biomarkers, this work provides proof-of-concept that the 

combination of big data analysis of pharmacogenomics and molecular profiles can be 

valuable for precision medicine.

To characterize the landscape of pharmacogenomic interactions in liver cancers, 81 cell 

models (of which 79 are HCCs) were published along with the release of their genomic and 

transcriptomic profiles in August 2019 (REF.59). The comparison of molecular profiles of 

these cell models and patient samples confirmed that the cell models captured the genomic 

landscape, heterogeneity and oncogenic alterations of primary liver cancers. Combining the 

profiles with sensitivity data in these cell models identified 1,508 significant interactions 

between 70 cancer functional genes and 90 drugs, among which 56 interactions were 

associated with responses to clinically used liver cancer drugs such as sorafenib, regorafenib 

and lenvatinib. For example, lenvatinib, an FGFR inhibitor, showed selective sensitivity to 

amplifications of both FGFR and FGF19. The sensitivity of sorafenib could be predicted by 

51 mutation features and 77 expression features, among which DKK1 expression was 

further evaluated as a marker to predict sorafenib response in vivo in mice and in patients.

A bedside to bench approach might facilitate biomarker discovery and identify relevant 

activated pathways in clinical subgroups. Historically, biomarker analyses in HCC systemic 

therapy clinical trials have been largely negative, limited by scant access to biospecimens 

and by inefficacious drugs without a positive clinical end point for biomarker validation. In 

the case of ramucirumab, a randomized, phase III trial in an unselected HCC population was 

negative, but subgroup analysis showed benefit in the subset of patients with elevated AFP 

levels109. High tumoural AFP expression has been associated with distinct molecular 

features across multiple studies, including the S2 subclass defined by Hoshida et al. in a 

meta-analysis110. This subclass is notable also for activation of MYC and AKT, 

overexpression of IGF2 and enrichment for an EPCAM pathway signature. Based upon the 

high AFP subgroup findings, a subsequent phase III trial was conducted to study the efficacy 

of ramucirumab in patients with HCC and serum AFP levels of ≥400 ng/ml, reporting 

positive results for the primary end point of overall survival improvement in 2018 (REF.109). 

This example with ramucirumab highlights the important potential of clinical data sets and 

biospecimen analyses to identify relevant molecular pathways and biomarkers in HCC, just 

as in other tumour types. Increasing emphasis on fresh and archival tumour tissue collection 

in HCC trials promises to augment the potential for advanced disease clinical trial data sets 

to contribute to drug target and biomarker discoveries in HCC.

Connecting patients and preclinical models

The current paradigm for translational research in therapeutic discovery begins with 

molecular characterization of patient samples, followed by the identification of potential 

therapeutic agents and then their preclinical validation in cell lines and in animal models, 

with the ultimate goal of a clinical trial (FIG. 1). Many critical steps and decisions are 

involved in this process, such as the selection of representative tumour samples, cell lines 

and animal models. Owing to the large-scale characterization of bulk tissues, single cells and 

animal models, it is now possible to use big data to drive every step in translational 

research19,89. One advantage of large-scale big data analysis lies in the integrative analysis 
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across multiple models or across multiple cancers, including those more widely studied or 

with better access to tumour samples than HCC.

The molecular characterization of tumours is often performed on bulk tissue samples, which 

consist of heterogenous cell types. A pan-cancer analysis revealed that a substantial number 

of tumours presented the expression signatures of non-cancer cell types, including immune 

cells and stromal cells111, and the comparison of gene expression profiles between tumours 

and isolated cancer cell lines found that eight out of 200 TCGA HCC tumours do not 

resemble commonly used cancer cell lines112. Although standard analysis approaches take 

the average of expression of multiple cell types in bulk tumour samples, these studies 

suggest that such expression data need to be corrected if we are only interested in cancer 

cells within the bulk tumour sample. Moreover, the analysis of protein-coding gene 

expression of 17 major cancer types revealed that HCC tumours present relatively unique 

global expression patterns compared with other major cancer types113. Our further analysis 

confirmed this finding and revealed that the difference is mainly due to the enrichment of 

metabolic processes in the liver (B.C., unpublished observations). Thus, the unique 

expression patterns of HCC tumours must be considered when developing new therapeutics 

for HCC.

With respect to experimental validation of drug hits in cell lines, Chen et al. showed that, 

although some commonly used HCC cell lines resemble primary HCC tumours, nearly half 

of the cell lines do not112. Interestingly, a substantial number of genes involved in metabolic 

processes and immune responses are not highly expressed in HCC cell lines. For example, 

CYP2C8, the primary enzyme metabolizing paclitaxel, is expressed at very low levels across 

all the HCC cell lines compared to primary HCC tumours. This finding might account for 

the observation that paclitaxel demonstrates potent antitumour activity in vitro but has no 

major clinical effect in patients with HCC. This analysis raises concern over the use of these 

cancer cell lines in translational research. Clustering of the transcriptome profiles of 25 

hepatoma cell lines from the CCLE data set revealed that one subclass of patient samples 

(defined by a previous meta-analysis) does not resemble any HCC cell line114, suggesting 

the need for more preclinical models. Nevertheless, big data analysis enables the 

appreciation of advantages and disadvantages of different models and helps guide the 

selection of clinically relevant models for use in validation studies.

Emerging machine learning methods

Emerging sophisticated machine learning technologies have started to unleash the power of 

big data in various fields (BOX 1). Models backed by deep learning could achieve human 

levels of performance in many tasks, including gaming, image recognition and speech 

translation. There is great enthusiasm in applying AI approaches to therapeutic discovery in 

both academia and industry115,116. To date, the direct utilization of deep learning methods in 

HCC therapeutic discovery has been sparse; however, these methods have been explored 

across the entire drug discovery pipeline, including for predicting compound physical 

properties and biological activities117–120, generating new compounds121,122 and synthesis 

paths123, classifying molecular subtypes124, and assisting biological image labelling125. 

Zeng et al. used a deep learning autoencoder to encode RNA-seq samples and then used the 
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encoded features to select reference normal tissues and create disease gene expression 

signatures126. In the selection of normal liver tissues to serve as a reference for HCC 

samples, the autoencoder outperformed conventional methods, including top varying genes 

and principal component analysis. A similar deep learning model was trained on RNA-seq, 

miRNA-seq and methylation data, which led to the discovery of two HCC subpopulations 

with distinct survival outcomes104. AI has started to show its potential impact on research in 

other cancers, for example, in the accurate prediction of breast cancer risk from a 

mammogram127,128; therefore, it is anticipated that new AI applications in HCC will expand 

markedly in the coming years.

Deep learning often requires a large number of samples to train accurate models, presenting 

challenges in cancer research in which patient samples are often scarce and have high-

dimensional and heterogeneous features (such as mutations, copy number variation and gene 

expression). In the USA, the availability of well-archived HCC samples is much more 

limited than other common cancers. Transfer learning that takes advantage of other cancer 

samples might help mitigate this issue. Current single-cell RNA-seq technologies enable 

thousands or millions of single cells to be profiled, opening the door to the use of powerful 

deep learning approaches. Deep learning models can be used to improve single-cell data 

quality by imputation129 or denoising130. As mentioned earlier, the unsupervised deep 

learning method autoencoder was successfully used to train a model based on multi-omics 

data to predict survival in patients with HCC. Variations of such frameworks, by adding 

other types of input features (such as imaging or metabolomics data), will probably further 

improve prediction performance.

Conclusions

The incidence of HCC is rising worldwide and HCC is the fastest increasing cause of cancer 

death in the USA. With the accumulation of data from various cancers we can begin to 

apprehend not only the heterogeneity within each cancer but also the commonality between 

different cancers. In 2018, a pan-cancer analysis suggested that some liver samples with high 

expression of ER-alpha, AR and IGFBP2 cluster together with luminal breast and 

gynaecologic cancers to form unique subgroups131. Compared with the more common 

cancers, big data resources for HCC remain limited, but current data are already available 

for large-scale mining and comparison. Such a large-scale comparison with other cancers 

might help elucidate HCC mechanisms, repurpose existing drugs from other indications, and 

guide the choice and sequence of existing therapies.

In addition to integrating with other cancers, big data are ready to connect multiple 

components (cell lines, organoids, animal models, patients) in translational research — 

delineating their similarities and differences could precisely guide each step. Emerging new 

data types (for instance, microbiome data132), real-world evidence data (such as imaging and 

electronic medical data) and biomarker data (specifically from non-invasive technologies) 

should also be used in the future to better define patient subgroups. As different types of data 

are added into the discovery pipeline, the methods used to translate these data points into 

therapeutics should also be adjusted. Novel methods either to prioritize single targets 

through analysing multi-omics data or to discover agents effective against multiple targets 
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are urgently needed. Computational methods such as deep learning and deep reinforcement 

learning hold great promise to help address these challenges.

Although big data serve to enable the discovery of novel targets and drug candidates that 

might have therapeutic potential in HCC, these targets or drug candidates must be tested 

using experimental approaches to validate their efficacy and toxicity and to investigate 

mechanisms of action. Currently, we are limited by the availability of clinically relevant 

approaches to effectively study novel targets and drugs, especially in vivo. HCC animal 

models that can closely mimic the diseased liver in patients with HCC with different 

underlying pathologies are needed to accurately evaluate the efficacy and toxicity of new 

drug candidates, especially those expected to be primarily metabolized in the liver and those 

used for combination therapies. Together with the rapid advances in big data and AI 

applications, improved preclinical models of HCC will help to accelerate the process of 

novel drug discovery and refine therapeutic choices for molecularly defined HCC subgroups, 

thereby addressing a growing unmet medical need.
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Key points

• The past few years have witnessed the generation of big omics data across 

multiple modalities in hepatocellular carcinoma (HCC) — from primary to 

metastatic cancer, from bulk tissues to single cells and from patients to 

preclinical models.

• Big data brings new hope but also new challenges in translating data points to 

therapeutics.

• Multiple new targeted therapies have shown efficacy in HCC, yet the optimal 

choice and sequence of therapies for individual patients is unknown, without 

established clinical biomarkers of response or resistance.

• A systems approach that aims to target a list of disease molecular features, 

such as gene expression signatures, can be used to complement the 

conventional target-based approach.

• Big data analysis, including pan-cancer studies, might help quantify 

biological differences between preclinical models and patients, further 

guiding translational research, which is especially critical for understudied 

cancers such as HCC.

• Emerging artificial intelligence methods, including deep learning, could 

empower big data in HCC therapeutic discovery and identification of 

predictive biomarkers.
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Box 1 |

Machine learning methods

Artificial intelligence:

A set of intelligent computer programmes that helps to address the challenges that 

humans find difficult or are not able to address. It comprises the broad machine learning 

algorithms.

Deep learning (DL):

DL originated from classic machine learning algorithms, called artificial neural networks, 

which aim to mimic how brains learn complicated patterns by changing the strengths of 

synaptic connections between neurons. DL uses deep artificial neural networks (that is, 

many layers of artificial neurons between the input and the output layer) to learn the 

internal linear and/or non-linear relationships between input features (such as genomic 

features). This technique often substantially outperforms systems that rely on features 

supplied by domain experts. The power of DL is unleashed because of the emergence of 

big data that hide many underlying relations and the increasing computational power that 

allows the computer to quickly solve complicated mathematics from the DL network.

Autoencoder neural network:

An autoencoder is an unsupervised DL algorithm that learns the representation of input 

data, often considered as a dimensional reduction method. Compared with other methods 

such as principal component analysis (pCA), an autoencoder can capture non-linear 

relationships between input features, presenting unique advantages in handling high-

dimensional data.

Non-negative matrix factorization algorithm:

Unsupervised learning algorithms, including PCA, involve factorizing a data matrix 

subject to different constraints. Depending upon the constraints utilized, the resulting 

factors can be shown to have very different representational properties. In non-negative 

matrix factorization, a matrix is factorized into two matrices, with the property that all 

three matrices have no negative elements. This property leads to models that can be more 

easily interpreted than models such as the pCA, and is therefore popular for decomposing 

data sets from images, text or RNA-sequencing counts where input features are non-

negative.

CIBERSORT:

A computational tool to estimate the abundance of member cell types in a mixed cell 

population (bulk tissue samples) using gene expression data.

Cox-proportional hazards regression:

Cox-proportional hazards modelling is an approach commonly used to model survival. 

Survival models relate the time that passes before an event occurs to one or more 

covariates that might be associated with that quantity of time. A survival model consists 

of two parts: the underlying baseline hazard function, describing how the risk of event per 
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time unit changes over time at baseline levels of covariates, and the effect parameters, 

describing how the hazard varies in response to explanatory covariates.

‘Cluster of clusters’ method:

This tool is an unsupervised consensus clustering method developed to integrate clusters 

identified from different omics platforms. It is independent of the number of features of 

each platform, and the contribution of each platform is determined by its cluster number.
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Fig. 1 |. Translational research and big data.
Translational research comprises four main components: patients, tissues, in vitro models 

(cell lines and organoids) and in vivo models. Each component can be characterized by 

different molecular modalities (such as genomics, epigenomics and functional genomics). 

Artificial intelligence (AI) can be used to improve the insights from big data by delineating 

differences and similarities and further facilitating efficient therapeutic discovery. CNV, 

copy number variation; miRNA, microRNA.
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Fig. 2 |. Connecting genomic features and therapeutic targets in HCC.
Highly mutated, amplified or deleted genes were extracted mainly from The Cancer Genome 

Atlas (TCGA) analysis work22 published in 2017 and a review by Llovet et al.21. 

Therapeutics in phase II and III trials for patients with hepatocellular carcinoma (HCC) and 

their targets were mainly selected from the review by Llovet et al.21. Many new trials of 

HCC therapeutics are being launched; new therapeutics in the latest trials that do not pursue 

new targets were not included. The expression of these targets was retrieved from 

cBioPortal133, and the percentage of patients with a target expression z score >2 was 

computed for each target (shown under Targets in trials). The column of targets in trials 

suggests that therapeutic targets in HCC are expressed in a small portion of patients with 

HCC, and the column of genomic features suggests that none of the genomic features are 

altered in half of the patients with HCC. Few connections between genomic features and 

therapeutic targets indicate the gap in translating genomic features into therapeutic targets. 

All drugs in clinical trials tested alone or in combination; all drugs reached phase II clinical 

trials unless otherwise stated. A3AR, adenosine receptor A3; CCR4, CC-chemokine receptor 

4; FGF, fibroblast growth factor; HDAC, histone deacetylase; mTOR, mechanistic target of 

rapamycin; PD-1, programmed cell death 1; PDGF, platelet-derived growth factor; PD-L1, 

programmed cell death 1 ligand 1; SK2, sphingosine kinase 2; STAT3, signal transducer and 

activator of transcription 3; TGFβR1; TGFβ receptor 1; VEGF, vascular endothelial growth 

factor. *Phase III clinical trials.
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Fig. 3 |. Translating big data to therapeutics.
A target-based approach involves the modulation of one single protein by small or large 

molecules; a systems-based approach involves the modulation of a list of disease-related 

molecular features (for example, gene expression, protein expression, metabolite abundance) 

mainly through small molecules. Other therapeutic strategies, such as immunotherapy, are 

not included. CNV, copy number variation; miRNA, microRNA.
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