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Purpose: To propose and evaluate a deep learning model for rapid and accurate  
calculation of myocardial T1/T2 values based on a previously proposed Bloch equa-
tion simulation with slice profile correction (BLESSPC) method.
Methods: Deep learning Bloch equation simulations (DeepBLESS) models are pro-
posed for rapid and accurate T1 estimation for the MOLLI T1 mapping sequence with 
balanced SSFP readouts and T1/T2 estimation for a radial simultaneous T1 and T2 
mapping (radial T1-T2) sequence. The DeepBLESS models were trained separately 
based on simulated radial T1-T2 and MOLLI data, respectively. The DeepBLESS 
T1-T2 estimation accuracy was evaluated based on simulated data with different 
noise levels. The DeepBLESS model was compared with BLESSPC in simulation,  
phantom, and in vivo studies for the MOLLI sequence at 1.5 T and radial T1-T2  
sequence at 3 T.
Results: After DeepBLESS was trained, in phantom studies, DeepBLESS and 
BLESSPC achieved similar accuracy and precision in T1-T2 estimations for both 
MOLLI and radial T1-T2 (P > .05). For in vivo, DeepBLESS and BLESSPC gener-
ated similar myocardial T1/T2 values for radial T1-T2 at 3 T (T1: 1366 ± 31 ms for 
both methods, P > .05; T2: 37.4 ms ± 0.9 ms for both methods, P > .05), and similar 
myocardial T1 values for the MOLLI sequence at 1.5 T (1044 ± 20 ms for both meth-
ods, P > .05). DeepBLESS generated a T1/T2 map in less than 1 second.
Conclusion: The DeepBLESS model offers an almost instantaneous approach for 
estimating accurate T1/T2 values, replacing BLESSPC for both MOLLI and radial 
T1-T2 sequences, and is promising for multiparametric mapping in cardiac MRI.
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1  |   INTRODUCTION

Quantitative myocardial tissue relaxometry techniques, such 
as T1 and T2 mapping, are emerging and rapidly evolving car-
diovascular MR techniques for noninvasive, quantitative char-
acterization of cardiac tissue.1-9 To generate a T1 or T2 map, 
multiple images with different T1 or T2 weighting are acquired, 
and the tissue T1/T2 parameters are estimated pixel by pixel 
by fitting the acquired signal to a model-predicted signal. A 
commonly used model for T1 or T2 calculation is exponential 
curve fitting.4,5,10 The exponential curve-fitting model is accu-
rate under certain conditions and is computationally efficient. 
However, this basic model cannot model the signal evaluation 
accurately for some cardiac MRI sequences, such as the widely 
used MOLLI pulse sequence,4 resulting in inaccurate parameter 
estimation.11 To address the issue, Bloch equation simulation–
based algorithms have been proposed to model the signal evo-
lution of a sequence to ensure accurate parameters estimation, 
such as the Bloch equation simulation with the slice-profile cor-
rection (BLESSPC) algorithm for the MOLLI11 and simultane-
ous radial T1-T2 mapping12 sequences, and the SQAUREMR 
algorithm for MOLLI.13 Bloch equation simulation is also the 
key for accurate T1 and T2 map calculation in the cardiac MR 
fingerprinting (MRF) technique.14-16

However, Bloch equation simulation–based approaches 
are usually time-consuming, especially for more comprehen-
sive simulations.11,13,15 The computation time of the Bloch 
equation simulation is important to consider in cardiac ap-
plication, because the simulation needs to incorporate the 
scan-specific heart-rate variations after each scan. This 
is different from the applications that use fixed sequence 
timing, such as brain MRF,17 in which the time-consuming 
computations can be performed in advance to create the dic-
tionary and then be used for subsequent scans.15 Recently, 
machine learning has been applied in MRF to accelerate 
Bloch equation simulation–based parameter estimation,18,19 
including the deep reconstruction network (DRONE).18 The 
DRONE network uses a four-layer neural network contain-
ing two 300 × 300 hidden layers. The network was trained 
with dictionary-generated Bloch equation simulations, using 
the simulated signal as input and T1/T2 values as output.18 
As the timing of the MRF sequence is fixed, the DRONE 
approach does not use the information of signal acquisition 
time and therefore cannot be used directly for cardiac pa-
rameter mapping without being adapted to scan-specific 
heart-rate variations. To solve this issue, Hamilton et al20 
demonstrated that deep learning can be used to accelerate 
dictionary generation for cardiac MRF, followed by grid-
ding and pattern matching to calculate T1 and T2 values. 
However, in this work, the effect of B+

1
 variations was not 

considered, and gridding and matching were still needed for 
T1/T2 calculation, which could potentially reduce the T1/T2 
estimation accuracy.

Although the cardiac MRF T1/T2 estimation approach is 
primarily optimized and validated for the cardiac MRF se-
quence,14-16 the BLESSPC approach has been shown to gen-
erate accurate T1/T2 maps for both conventional widely used 
Cartesian-based sequences11,21,22 and radial sequences.12 
Furthermore, BLESSPC is an optimization-based approach, 
whereas cardiac MRF T1/T2 estimation needs T1/T2 gridding, 
and the T1/T2 estimation accuracy and precision may be lim-
ited by the grid size. However, BLESSPC sometimes suffers 
from relatively long computation time, such as when used 
for the MOLLI sequence,11 to improve T1 estimation accu-
racy and for the radial T1-T2 mapping sequence when both 
the inversion pulse and T2-preparation pulses were simulated 
in detail to ensure good accuracy.12

Therefore, we propose a new approach, DeepBLESS, 
which applies deep learning to BLESSPC to enable rapid 
myocardial T1/T2 parameter calculation. The DeepBLESS 
model can be adaptive to heart-rate variations, achieving 
the same accuracy and precision with BLESSPC, while 
reducing the reconstruction time to be less than 1 second. 
Different from the deep learning approach proposed for car-
diac MRF T1 and T2 estimation, DeepBLESS considers the 
effect of B+

1
, and predicts T1/T2 values directly without the 

need for gridding and pattern matching. In this work, we 
demonstrate the benefits of the DeepBLESS model using 
two sequences: the MOLLI T1 mapping sequence at 1.5 T 
and a recently proposed simultaneous radial T1 and T2 map-
ping sequence12 at 3 T.

2  |   METHODS

2.1  |  Pulse sequence

The radial T1-T2 sequence is an electrocardiographic- 
triggered sequence that uses combined inversion recovery 
and T2 preparation with golden angle radial spoiled gradi-
ent-echo readout, acquiring data in a single breath-hold of 
11 heartbeats,12 as shown in Figure 1. Based on the acquired 
multicoil data, 110 images were reconstructed using com-
pressed sensing with spatial and temporal total variation regu-
larization, 10 images for each heartbeat on a sliding temporal 
window. The signal polarity for the measured signal was 
assigned using a phase-sensitive method.23 Subsequently, 
both T1 and T2 maps were reconstructed using the extended 
BLESSPC algorithm.12 In detail, BLESSPC for radial T1-T2 
mapping simulates the signal evolution of the radial T1-T2 se-
quence using Bloch equation simulations, considering the ef-
fect of nonrectangular slice profile and nonperfect adiabatic 
inversion, and the T2 preparation was simulated in detail at 
a step size of 5 us. In this work, DeepBLESS was compared 
with BLESSPC for T1 and T2 map reconstruction regarding 
accuracy, precision and calculation speed, based on the 110 
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reconstructed images generated by the radial T1-T2 sequence. 
To demonstrate that the proposed network (described in the 
next section) can be adaptive to the other cardiac parameter 
mapping applications, DeepBLESS was also applied to the 
widely used MOLLI 5-(3)-3 sequence11 for T1 map recon-
struction, with the same network structure but with separate 
network training and different input layer size. In both phan-
tom and in vivo studies, a flip angle (FA) of 6° was used for 
the radial T1-T2 sequence, and a FA of 35° was used for the 
MOLLI.

2.2  |  Network for DeepBLESS

In DeepBLESS, a deep convolutional neural network was 
used, which consisted of a cascade of convolutional layers 
with ResNet blocks24 and a dense layer as the last layer con-
nected to the output layer, as shown in Figure 2. The input 
layer consisted of a 1-dimensional (1D) time-varying signal 
with several channels varied depending on the sequence; the 
first channel corresponds to the acquisition time stamps at 
each heartbeat, and the other channels store the actual signals 
acquired. In this study, DeepBLESS was applied to the simul-
taneous radial T1 and T2 mapping sequence (referred to as the 
radial T1-T2 sequence hereafter)12 to predict T1/T2 values for 
each pixel, and the MOLLI 5-(3)-3 sequence11,25 was used 
to predict T1 value for each pixel. In our implementation, we 
used 11 convolution layers, including four ResNet blocks  
(Rn = 4). Each convolutional layer had 32 filters with 3 × 1 
size and a strike of one, except the last two convolutional lay-
ers, which used a stride of two. These parameters were empir-
ically selected to ensure accurate functional mapping, while 
avoiding the risk of overfitting (see Supporting Information 
Document S1 and Table S1 for more information about the 
optimization). A rectified linear unit activation function26 
was used for the hidden layers and for the output layer. The 
total number of trainable parameters of DeepBLESS was ap-
proximately 31,000 for MOLLI and 32,000 for radial T1-T2. 
The data sizes of different layers of the network from input to 
the output are provided in Supporting Information Table S3.

2.3  |  DeepBLESS training

Before applying the proposed model for T1-T2 calculation, 
DeepBLESS was trained using simulated data for each se-
quence independently. Bloch equation simulation11,12 was used 
to generate the training sets (1,000,000 samples), validation set 
(100,000 samples), and testing set (100,000 samples) for each 

F I G U R E  1   Radial T1-T2 sequence image acquisition, where t0, t1, …, t10 indicate the image acquisition time points, defined as the time 
when the 40th k-space line is acquired, and dt1, dt2, …, dt10 are the durations between each acquisition time point, which are needed in the Bloch 
equation simulation for T1 and T2 calculation. ECG, electrocardiogram; and GRE, gradient echo

F I G U R E  2   Illustration of the proposed network for deep 
learning Bloch equation simulations (DeepBLESS). The network 
consisted of 13 layers, including the input layer, one 3 × 1 
convolutional layer (conv), followed by four ResNet blocks and two 
3 × 1 convolution layers. Then, a dense layer was added to predict 
the T1/T2 value. The number of filters for each convolutional layer 
was set to be 32, and the stride was set to be 1 except the last two 
convolutional layers, which use a stride of 2



2834  |      SHAO et al.

sequence. For each simulation, random T1 and heart rate (HR) 
were randomly sampled from the range of 200-2000 ms and  
40-100 bpm, respectively. For T2, 90% of the simulation data 
had a randomly selected T2 between 20 ms and 100 ms, and 
10% of the simulation data had a randomly selected T2 between  
100 ms and 200 ms. To consider the possible B1 variations, the 
FA (α) was randomly sampled between 3° and 8° for the radial 
T1-T2 sequence and between 20° and 45° for the MOLLI se-
quence. For each group of randomly sampled T1, T2, α and HR, 
a HR variation was simulated across the multiple heartbeats of 
data acquisition according to a Gaussian distribution. In detail, 
for either the radial T1-T2 or the MOLLI sequence, 10 cardiac 
cycle lengths (ie, t1-t10 in Figure 1) were simulated for each sim-
ulation data set. For a given randomly selected HR, RandomHR 
(bpm), the 10 cardiac cycle lengths were generated as follows: 

where i = 1, 2, …, 10 and Randn1i is the ith random value 
drawn from a Gaussian distribution with mean = 0 and SD = 1.

All of the randomly selected values, such as T1, T2, and 
HR, were random floating point values. To ensure the ro-
bustness of our network for missed heartbeats, a common 
occurrence in clinical cardiac scanning, each simulated heart-
beat in our training data had a 1% chance of being skipped. 
Therefore, approximately 9.5% (based on the simulation re-
sults) of our training data had at least one skipped heartbeat. 
Skipped heartbeats were also simulated for the validation and 
testing data in a similar fashion.

There were differences in how the sequence was simu-
lated between the radial T1-T2 sequence and the MOLLI se-
quence. For the radial T1-T2 sequence, both the inversion and 
the T2 preparation pulses were simulated in detail, whereas 
for the MOLLI sequence, the inversion was assumed to be 
instantaneous and a fixed inversion factor of 0.96 was as-
sumed, which is the estimated average inversion factor on 
tissues with T1, T2 similar to myocardium for the inversion 
pulse used.11,27

A previous study showed that adding noise to the train-
ing data promotes robust learning.18 Therefore, real-valued 
Gaussian noise was added to the simulated signal before 
model training. For the MOLLI T1 mapping, the SNR was 
restively high in each balanced SSFP image, and the final 
model was trained by adding 1% SD Gaussian noise to the 
training data. For radial T1-T2 mapping, the SNR was lower 
in each reconstructed image, and a wider range of noise lev-
els was simulated. Specifically, four DeepBLESS models 
were trained after adding Gaussian noise to the training data 
at SD levels of 1%, 5%, and 9%, and a composite range of 
1%-10%, respectively. To train the networks, we used mean 
square error as the loss function with a batch size of 2000. For 
the radial T1-T2 sequence, the input signal was a 1D signal 

with 11 nodes (representing 11 heartbeats) and 11 channels  
(1 channel for recording the acquisition time stamp signal, 
and the remaining channels for the 10 acquired signals in 
each heartbeat). Essentially, the input signal includes 110 
signal intensity values on the T1 and T2 relaxation curves for 
a given pixel, along with the necessary time stamps. The out-
put was the T1/T2 value for the corresponding pixel. For the 
MOLLI sequence, the input signal was a 1D signal with eight 
nodes (representing eight heartbeats with data acquisitions) 
and two channels (one acquisition time stamp signal + one 
acquired signal in each acquisition) for each pixel, and the 
output was the T1 value for the corresponding pixel.

Assuming the input values are X, the function of the net-
work to map from input to output is f

(

�1, X
)

 for T1, and 
f
(

�2, X
)

 for T2, where �1 and �2 are the trainable parameters. 
Then the loss functions for T1 and T2 are represented as 

where i indicates the ith sample, and M is the batch size.
The Adam optimizer was set with a learning rate of 0.0005 

for 500 epochs. The best model parameters were loaded and 
retrained with a learning rate of 0.0001 for 100 epochs. The 
model training took about 1 to 1.2 hours using a general- 
purpose computer with a NVIDIA GTX 1080 GPU (Santa 
Clara, CA). Model parameters with the best mean square 
error from the validation set were saved and used for simula-
tion, phantom, and in vivo studies. The learning rate strategy 
used in this work is a special case of step decay learning rate 
annealing approach. The performance of two other learn-
ing rate annealing methods was compared in Supporting 
Information Document S1 and Figure S1.

2.4  |  Simulation study

After model training, the performance of DeepBLESS was 
evaluated using testing data sets randomly generated using 
Bloch equation simulations described in section 2.3. For the 
radial T1-T2 sequence, the four trained models were used to 
predict the T1 and T2 values in the test data. Random Gaussian 
noise with SD from 1% (SNR = 100) to 9% (SNR = 11.1) (1% 
increments) was added to the testing data before the evalua-
tion. The conventional BLESSPC T1 and T2 estimation algo-
rithm was applied to the testing data to calculate BLESSPC 
T1 and T2 values for comparison. The predicted T1 and T2 val-
ues were compared with the corresponding reference values 
using the following formula: Error = (Predicted – Reference) 

(1)
Durations (i) =60000∕RandomHR ∗

(

1+ 0.1∗ Randn1i

)

,

(2)
M
∑

i=0

[

f
(

�1, Xi

)

−T1 (i)
]2
∕M

(3)
M
∑

i=0

[

f
(

�2, Xi

)

−T2 (i)
]2
∕M,
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and Error% = Error/Reference * 100%. The mean of the ab-
solute percent error was calculated.

2.5  |  Magnetic resonance imaging

For both phantom and in vivo studies, the radial T1-T2 se-
quence was performed on a 3T MRI scanner (Prisma; Siemens 
Healthineers, Erlangen, Germany). The MOLLI sequence 
was performed on a 1.5T MRI scanner (Avanto Fit; Siemens 
Healthineers, Erlangen, Germany). The manufacturer’s body 
phased array and the spine coils were used for both scanners.

The radial T1-T2 sequence was acquired with FOV = 320 ×  
320 mm2, TR/TE = 2.5 ms/1.4 ms, slice thickness = 8 mm, 
pixel size = 1.7 × 1.7 mm2, with a reconstructed matrix size 
of 192 × 192, where 80 radial spokes were acquired in each 
heartbeat. The images with both magnitude and phase signal 
were reconstructed off-line after the data were acquired.

The MOLLI 5-(3)-3 sequence was acquired with FOV = 
340 × 273 mm2, TR/TE = 2.5 ms/1.1 ms, slice thickness =  
8 mm, and interpolated pixel size = 1.8 × 1.8 mm2. The  
magnitude and phase images were reconstructed on-line with 
2× GRAPPA with 24 k-space autocalibration lines.

Based on the acquired magnitude and phase images, the 
real-valued signal for each pixel was calculated based on a 
phase-sensitive method,23,28 using the phase image with 
the longest inversion time as the reference phase. Then the 
real-valued signal was used for T1/T2 estimations using 
BLESSPC and DeepBLESS.

2.5.1  |  Phantom studies

For the radial T1-T2 sequence, eight 50-mL agar and CuSO4 
gel phantoms were used. The radial T1-T2 sequence was per-
formed at simulated HR from 40 bpm to 100 bpm (10-bpm 
increments) and were repeated 10 times at simulated HR of 
60 bpm to evaluate T1 and T2 precision. For MOLLI T1 map-
ping, ten 50-mL agar and CuSO4 gel phantoms were used. 
The MOLLI sequences were acquired at each simulated HR 
from 40 to 100 bpm (20-bpm increments) and were repeated 
10 times at simulated HR of 60 bpm to evaluate precision. 
Although the cardiac cycle lengths were randomly simulated 
during our model training, the simulated cardiac cycle lengths 
in the phantom study were different from training data.

Reference T1 and T2 values for each gel phantom were 
determined by a standard inversion-recovery spin-echo 
technique with 12 TIs (TI = 50-5000 ms) and TR/TE =  
10 seconds/4.6 ms. Reference T2 values were calculated using 
a standard spin-echo technique with 11 TEs (TE = 5-250 ms), 
with TR = 10 seconds. A region of interest (ROI) was manu-
ally drawn for each tube, and the average T1, T2 values were 
used as reference T1 and T2 values.

The accuracy was evaluated by calculating the differ-
ence and percentile difference between the estimated T1/T2 
values with reference T1/T2 values. The precision was mea-
sured using coefficient of variation (CoV), CoV = SD/Mean  
* 100%, where SD is the standard deviation of the measured 
T1 or T2 values over repeated scans for each ROI.

2.5.2  |  In vivo studies

The in vivo study was approved by the institutional re-
view board and was compliant with the Health Insurance 
Portability and Accountability Act. All subjects provided 
written informed consent. Standard cardiac shimming was 
applied to reduce off-resonance variations in the heart re-
gion. The radial T1-T2 sequence was performed in 10 healthy 
volunteers (8 males, ages 35.9 ± 14.0 years, range 24-65 
years) at 3 T. The MOLLI 5-(3)-3 sequence was acquired in 
8 healthy volunteers (5 males, ages 28.9 ± 4.3 years) at 1.5 T. 
Images of the mid–left ventricular (LV) short axis were ac-
quired at end-expiration for each scan. After the radial T1-T2 
data were acquired for each volunteer, the average heart rate 
and heart-rate variations (represented using CoV) were cal-
culated based on the 11 image-acquisition time stamps shown 
in Figure 1. After the multicoil radial data were reconstructed 
using compressed sensing for radial T1-T2

12 or parallel im-
aging for MOLLI to generate magnitude and phase images, 
each pixel from the generated images was independently used 
as input to the corresponding DeepBLESS network. The con-
ventional BLESSPC was also applied to reconstruct T1/T2  
maps for comparison. The ROIs were drawn in the entire left-
ventricular myocardial region for the radial T1-T2 mapping 
and in the septal region in the MOLLI T1 maps. The mean of 
the T1/T2 values within ROIs were calculated.

2.6  |  Data analysis

For statistical analysis, two-tailed Student t-tests were used 
for pair-wise comparisons. A P-value less than .05 was 
considered statistically significant. The T1/T2 estimations 
by DeepBLESS and BLESSPC were compared using the 
Pearson’s correlation and Bland–Altman analysis for simula-
tion, phantom, and in vivo studies.

3  |   RESULTS

3.1  |  Simulation study

For the radial T1-T2 sequence, the mean absolute T1 and T2 
percent error using DeepBLESS trained at different noise lev-
els (SNR = 11.1, 20, 100, and composite SNRs = 11.1-100) 



2836  |      SHAO et al.

compared with BLESSPC as a function of the SNR of the 
testing data set are shown in Figure 3. Results showed that 
while the T1 and T2 estimation error was increased when the 
SNR in the testing set was reduced, adding more noise in the 
training data set helped reduce the T1 and T2 estimation error 
when the testing SNR was lower. In Figure 3, the mean ab-
solute T1 and T2 error curves based on the training data with 
composite SNR were similar to that with SNR = 20, and both 
curves resembled the BLESSPC curve more than the mod-
els trained based on data with SNR = 100 and SNR = 11.1. 

The detailed T1/T2 estimation data for Figure 3 are given in 
Supporting Information Table S4, which indicates that the 
SNR = 20 trained model generated the lowest average T1 and 
T2 estimation error compared with the other three models. 
Therefore, for the radial T1-T2 sequence, we chose to use the 
DeepBLESS model trained with SNR = 20 for phantom and 
in vivo studies.

Figure 4 shows a comparison of the T1/T2 estimation re-
sults using DeepBLESS (trained with 5% Gaussian noise, 
SNR = 20) and BLESSPC on testing data with SNR = 20. 

F I G U R E  3   Mean percentile absolute T1 (A) and T2 (B) reconstruction error as a function of the testing data noise level (SNR = 10-100) for 
radial T1-T2 mapping using the four models trained based on training data with different added noise (SNR = 11.1, 20, 100 and composite SNRs 
11.1-100), in comparison with conventional Bloch equation simulation with slice profile correction (BLESSPC)

F I G U R E  4   Simulation results for radial T1-T2 mapping: comparison of the T1/T2 estimation results using DeepBLESS (trained with 5% 
Gaussian noise, SNR = 20) and BLESSPC by plotting DeepBLESS against BLESSPC with equation-of-fit plot (T1 [A] and T2 [C]) and Bland–
Altman analysis (T1 [B] and T2 [D])
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The DeepBLESS values were in excellent agreement with 
BLESSPC (T1: bias = 0.5 ms, upper 95% limits of agreement =  
9.9 ms, lower 95% limits of agreement = −9.0 ms; T2: bias = 
−0.1 ms, upper 95% limits of agreement = 1.9 ms, lower 95% 
limits of agreement = −2.0 ms). The correlation coefficient 
between DeepBLESS and BLESSPC was 1.0000 for T1 es-
timations and 0.9996 for T2 estimations. For testing data sets 
(SNR = 20) with at least one missed heartbeat, DeepBLESS 
still agreed well with BLESSPC with similar bias and 95% 
limits of agreement (see Supporting Information Figure S2). 
Example features of DeepBLESS T1 and T2 models for a sam-
ple (BLESSPC T1 = 1361 ms, T2 = 37.7 ms) of the testing set 
(SNR = 20) simulated based on the radial T1-T2 sequence are 
shown in Supporting Information Figure S3.

3.2  |  Phantom study

For both the radial T1-T2 and MOLLI sequences, DeepBLESS 
generated consistent T1 and T2 estimations for heart rates from 
40-100 bpm, with a maximum SD of 4.5 ms for T1 and 0.6 ms 
for T2. For both T1 and T2 estimations, DeepBLESS achieved 
similar accuracy and precision compared with BLESSPC, as 
indicated in Table 1. The DeepBLESS and BLESSPC mod-
els both generated accurate T1 and T2 estimations. For radial 
T1-T2 mapping at 3 T, the average estimation errors over the 
eight phantoms using DeepBLESS were 1.2 ± 4.5 ms (per-
cent error: −0.1% ± 1.0%) for T1 and −0.1± 1.3 ms (percent 
error: −0.2% ± 3.3%) for T2. In comparison, the average es-
timation errors using BLESSPC were −0.8 ± 4.6 ms (percent 
error: −0.3% ± 0.9%) for T1 and −0.3 ± 1.3 ms (percent error: 
−0.4% ± 3.2%) for T2. For MOLLI T1 mapping at 1.5 T,  
DeepBLESS and BLESSPC generated T1 estimation er-
rors of −0.2 ± 18.1 ms (percent error: −0.1% ± 1.7%) and 
−1.1 ± 18.4 ms (percent error: −0.1% ± 1.8%), respectively. 
Regarding precision, both DeepBLESS and BLESSPC had 
similar CoV (0.8% ± 0.1% for both radial T1 and MOLLI T1, 
and 1.3% ± 0.2% for radial T2; all P > .05).

Figure 5 shows a pixel-level comparison of the 
DeepBLESS and BLESSPC T1/T2 estimations for radial 
T1-T2 and MOLLI T1 mapping at selected ROIs by plotting 

DeepBLESS values against BLESSPC values and using 
Bland–Altman analysis. Similar to our simulation results, 
DeepBLESS values were in excellent agreement with 
BLESSPC (radial T1: bias = 0.1 ms, upper 95% limits of agree-
ment = 3.9 ms, lower 95% limits of agreement = −3.8 ms;  
radial T2: bias = 0.2 ms, upper 95% limits of agreement = 1.0 
ms, lower 95% limits of agreement = −0.9 ms and MOLLI 
T1: bias = −0.5 ms, upper 95% limits of agreement = 3.7 ms, 
lower 95% limits of agreement = −4.8 ms).

Figure 6 shows an example of radial T1 and T2 maps by 
DeepBLESS and BLESSPC and their corresponding differ-
ence maps. The DeepBLESS and BLESSPC models pro-
vided similar T1 and T2 estimations.

3.3  |  In vivo study

For the radial T1-T2 sequence, the average heart rate in all  
10 healthy volunteers was 62.6 ± 7.8 bpm (minimum HR = 
50.1 bpm, maximum HR = 77.2 bpm). The average heart-rate 
variation (CoV) was 5.5% ± 8.1% (minimum CoV = 0.4%, 
maximum CoV = 27.9% due to a skipped heartbeat, second 
maximum CoV = 7.2%). The DeepBLESS and BLESSPC 
models provided similar myocardial T1 and T2 values at  
3 T (T1: 1366 ± 31 ms for both DeepBLESS and BLESSPC, 
P > .05; T2: 37.4 ms ± 0.9 ms for both DeepBLESS and 
BLESSPC, P > .05) in all 10 healthy volunteers studied. The 
correlation coefficients between DeepBLESS and BLESSPC 
values were 0.9993 and 0.9984 for radial T1 and T2  
(Figure 7A,C), respectively. Bland–Altman analysis  
(Figure 7B,D) demonstrates that DeepBLESS and BLESSPC 
T1 and T2 values were in excellent agreement in vivo (radial 
T1: bias = 0.3 ms, upper 95% limits of agreement = 4.5 ms,  
lower 95% limits of agreement = −3.9 ms; radial T2: bias = 
0.15 ms, upper 95% limits of agreement = 0.5 ms, lower 95% 
limits of agreement = −0.2 ms). Figure 8 shows example T1 
and T2 maps generated using DeepBLESS and BLESSPC 
and their difference maps in 2 healthy subjects, 1 subject 
without skipped heartbeat (subject A) and 1 with a skipped 
heartbeat (subject B). For subject B, there was a missed 
heartbeat after the sixth data acquisition. For both volunteers, 

Parameter Method

Accuracy Precision

Error Percent error Mean CoV

Radial T1 BLESSPC −0.8 ± 4.6 ms −0.3% ± 0.9% 0.8% ± 0.1%

DeepBLESS 1.2 ± 4.5 ms −0.1% ± 1.0% 0.8% ± 0.1%

Radial T2 BLESSPC −0.3 ± 1.3 ms −0.4% ± 3.2% 1.3% ± 0.2%

DeepBLESS −0.1 ± 1.3 ms −0.2% ± 3.3% 1.3% ± 0.2%

MOLLI T1 BLESSPC −1.1 ± 18.4 ms −0.1% ± 1.8% 0.8% ± 0.1%

DeepBLESS −0.2 ± 18.1 ms −0.1% ± 1.7% 0.8% ± 0.1%

Abbreviation: CoV, coefficient of variation.

T A B L E  1   Phantom study: average 
accuracy and precision of BLESSPC and 
DeepBLESS for the radial T1-T2 and 
MOLLI sequences using the standard spin-
echo sequence as reference
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the T1/T2 difference between DeepBLESS and BLESSPC in 
the myocardial region was negligible.

For the MOLLI sequence, DeepBLESS and BLESSPC 
generated similar myocardial T1 values at 1.5 T (T1 = 1044 ±  
20 ms for both DeepBLESS and BLESSPC, P > .05)  
in all 8 volunteers studied. Correlation coefficient and 
Bland–Altman analysis (Figure 7E,F) demonstrate that the 
DeepBLESS and BLESSPC values were in good agreement 
for in vivo MOLLI T1 mapping (correlation coefficient = 
0.9973, bias = −0.3 ms, upper 95% limits of agreement = 
5.1 ms, lower 95% limits of agreement = −5.6 ms). Figure 9  
shows example T1 maps generated using DeepBLESS and 
BLESSPC for the MOLLI sequence in a healthy subject. In 
this subject, the average difference between DeepBLESS and 
BLESSPC T1 values in the entire left-ventricular myocardial 
region was −0.5 ± 1.7 ms.

To compare the computation speed, a general-purpose 
desktop computer (Intel Core i7-8700 CPU, 3.10 GHz) was 

used for all of the T1 and T2 map reconstructions (BLESSPC 
and DeepBLESS), and a single thread was used for a fair 
comparison. For radial T1-T2, after compressed-sensing 
image reconstruction, a slice of T1 and T2 maps could be gen-
erated in about 3 hours using BLESSPC (algorithm B in Ref. 
12). In comparison, DeepBLESS was able to reconstruct a 
slice of T1 and T2 maps in about 0.6 seconds, achieving up 
to 18,000-fold acceleration. For MOLLI, a slice of T1 map 
could be generated in about 98 seconds using BLESSPC and 
about 0.2 seconds using DeepBLESS, achieving 490-fold ac-
celeration by DeepBLESS. 

4  |   DISCUSSION

In this work, we studied the use of a deep convolutional 
neural network to learn the Bloch equation simulations 
(DeepBLESS) to replace the previously reported Bloch 

F I G U R E  5   Phantom study results for both radial T1-T2 mapping acquired at 3 T (A-D) and MOLLI (E-F) acquired at 1.5 T, comparing 
DeepBLESS versus BLESSPC. Each data point corresponds to a pixel within the phantom
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equation–based approach (BLESSPC) for rapid myocardial 
relaxation parameter prediction. Conventional Bloch equa-
tion simulation–based approaches enable accurate myocar-
dial relaxation parameter estimation at the cost of increased 
reconstruction time.11,15 The proposed DeepBLESS approach 
enabled almost instantaneous estimation of myocardial relax-
ation parameters by off-loading the time-consuming task of 
Bloch equation simulations to off-line. Our results show that, 
for the radial T1-T2 sequence, DeepBLESS could achieve  
18 000 times acceleration while achieving similar accuracy 
and precision compared with BLESSPC. The DeepBLESS 
model was also trained for the standard MOLLI 5-(3)-3 se-
quence for rapid T1 estimation. Our phantom and in vivo results 
demonstrated that the T1 values generated using DeepBLESS 
agreed well with those generated using BLESSPC. We previ-
ously reported BLESSPC reconstruction time of 6 seconds 
when using a spoiled gradient-echo readout.21 However, 
a full simulation of the balanced SSFP readout in MOLLI 
needed 98 seconds to generate a slice of T1 map, whereas 
the sequence scan time was only approximately 10 seconds. 

The relatively long reconstruction time could be a roadblock 
for widespread clinical utility. The DeepBLESS model re-
duced the T1 map reconstruction time from 98 seconds to  
0.2 seconds. As the MOLLI image reconstruction used paral-
lel imaging with reconstruction time of less than 1 second, 
we expect our technique to immediately enable fast and on-
line image reconstruction and T1 calculation for MOLLI.

For simultaneous myocardial T1 and T2 mapping, besides 
the radial T1-T2 mapping sequence, several other techniques 
have been proposed.9,14,29-33 The potential benefits of using 
radial T1-T2 mapping over other joint T1 and T2 mapping tech-
niques have been well described in Shao et al.12 Specifically, 
most of the techniques used Cartesian acquisition,9,29-32 lim-
iting the number of images that can be reconstructed for 
parameter fitting, and therefore can potentially suffer from re-
duced precision. The average myocardial T1 values measured 
at 3 T using the multitasking33 native T1 and T2 mapping se-
quence (1216 ± 67 ms) was lower than the standard MOLLI 
(1244 ± 48 ms), which itself has been known to underesti-
mate T1. As for cardiac MRF, improvements have been made 

F I G U R E  6   Phantom T1 and T2 maps using DeepBLESS (A) and BLESSPC (B) and the corresponding difference maps (C) for the radial  
T1-T2 mapping sequence acquired at simulated heart rate of 60 bpm. The DeepBLESS and BLESSPC models generated T1/T2 maps with similar 
image quality
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to improve its accuracy by also considering the effect of im-
perfect slice profile, inversion and T2 preparation,15 and the 
T1/T2 calculation speed using deep learning.20 However, all 
of these improvements still used the relatively long 16-heart-
beat version cardiac MRF sequence with relatively long ac-
quisition window (240-280 ms). In comparison, the radial 
T1-T2 mapping technique requires only 11 heartbeats and a 
shorter window (~200 ms). In Liu et al,34 it was stated that 
the acquisition window may potentially be reduced to 150 ms,  
and the breath-hold time may be reduced to 5 heartbeats. 
However, the T1/T2 measurement accuracy/precision using 
this shortened version of cardiac MRF sequence remains 
to be evaluated. For shortened cardiac MRF sequences, the 
precision and reproducibility need to be evaluated carefully 
due to limited data acquired, which may potentially reduce 
the parameter-estimation precision. In comparison, we show 
that the radial T1-T2 mapping sequence can achieve similar 

precision and reproducibility, as the widely used MOLLI 
sequence and conventional cardiac T2 mapping sequence.12 
Although there are potential benefits of using radial T1-T2 
mapping over the other simultaneous myocardial T1-T2 map-
ping techniques, further studies are warranted to compare 
the radial T1-T2 sequence with the other techniques in clin-
ical applications. Although DeepBLESS achieved almost 
instantaneous T1/T2 map reconstruction for the radial T1-T2 
mapping sequence, the compressed-sensing reconstruction 
took approximately 3 minutes, a limitation for using the ra-
dial T1-T2 sequence for simultaneous myocardial T1 and T2 
mapping. Recent studies have shown that deep learning can 
be applied to replace compressed sensing, to reduce recon-
struction time.35-37 These techniques may be combined with 
our proposed T1 calculation technique to further reduce total 
imaging time and enable online use of the radial T1-T2 map-
ping technique.

F I G U R E  7   In vivo study results for both radial T1-T2 mapping acquired at 3 T and MOLLI acquired at 1.5 T: pixel-level comparison of the 
T1/T2 estimation results in the myocardium using DeepBLESS and BLESSPC by plotting DeepBLESS against BLESSPC with equation-of-fit plot 
(radial T1 [A], radial T2 [C], and MOLLI T1 [E]) and Bland–Altman analysis (radial T1 [B], radial T2 [D], and MOLLI T1 [F])
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Recently, deep learning models have been applied to MRF 
for fast quantitative parameters prediction, such as the MRF 
DRONE.18 However, this model only considers the measured 
signal as the input, and are only applicable to the sequence 
that has fixed acquisition timing. For parameter quantifica-
tion in cardiac applications, the actual image acquisition tim-
ing varies due to patient-specific heart-rate variations. To be 
adaptive to heart-rate variations, DeepBLESS used both the 
image acquisition time stamps and imaging signal as the input 
for cardiac parameter prediction. To ensure the robustness of 
DeepBLESS to various heart-rate variations, we included 

variable heart rates in our model training data. Our results 
demonstrate that DeepBLESS agrees well with BLESSPC 
for various heart rates. Regarding the deep learning model 
used in this work, we choose the 3 × 1 size 1D filter for the 
following two reasons: (1) The input layer size is relatively 
small (11 × 1 for each channel); therefore, using 3 × 1 size 
1D filters should be sufficient. (2) For the same number of 
trainable parameters, a smaller filter size with deeper net-
work is generally better than a larger filter size with shallower 
network. Recently, deep learning has been applied to auto-
matic segmentation of cardiac T1 images.24 These techniques 

F I G U R E  8   In vivo radial T1-T2 mapping acquired at 3 T: examples of T1 and T2 maps generated using DeepBLESS (A) and BLESSPC  
(B) and the corresponding difference maps (C) in 2 healthy subjects. Subject A had no skipped heartbeat, whereas subject B had a skipped heartbeat 
after the sixth data acquisition. For both subjects, the maps generated by DeepBLESS and BLESSPC were similar in the myocardium
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could potentially be combined with our proposed technique 
to further improve reliability and efficiency.

Instead of comparing DeepBLESS to conventional dic-
tionary-matching approaches,18 DeepBLESS was compared 
with BLESSPC, an optimization approach based on the non-
linear least-squares fitting.11,21 The benefit of BLESSPC 
over the dictionary-matching approach is that there is no 
need to generate a large dictionary, which requires more 
computer memory, and the accuracy and precision is not 
limited by the size of the dictionary. For cardiac applica-
tions, both BLESSPC and the dictionary-matching approach 
need Bloch equation simulations after the sequence was per-
formed so that the image acquisition timing is known for 
simulation. DeepBLESS performs the time-consuming task 
of Bloch equations simulations during the off-line training 
stage, which learns the nonlinear mapping from acquisi-
tion time and signal to relaxation parameters, allowing for 
fast, accurate, and precise relaxation-parameter calculation. 
After the model was trained, the speed of DeepBLESS for 
parameter calculation is not affected by how detailed the 
sequence was simulated using Bloch equation simulations, 
whereas the conventional approaches such as BLESSPC or 
dictionary-matching approaches14 are substantially affected. 
Therefore, when more details are considered in Bloch equa-
tion simulations, DeepBLESS may achieve more acceleration 
compared with these conventional approaches. For instance, 
BLESSPC simulates more details in radial T1-T2 mapping 
compared with the MOLLI sequence, including simulating 
the adiabatic inversion pulse and multiple T2-prep pulses. As 
such, DeepBLESS achieved more reconstruction-time ac-
celeration over BLESSPC for radial T1-T2 mapping (18 000 
times) than for MOLLI (490 times). The DeepBLESS model 
is even more promising for applications that require more 
timing-consuming simulations, such as incorporating the ef-
fect of magnetization-transfer effects in parameter mapping, 

which was not considered in this study, but has been shown 
to have an effect on myocardial T1 underestimation using in-
version recovery–based sequences.11,38

A previous study has shown that the deep learning ap-
proach can help to reduce T1 and T2 estimation errors com-
pared with the conventional approach when the noise is 
higher for MRF.17 However, we did not see obvious improve-
ment using DeepBLESS over BLESSPC regarding T1/T2 er-
rors for cardiac T1 and T2 mapping, despite our demonstrated 
advantage compared with the DRONE network for cardiac 
applications (see Supporting Information Document S1 and 
Table S1). This may be due to the following reasons. (1) The 
BLESSPC model, because of its comprehensive simulation 
of essentially every aspect of the pulse sequence, without the 
need for building a dictionary, may already minimize T1/T2 
errors. It is not subject to dictionary-size issues associated 
with the dictionary-matching approach compared with the 
DRONE network. (2) For cardiac applications, the image- 
acquisition timing needs to be considered, which may have 
been more complex for the deep learning network to learn.

To train the network, different from the conventional ap-
proach of using a predetermined series of parameters (eg, 
T1, T2) with predetermined step sizes to generate the training 
data set, we randomly sampled a set of parameters (eg, T1, 
T2, FA, heart rate) in a certain range for each simulation. This 
has two benefits: (1) flexible training, validation, and testing 
data size setup; and (2) compared with the conventional ap-
proach, the proposed approach will generate more different 
T1, T2, FA, and heart-rate values for training. For instance, if 
the conventional approach had n1 different T1 values, n2 dif-
ferent T2 values, n3 different FAs, and n4 different heart rates 
to generate a training set with n1 × n2 × n3 × n4 samples, for 
the same number of training samples, the proposed approach 
will generate n1 × n2 × n3 × n4 different values for each pa-
rameter. This may improve the training results. Similar to the 

F I G U R E  9   In vivo MOLLI T1 mapping acquired at 1.5 T: example of T1 maps generated using DeepBLESS (A) and BLESSPC (B) 
and the corresponding difference map (C) in a healthy subject. All of the pixels that BLESSPC did not fit well (R2 < 0.98) were set to 0 for all 
corresponding maps. The maps generated by DeepBLESS and BLESSPC were similar in the heart region. In the left-ventricular myocardial region, 
the average T1 difference between DeepBLESS and BLESSPC was −0.5 ± 1.7 ms
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nonuniform dictionary sampling in DRONE,17 we sampled T2 
more densely in the range of 20-100 ms because this is the ex-
pected range of the myocardial T2. Sampling more data in the 
20-100 ms range gives more weights for T2 errors in this range 
in the training, which may help reduce errors in this T2 range.

In this work, we added Gaussian noise to the training data 
for two reasons: (1) It is a common approach used in network 
training to reduce overfitting; and (2) although the noise-like 
artifacts from undersampling were certainly not of Gaussian 
distribution, it was not possible for us to fully characterize the 
noise characteristics from undersampling. Therefore, assum-
ing a Gaussian distribution would be our alternative approach. 
The results from phantom and in vivo experiments confirmed 
that the DeepBLESS trained with added Gaussian noise agreed 
well with BLESSPC. Similarly, a recent machine-learning 
technique for MRF17 also added Gaussian noise to the training 
data, while the signal from the MRF sequence was undersam-
pled. Our results show that using different noise levels will 
affect the final results. For example, Figure 3 shows that for 
noisier testing data sets with SNR range of 10-30, the model 
trained using less noisy data training data sets with SNR = 
100 was less accurate than the model trained using noisier data 
sets with SNR = 20. For less noisy testing data with SNR 
greater than 60, the model trained using less noisy training 
data had better performance. We could not find a model that is 
always the best for a wide range of SNR from 10-100; there-
fore, in this work we chose the model that generated the lowest 
average T1 and T2 estimation error.

To demonstrate that the proposed network can be adap-
tive to different cardiac T1/T2 mapping sequences, we used 
the same network (except the input) for both radial T1-T2 and 
MOLLI sequences. Because the MOLLI sequence was sim-
pler than the radial T1-T2 sequence, it is possible to use a shal-
lower network with fewer parameters for MOLLI. However, 
based on the results from Supporting Information Document 
S1 and Table S2, even for the MOLLI sequence, the pro-
posed network with four Resnet blocks was still better than 
the less deep networks using 0 or 2 Resnet blocks, indicating 
that a deeper network can still help to achieve better results 
for MOLLI. There was no obvious overfitting using the same 
network for MOLLI, potentially due to the large training data 
sets available for the MOLLI network training (1 million 
training data sets for only 31 000 trainable parameters).

The current annealing approach used in this work is a 
simple version of traditional step decay annealing approaches 
(ie, only one-step decay) with slight modification. We chose 
to use it because we could tune the first learning rate and 
epoch number to obtain the best mean square error, load the 
model with best validation mean square error, and tune the 
second learning rate and epoch number to further improve 
the results. In comparison, the conventional step annealing 
approaches does not load the best model when reducing the 
learning rate, and the number of training epochs is fixed for 

each step. Our results in the Supporting Information show 
that the proposed annealing approach generated better results 
than the conventional step decay and exponential decay for 
the hyperparameters tested. However, it does not indicate that 
the proposed annealing approach is the most accurate way.

We point out that the MOLLI sequence was performed 
on a 1.5T scanner only, and the radial T1-T2 sequence was 
performed on a 3T scanner only. The measured average myo-
cardial T1 values using MOLLI with BLESSPC/DeepBLESS 
at 1.5 T (1044 ± 20) was higher than the conventional 
MOLLI T1 values at 1.5 T (950 ± 21).39 The measured aver-
age myocardial T1 values using radial T1-T2 with BLESSPC/
DeepBLESS at 3 T (1366 ± 31 ms) was also higher than the 
conventional MOLLI T1 values at 3 T (1052 ± 23 ms).39 
These are expected, as conventional MOLLI fitting is known 
to underestimate T1 values. The measured average myocardial 
T2 values using radial T1-T2 with BLESSPC/DeepBLESS at 
3 T (37.4 ms ± 0.9 ms) was similar to that measured by car-
diac MRF with slice profile, preparation pulse efficiency, and 
B
+
1
 corrections (37.2 ± 1.5 ms) in Hamilton et al.15

In this work, we focused on myocardial T1/T2 measure-
ments. The blood T1/T2 measurements based on our technique 
need to be further evaluated, because blood flow was not 
simulated when building our models. Due to blood flow, the 
BLESSPC-fitted apparent FA in the blood region was much 
lower than that in the myocardial region (usually < 3° for ra-
dial T1-T2), whereas in the DeepBLESS training data, we only 
simulated a reasonable apparent FA range (3°-8° for radial  
T1-T2). This could be the main reason why there were larger T1 
differences between BLESSPC and DeepBLESS in the blood 
region. It is possible to simulate the blood flow to improve 
blood T1/T2 estimation accuracy, and this could be a potential 
benefit of DeepBLESS over BLESSPC, as adding additional 
simulations should not affect its T1/T2 calculation speed. In 
BLESSPC for MOLLI, a fixed T2 of 45 ms was assumed in the 
Bloch simulation to avoid the need for fitting T2. In comparison, 
for DeepBLESS, a wide range of T2 was simulated, which may 
potentially be more accurate. The difference map in Figure 9  
for MOLLI T1 mapping shows larger T1 differences at the 
edges of the heart between BLESSPC and DeepBLESS, which 
may be due to cardiac motion, blood flow and off-resonance, 
as these effects were not considered in the DeepBLESS model.

Our study has limitations. Although DeepBLESS with the 
proposed network and hyperparameters was relatively opti-
mal compared with other networks or parameters tested in this 
work, the current network with the proposed hyperparameters 
and learning-rate strategies may not be the most optimized 
one, as it was not possible to evaluate all possible networks, 
hyperparameters, and training strategies. Nevertheless, we 
reached the main goal that the proposed DeepBLESS approach 
can achieve similar accuracy and precision compared with 
BLESSPC, while greatly reducing the reconstruction time. As 
DeepBLESS can be trained on data with noisy data, it can be 
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potentially better than BLESSPC for low SNR data. Further 
studies are warranted to further optimize the DeepBLESS 
network and training strategies to achieve better results than 
BLESSPC. DeepBLESS was trained for heart rates between 40 
and 100 bpm with 10% variations in cardiac cycle lengths. It is 
conceivable that a model training based on larger variations in 
cardiac cycle lengths could be applied for T1 and T2 mapping 
for patients with arrhythmias. However, a number of other is-
sues need to be addressed, including motion artifacts, cardiac 
morphology changes due to varying preload and after-load con-
ditions, which are beyond the scope of the current study. The 
heart rates between 40 and 100 bpm are suitable for most of 
the cardiac applications, and for applications out of the current 
trained range, we can potentially fine-tune DeepBLESS using 
the training data with a larger range of heart rates and beat-to-
beat variations. This study was performed in a small cohort of 
healthy volunteers at midventricular-slice location only. Further 
clinical evaluations on larger cohorts are warranted to evaluate 
the performance of DeepBLESS. A limitation of training our 
DeepBLESS network based on simulated data is that it may 
not entirely reflect the complexity of the in vivo environment. 
This limitation is not specific to DeepBLESS, and is also true 
with conventional Bloch equation–based approaches, such as 
BLESSPC and MRF. Based on our in vivo data, we have shown 
satisfactory T1/T2 accuracy using our network. The simulation 
data essentially enable the network to learn the nonlinear Bloch 
equation, which is the foundation for in vivo MRI. Therefore, 
it would not be surprising that our model worked well for our 
in vivo studies.

5  |   CONCLUSIONS

The DeepBLESS model offers an almost instantaneous ap-
proach for estimating relaxation-parameter maps with good 
accuracy and precision, similar to the conventional Bloch 
equation–based approach (BLESSPC). The acceleration pro-
vided by DeepBLESS is promising for multiparametric map-
ping in cardiac applications.
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FIGURE S1 Training and validation loss against the number 
of epochs using the proposed learning rate strategy (T1 [A] 
and T2 [B]), conventional learning rate step decay (T1 [C] 
and T2 [D]), and learning-rate exponential decay (T1 [E] and 
T2 [F]). The proposed learning rate strategy achieved the best 
validation loss
FIGURE S2 Bland–Altman analysis (2000 data points) 
between deep learning Bloch equation simulations 
(DeepBLESS) and DeepBLESS for testing data with at least 
one missed heartbeat (with 5% added noise, SNR = 20)
FIGURE S3 Example features of DeepBLESS T1 and T2 
models for a sample (BLESSPC T1 = 1361 ms, T2 = 37.7 
ms) of the testing set (SNR = 20) simulated based on the ra-
dial T1-T2 sequence: first layer feature map for DeepBLESS 
T1 (A) and T2 (C), and the last layer’s input feature, ker-
nels, and final predication results for DeepBLESS T1 (B) 
and T2 (D)
TABLE S1 Mean square error in the validation set (SNR = 
20) of the radial T1-T2 sequence using different networks, 
hyperparameters, and learning rate annealing methods for 
DeepBLESS
TABLE S2 Mean square error in the validation set (SNR = 
20) of the MOLLI sequence using 0-6 Resnet blocks (Rn =  
0, 2 ,4 and 6) for DeepBLESS
TABLE S3 Size of the intermediate features after each of the 
11 convolutional layers of the DeepBLESS network
TABLE S4 Mean percentile absolute T1 and T2 reconstruc-
tion error at different testing data noise levels (SNR = 10-100)
DOCUMENT S1 Comparison of different networks, hyper-
parameters, and learning-rate annealing methods
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