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Purpose: To develop new encoding and reconstruction techniques for fast multi-
contrast/quantitative imaging.
Methods: The recently proposed Echo Planar Time-resolved Imaging (EPTI) tech-
nique can achieve fast distortion- and blurring-free multi-contrast/quantitative im-
aging. In this work, a subspace reconstruction framework is developed to improve 
the reconstruction accuracy of EPTI at high encoding accelerations. The number of 
unknowns in the reconstruction is significantly reduced by modeling the temporal 
signal evolutions using low-rank subspace. As part of the proposed reconstruction 
approach, a B0-update algorithm and a shot-to-shot B0 variation correction method 
are developed to enable the reconstruction of high-resolution tissue phase images 
and to mitigate artifacts from shot-to-shot phase variations. Moreover, the EPTI con-
cept is extended to 3D k-space for 3D GE-EPTI, where a new “temporal-variant” of 
CAIPI encoding is proposed to further improve performance.
Results: The effectiveness of the proposed subspace reconstruction was demon-
strated first in 2D GESE EPTI, where the reconstruction achieved higher accuracy 
when compared to conventional B0-informed GRAPPA. For 3D GE-EPTI, a ret-
rospective undersampling experiment demonstrates that the new temporal-variant 
CAIPI encoding can achieve up to 72× acceleration with close to 2× reduction in re-
construction error when compared to conventional spatiotemporal-CAIPI encoding. 
In a prospective undersampling experiment, high-quality whole-brain T∗

2
 and tissue 

phase maps at 1 mm isotropic resolution were acquired in 52 seconds at 3T using 3D 
GE-EPTI with temporal-variant CAIPI encoding.
Conclusion: The proposed subspace reconstruction and optimized temporal-variant 
CAIPI encoding can further improve the performance of EPTI for fast quantitative 
mapping.
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1  |   INTRODUCTION

Echo planar imaging (EPI)1 is a fast MR sequence that has 
been widely used for diffusion imaging2 and functional imag-
ing.3,4 However, the low bandwidth along the phase encoding 
(PE) direction of single-shot EPI (ss-EPI) can lead to severe 
image distortion and T

∗

2
 blurring, limiting EPI’s ability to 

acquire high-quality images with accurate anatomical struc-
tures. To mitigate distortion and blurring, parallel imaging 
(PI) techniques5,6 have been applied to ss-EPI by reducing 
its effective echo spacing (ESP). However, the mitigation of 
distortion and blurring using PI is limited by the achievable 
in-plane acceleration. In the pursuit of higher distortion and 
blurring reduction, multi-shot EPI (ms-EPI) techniques7-11 
have been developed to further reduce the effective ESP at 
the cost of a longer acquisition time. Additionally, a navigator 
acquisition might be necessary to correct for the shot-to-shot 
B0 variations due to respiration and physiological noises,12,13 
which further increases the scan time.

Point-Spread-Function (PSF) mapping14-17 is a unique ms-
EPI technique that can achieve high-quality distortion- and 
blurring-free images, but requires the use of a large number 
of acquisition shots. Recently, the tilted-CAIPI18 acquisi-
tion/reconstruction scheme has been developed to accelerate 
PSF acquisition, which enables distortion- and blurring-free 
brain imaging at 1-mm resolution in ~8 EPI-shots per slice. 
PSF mapping with tilted-CAIPI has also been extended 
to diffusion imaging, where it was refined to enable self- 
navigation of shot-to-shot phase variation.18 To further im-
prove the efficacy of tilted-CAIPI for multi-echo multi-contrast  
imaging, a new, related ms-EPI technique, termed Echo 
Planar Time-resolved Imaging (EPTI)19,20 was developed. 
EPTI not only achieves distortion- and blurring-free imag-
ing using a small number of EPI-shots, but it also resolves 
hundreds of T2/T∗

2
-weighted images across the EPI readout 

at different echo times. The high acquisition efficiency and 
rich signal evolution information provided by EPTI have  
enabled fast multi-contrast and quantitative mapping. For  
example, whole-brain maps of proton-density, T2, T∗

2
, B0, and 

susceptibility weighted imaging (SWI) at 1.1 × 1.1 × 3 mm3 
resolution can be acquired in under 30 seconds.19

In recent years, a number of advanced reconstruction meth-
ods have been developed for accelerated quantitative mapping 
and multi-contrast imaging, including compressed sens-
ing,21,22 low-rank priors,23-27 model-based approaches,28-30 
and dictionary-based/pattern-match methods.31-33 In par-
ticular, the low-rank subspace methods24,25,27,34 are able to 
resolve the temporal evolution of the signal across differ-
ent contrasts with robustness to partial volume and multi- 
compartment effects, and have shown promising results for 
quantitative mapping. Additionally, the subspace can account 
for more complicated image artifacts and sequence imper-
fections such as B1 inhomogeneity24 through modeling the 

effects into the forward signal model. The good performance 
and flexibility of subspace-based reconstruction is leveraged 
in many applications including spectroscopic imaging,35-37 
T2-weighted knee imaging,24,38 quantitative brain34,39 and 
cardiac imaging.40,41

In conventional EPTI, a GRAPPA-like B0-informed par-
allel imaging reconstruction is used to exploit the signal 
correlation along the temporal, spatial and coil dimensions 
to recover missing data-points in k-t space. In this study, we 
developed a subspace reconstruction framework tailored to 
EPTI to improve its reconstruction at very high accelerations. 
To accurately account for B0-inhomogeneity phase accu-
mulation across EPTI’s multi-echo data, we incorporated a  
“B0-update” algorithm42 to recover both image magnitude and  
high-resolution B0 information directly from the undersam-
pled EPTI data. With this approach, good reconstruction can 
be obtained without need for a priori high-resolution B0 map 
that can be lengthy to acquire. Moreover, a data-driven “shot-
to-shot B0-variation” correction method was also developed 
to provide robustness to shot-to-shot phase variation.

In addition to the outlined reconstruction developments, 
spatiotemporal CAIPI encoding of EPTI was also extended 
to 3D k-space for 3D GE-EPTI. A new “temporal-variant” of 
CAIPI encoding was developed and demonstrated to allow 
acceleration rates of up to 72× folds in k-t space. To maintain 
adequate image SNR for T∗

2
 mapping at 3T, a more moderate 

acceleration factor of 32× was used in a prospectively ac-
celerated acquisition, which enables whole-brain T∗

2
 quanti-

fication at 1-mm isotropic resolution in just 52 seconds. The 
efficacy of this technique is verified with prospective and 
retrospective undersampling experiments.

2  |   THEORY

2.1  |  Review of EPTI acquisition

In EPTI, continuous EPI readouts are performed using highly 
accelerated spatiotemporal CAIPI-sampling to efficiently sam-
ple the desired signal in k-t space. For instance, a 2D gradient- 
and spin-echo (GESE) EPTI sequence as shown in Figure 1A 
can be used to acquire images across the T2/T∗

2
 signal decay. 

The EPTI encoding pattern along with a low-resolution fully 
sampled calibration dataset in k-t space are shown in Figure 1B. 
With EPTI encoding, neighboring readout lines are spaced apart 
in time by an ESP (Δt) and in PE direction by RPE. Each shot 
acquires several diagonal ky line-sections that contain multiple 
readout lines with different PE encodings, with adjacent line-
sections interleaved along PE to allow for better utilization of 
coil sensitivity. The sampling pattern is repeated temporally to 
ensure that the time between two ky line-sections (Ts) is regular 
and relatively short. This allows efficient use of temporal cor-
relation during image reconstruction. Rseg is the coverage along 
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PE of each EPTI shot, which also determines the time distance 
between two adjacent ky line-sections, Ts, by Ts = Δt × Rseg/RPE.  
Shorter scan times can be achieved by using a larger Rseg, but 
this increases the time distance (Ts), leading to increased un-
dersampling along t. Our previous work in Ref. 19 has shown 
that for brain imaging at 3T with 1 mm in-plane resolution, 5-9 
EPTI-shots with Rseg of 20-40 and Ts range of 5-10 ms can 
provide good image quality. As part of the acquisition, a fully 
sampled low-resolution k-t calibration dataset is also acquired 
to train B0-informed GRAPPA kernel for reconstruction.19

2.2  |  Subspace reconstruction framework

2.2.1  |  Subspace reconstruction

Highly undersampled k-t signals can be acquired by EPTI 
that contains hundreds of image contrasts that track the sig-
nal evolution. To resolve these images from the undersam-
pled data, spatiotemporal correlation in k-t space could be 
efficiently used. The key concept of subspace reconstruc-
tion27 is that the signal evolution space is low-rank, and can 
be represented by several low-rank subspace bases. Since 
the number of bases is much smaller than the number of 
contrasts or time points, the number of unknowns can be 
significantly reduced through estimating the coefficients of 
bases instead of multi-echo images. The subspace approach 
utilizes the temporal correlation of signals by reducing 
the temporal redundancy in the estimation process, with 

multi-channel coil sensitivity information also integrated 
to provide additional spatial encoding information for the 
reconstruction.

Figure 1C illustrates the proposed subspace reconstruc-
tion for EPTI. At first, the signal evolution space (T2/T∗

2
 

decay for GESE-EPTI) within certain quantitative param-
eter ranges is simulated based on the Bloch equation and 
the acquisition parameters. Then, several basis vectors are  
extracted through principle component analysis (PCA) as �i.  
These vectors form a low-dimensional subspace that can 
closely approximate the entire signal space of interest. 
Using these bases, the temporal image series can be calcu-
lated by �c, where c is the coefficient maps of the bases. 
In this way, the degrees of freedom of reconstruction is re-
duced from the number of time points to the number of 
bases, improving the conditioning of reconstruction and 
the SNR of images. The subspace-constrained reconstruc-
tion is solved by,

where B is the phase evolution across different image echoes 
due to B0 inhomogeneity, S is the coil sensitivity, F is the Fourier 
transform operator, U is the undersampling mask, and y is the 
acquired undersampled EPTI dataset. The regularization term 
R (c) can be incorporated to further improve the conditioning 
and SNR, and � is the control parameter of the regularization. 
After solving for c, the time-series of images can be recovered 
by �c.

(1)min
c

‖UFSB�c−y‖2

2
+�R (c)

F I G U R E  1   The graphic illustration of EPTI acquisition and subspace reconstruction. (A) The diagram of 2D GE-EPTI sequence, and  
(B) an example of EPTI encoding pattern and fully sampled calibration in ky-t space. In EPTI encoding, two adjacent ky line-sections are interleaved 
in the PE direction (as show in the blue block), and separated in time by Ts. Δt is the ESP, RPE is the undersampling factor of two sequentially PE 
lines, and Rseg is the segment size along PE direction of each shot. Figure 1C shows that in subspace reconstruction, signal evolution curves with 
T2/T∗

2
 decay are simulated based on the tissue and acquisition parameters. The subspace bases are extracted by PCA, and used in reconstruction to 

approximate the actual signal temporal evolution
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2.2.2  |  B0-update algorithm

The B0 inhomogeneity-induced phase change and coil sensi-
tivity can both be estimated from the low-resolution k-t cali-
bration data as shown in Figure 1B. However, low-resolution 
B0 maps do not contain high-spatial-frequency information 
that if not incorporated into the reconstruction can cause image 
artifacts in areas with strong susceptibility. To avoid a time-
consuming acquisition for a high-resolution B0 map, a phase 
update algorithm named “general phase regularized recon-
struction using phase cycling”42 is incorporated into the pro-
posed subspace reconstruction, to estimate the high-resolution 
B0 map as shown in step 1 and 2 of Figure 2. In step 1, the 
initial image is reconstructed by subspace reconstruction using 
the low-resolution B0 map obtained from the fast calibration 
scan. In step 2, a high-resolution B0 map is estimated by phase-
cycling using the pre-reconstructed image and acquired data:

where I is the multi-echo image magnitude with background 
phase estimated from the subspace reconstruction, B

0
 is the 

high-resolution off-resonance map in Hz to be estimated, 
B

0
= �Δ, � is the gyromagnetic ratio of protons and Δ is the field 

offset in Tesla. Phase evolution can be calculated by B= ej2�tB
0,  

where t is the echo times. A wavelet constraint term �g
(
B

0

)
 

is incorporated to improve the conditioning of the B0 estima-
tion by using L1 regularization on the Daubechies 6 wavelet 
domain. The updated high-resolution B0 map can then be used 
as input into the subspace reconstruction (step 1) to further im-
prove the accuracy of magnitude images.

2.2.3  |  Data-driven shot-to-shot B0 
variation correction

Shot-to-shot B0 variation can cause phase inconsistency in 
the EPTI data, which was shown to result in small local spa-
tial smoothing in the reconstructed images.19 To mitigate 
this issue in,19 a data-driven approach was developed to esti-
mate and correct for this B0 variation that can work well with  
B0-informed GRAPPA reconstruction. However, such  
approach is not compatible with the proposed subspace  
reconstruction and a new correction approach is developed 
here as outlined below.

Ref. 43 proposed a navigator-free data-driven approach 
to estimate the mean B0 change (0th-order) in each receive 
coil of each acquisition shot (Bvar), and correct for these 
variations in the raw k-space data to achieve improved re-
construction in the presence of shot-to-shot B0 variation. In 
this work, a data-driven correction method that accounts for 
higher order spatial distribution of the B0 variation is devel-
oped as an extension to this approach, and incorporated into 
the proposed subspace reconstruction as shown in step 3 of 
Figure 2. Here, the multi-echo EPTI data are used to fit the 
mean B0 change of each shot to achieve improved accuracy 
over single echo estimation. A 2nd-order polynomial B0 vari-
ation map is estimated for each shot that approximates the 
mean B0 change across different coils (Bvar) estimated using 
the method in Ref. 43.

Specifically, the mean B0 change of each channel is first 
calculated as Bvar (size of Nc×1, Nc is the number of coils) 
for each shot by calculating the phase difference between the 
raw and the reconstructed k-space signals as described in,43 
Bvar = �Δvar, and Δvar is the field variation in Tesla. Then, the 

(2)min
B

0

‖‖‖y−UFSIej2�tB
0
‖‖‖

2

2

+�g
(
B

0

)

F I G U R E  2   Flowchart of the subspace reconstruction with B0 update and shot-to-shot B0 variation correction. In step 1, image magnitude 
is estimated by subspace reconstruction using the low-resolution B0 map from the fast calibration data. In step 2, the high-resolution phase can be 
estimated by the B0 update algorithm with fixing image magnitude. In step 3, shot-to-shot phase variation of each shot can be estimated from the 
undersampled data, and applied to the phase evolution in the reconstruction model. The large loop of the three steps can repeat several times to 
improve the accuracy of both image magnitude and phase
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coefficients of the polynomial B0 variation map cvar for one 
EPTI shot are estimated by solving

Here, A is the 2nd-order polynomial matrix, I′ represents 
the echo-combined magnitude image obtained from subspace 
reconstruction, S is the coil sensitivity, therefore, SI′Acvar is 
the magnitude-weighted B0 variation map (size of Nc×Npixel),  
and operator M is used to average the weighted B0 variation 
map across all the image pixels to compare with the mean 
Bvar of that shot. Using this approach, we can estimate the 
polynomial B0 variation map Acvar of each EPTI shot, and 
correct the corresponding phase by B= ej2�t(B0

−Acvar), to mit-
igate artifacts in the subspace reconstruction. The three re-
construction steps shown in Figure 2 can be repeated several 
times to improve the accuracy of both the magnitude and 
phase of the reconstructed image time-series.

2.3  |  3D spatiotemporal encoding

The design of the spatiotemporal sampling in EPTI is critical 
to achieve accurate signal recovery from highly undersam-
pled data. With the proposed subspace reconstruction, the 
sampling pattern is no longer constrained to be fixed across 

ky-t space as was in the case of B0-informed GRAPPA re-
construction (to limit the number of GRAPPA kernels to be 
trained). In order to design an optimized encoding for 3D 
EPTI, three types of spatiotemporal EPTI encodings were 
proposed and evaluated using a 3D GE-EPTI sequence: (1) 
CAIPI-based sampling, (2) temporal-variant CAIPI sam-
pling, and (3) block-wise random sampling.

Figure 3A shows the sequence diagram and an example of 
the encoding pattern of a 3D GE-EPTI acquisition. Following 
each excitation pulse, an EPTI readout is acquired with mul-
tiple readout lines shown as filled circles in the bottom-left 
ky-kz plot. This forms a spatiotemporal CAIPI pattern within 
each ky-kz block (with ky samples interleaving across time) 
that is acquired during each EPTI readout. Here, for the pur-
pose of illustration, several echoes (6 echoes in Figure 3A) are 
grouped together shown as an “echo-section” even if they are 
acquired at different TEs. The undersampling factor in ky-kz-t 
space is then determined by the block size, R = ky-blocksize ×  
kz-blocksize, since only one readout line will be acquired 
at each TE within the block. For example, the block size of 
Figure 3A is 12 × 6 (ky-kz) and the acceleration factor is 72. In 
each TR, the EPTI readout block covers a portion of the 3D 
k-space (blue or red boxes in Figure 3A bottom-right), and 
after hundreds of TRs, the full ky-kz-t space will be covered.

The details of the three different k-t sampling trajec-
tories are shown in Figure 3B. The CAIPI-based sampling 
(top row) repeats the same block-wise spatiotemporal 

(3)min
c

var

‖‖MSI�Acvar −Bvar
‖‖

2

2
.

F I G U R E  3   The illustration of 3D GE-EPTI acquisition and three different designs of 3D spatiotemporal encoding. (A) The diagram of 3D 
GE-EPTI sequence and its block-wise sampling in ky-kz-t space per EPTI-shot. Spatiotemporal CAIPI trajectory is employed in each EPTI readout 
section, and data blocks of different ky-kz positions are acquired sequentially across TRs to fill the high-resolution ky-kz-t space. (B) Three 3D 
spatiotemporal encodings at an acceleration factor of 72 (block size = 12 × 6): (1) CAIPI-based sampling, same CAIPI pattern of all echo-sections 
(2) temporal-variant CAIPI sampling, shifted patterns between odd and even echo-sections, and (3) block-wise random sampling
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encoding pattern in all echo-sections, whereas the temporal- 
variant CAIPI sampling (middle row) shifts all the even echo- 
sections along ky and kz by certain amounts to achieve a more 
complementary sampling with the odd echo-sections. The 
block-wise random sampling (bottom row), on the contrary, 
randomly samples a ky-kz point within the block at each echo 
time. The block-wise encoding design used in all these three 
trajectories was chosen to ensure that the PE and partition 
gradient blips are small enough to avoid increasing ESP by a 
large amount and/or causing strong nerve stimulation during 
the acquisition.

Additionally, two variable density sampling (VDS) pat-
terns: (1) VDS temporal-variant CAIPI and (2) VDS block-
wise random sampling, were also designed and utilized with 
locally low rank (LLR) constraint to further improve the image 
SNR. The evaluation of different encoding patterns helps us 
investigate the factors that will affect the reconstruction perfor-
mance of 3D EPTI, such as complementary ky-kz pattern across 
time and uniform or non-uniform k-space sampling pattern.

3  |   METHODS

All data were acquired with a consented institutionally approved 
protocol on a Siemens Prisma 3T scanner with a 32-channel 
head coil (Siemens Healthineers, Erlangen, Germany). Three 
subjects were included in the in vivo experiments, one female 
and two males; mean age: 26 years; range: 25 to 28 years of 
age), with the retrospective 3D and prospective 2D experi-
ments acquired on the same subject. Spectrally selective fat 
suppression was used for all the experiments to suppress the 
fat signal. The proposed subspace reconstruction was imple-
mented using the open source code by Jonathan Tamir (https://
github.com/jtami​r/t2shu​fflin​g-support) as a start point, while 
the general phase regularized reconstruction using phase cy-
cling was implemented using the open source code from Frank 
Ong (https://github.com/mikgr​oup/phase_cycling).

3.1  |  Evaluation of reconstruction using 2D 
GESE EPTI

3.1.1  |  Subspace reconstruction

A fully sampled 2D GESE EPTI dataset was acquired to 
evaluate the subspace reconstruction with the following 
acquisition parameters: FOV = 240 × 240 mm2, in-plane 
resolution = 1.1 × 1.1 mm2, slice thickness = 3 mm, num-
ber of shots = 216, number of echoes (GE/SE) = 40/80, 
ESP = 0.93 ms, echo time range of GE / SE = 8.4-44.7 ms / 
70.8-144.3 ms, TR = 2.5 s. This dataset was then retrospec-
tively undersampled in ky-t space by Rseg = 24 to synthesize 
a 9-shot 2D EPTI acquisition. Subspace reconstruction and 

B0-informed GRAPPA reconstruction were used to recon-
struct the 9-shot data, and the results compared with the 
216-shot fully sampled reference.

The subspace bases were generated using the Bloch equa-
tion and a large range of quantitative tissue parameters44: 
range of T2 = 1-600 ms, range of T∗

2
 = 1-500 ms. To simulate 

the effect of imperfect refocusing pulse due to B1 inhomoge-
neity that will change the magnitude ratio between SE and 
GE signals, a scaling factor of 0.8-1.2 between GE and SE 
was also included. Eight bases were extracted from the sim-
ulated signals by PCA, which can approximate the simulated 
signal space with an error < 0.2%. The subspace reconstruc-
tion is solved by the alternating direction method of multipli-
ers (ADMM)45 algorithm. The stop criterion of the subspace 
reconstruction was a maximum iteration = 60, and lambda 
was set to 0.01. The reconstruction parameters were selected 
based on the exhaustive search method with empirical ranges 
based on a simulation test.

3.1.2  |  B0-update evaluation

The effectiveness of the B0 update algorithm was evaluated 
using the same 2D GESE EPTI dataset. The high-resolution 
B0 map and tissue phase were calculated using the fully sam-
pled data with a matrix size of 216 × 216 × 40 (kx-ky-Necho) 
as reference, while the low-resolution calibration data with a 
matrix size = 216 × 49 × 6 (kx-ky-Necho) was used to estimate 
the initial low-resolution B0 map. The reconstructed magni-
tude and phase images from the subspace reconstruction with 
and without B0 update were evaluated for the retrospectively 
undersampled 9-shot EPTI case. For the B0 estimation, wave-
let constraint was used with a lambda = 0.02 to improve the 
conditioning. The number of iteration was set to 50 for the B0 
estimation, and 5 for the large loop of subspace reconstruc-
tion and B0 estimation.

3.1.3  |  Data-driven B0-variation correction

To evaluate the proposed shot-to-shot B0-variation correction 
method, 9-shot 2D GE-EPTI data were simulated with added 
B0-variation in the same way as in the evaluation performed 
in Ref. 19 Realistic B0 maps obtained from an in vivo scan 
with a spin and gradient echo EPI (SAGE-EPI) sequence46 
were used, which contain B0 variations across the 9 shots of 
up to 3 Hz as shown in Figure 6A. The error maps of the 
subspace reconstruction with and without B0-variation cor-
rection were calculated at different echo times and compared. 
Additionally, PSF analysis was performed to quantify the mit-
igated local smoothing achieved with B0-variation correction. 
The PSF of 3D GE-EPTI acquisition was also analyzed with 
the same level of B0-variation (standard deviation = 0-2 Hz)  

https://github.com/jtamir/t2shuffling-support
https://github.com/jtamir/t2shuffling-support
https://github.com/mikgroup/phase_cycling
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as in 2D EPTI, to demonstrate that the effect of local smooth-
ing in 3D acquisition is negligible, and therefore, the shot-
to-shot B0-variation correction was only used for 2D EPTI 
acquisition.

3.2  |  3D GE-EPTI with 
spatiotemporal encoding

3.2.1  |  Retrospective 
undersampling experiment

Fully sampled 3D GE-EPTI data were acquired and used to 
evaluate the performance of different spatiotemporal encod-
ing patterns. The acquisition parameters were: FOV = 220 ×  
220 × 106 mm3, resolution = 1.1 × 1.1 × 1.1 mm3, matrix size =  
200 × 200 × 96, number of shots = 200 × 96 (y-block ×  
z-block) = 19200, TR = 80 ms. The total acquisition time 
was 25 minutes and 36 seconds. 50 echoes were acquired in 
each TR with an ESP of 0.93 ms, covering a TE range of 
9.1 ms-54.7 ms. In the first experiment, the data were retro-
spectively undersampled in ky-kz-t space by 72× folds with a 
block size of 12 × 6 (ky-kz) for all the three encoding strate-
gies as shown in Figure 3B, which reduces the acquisition 
time from >25 minutes to 22 seconds. The reconstruction 
errors of the three different undersamplings were calculated 
using the fully sampled data as the reference. Moreover, VDS 
temporal-variant CAIPI and VDS block-wise random sam-
pling were also evaluated at the same net acceleration factor 
of 72×, with locally low rank (LLR) constraint utilized in the 
reconstruction. The VDS patterns are using elliptical sam-
pling (no sampling outside the ellipse in ky-kz), and have two 
different sampling rates in the ellipse: 32× undersampling at 
the k-space center, 72× undersampling at the outer k-space.

For temporal-variant CAIPI sampling, reconstruction er-
rors for acquisitions with different ky and kz shifts between 
odd and even echo-sections were compared to investigate the 
key factors in encoding design that can effect performance. 
Here, the effect of more vs. less complementary ky-kz patterns 
between the odd and even echo-sections on reconstruction 
performance was analyzed. Using the optimized VDS tempo-
ral-variant CAIPI sampling, quantitative T∗

2
 maps and tissue 

phase maps were calculated at undersampling factors of 72 
(block size = 12 × 6) and 32 (block size = 8 × 4). Error maps 
were calculated using the fully sampled data as reference.

3.2.2  |  Prospective undersampling  
experiment

Prospective undersampled 3D GE-EPTI data were acquired 
to evaluate the usage of optimized 3D EPTI for fast in vivo 
quantitative mapping at high spatial resolution. The data 

were acquired with VDS temporal-variant CAIPI sampling at 
an acceleration factor of 32 (block size = 8 × 4). Other acqui-
sition parameters were: FOV = 216 × 216 × 96 mm3, resolu-
tion = 1 × 1 × 1 mm3, matrix size = 216 × 216 × 96, ESP = 
0.95 ms, number of echoes = 57, TE range = 3.8 ms-57 ms, 
number of shots = 27 × 24 (y-block × z-block) = 648, flip 
angle = 20°, TR = 80 ms. The total acquisition time was 52 s. 
In addition to the imaging data acquisition, a low-resolution 
calibration data were also acquired with the same FOV and 
ESP to obtain sensitivity maps and initial estimation of the 
B0 map. The acquisition time of calibration data was ~18 s, 
where accelerations along ky and kz of 2 × 2 were used and 
only 8 echoes were acquired to reduce the acquisition time 
(TR = 30 ms). The key acquisition parameters of calibration 
data were: matrix size = 216 × 42 × 32, the k-space center 
was fully sampled to provide GRAPPA calibration for re-
constructing this undersampled calibration data, and the net 
acceleration factors of ky and kz = 1.6 and 1.5, respectively.

4  |   RESULTS

Figure 4 shows the comparison of subspace and B0-informed 
GRAPPA reconstructions for the 2D GESE dataset. In  
Figure 4A, the reconstructed images and error maps at four 
different TEs are presented. Both methods performed well 
for the center echoes of the EPTI readout window (TE = 27 
and 107 ms), however, the subspace method significantly re-
duces the reconstruction errors of the edge echoes (TE = 14  
and 141 ms) where the k-t GRAPPA kernel cannot be ap-
plied fully to fill in the missing data. Such improvement 
can also be observed in the reconstructed signal evolution 
across GE-SE signals of a representative voxel in the image 
as shown in Figure 4B, where the subspace reconstruction 
recovers more accurate signal curve with reduced noise and 
errors, especially at the edge echoes.

The results of the B0-update evaluation are shown Figure 5. 
The first row shows the high-resolution B0 map and tissue phase 
calculated from the fully sampled calibration dataset with 216 
PE and 40 echoes, which took 120 seconds to acquire for 10 
slices. The second row shows that a low-resolution calibration 
dataset with 49 PE × 6 echoes can reduce the acquisition time 
to just 10 seconds, but the high-resolution tissue phase informa-
tion is missing in this data, causing artifacts in the reconstructed 
image as can be seen in the error map. Using the B0-update al-
gorithm, the high-resolution tissue phase can be well estimated, 
and the image artifacts mitigated with a reduced root-mean 
square error (RMSE) as shown in the bottom row of the figure.

Figure 6B shows the evaluation results of the proposed 
B0-variation correction, where the reconstructed images and 
the corresponding error maps are shown for reconstructions 
with and without B0 variation correction. Figure 6C shows the 
standard deviation of the B0-variation across the 9 simulated 
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F I G U R E  4   Comparison of 2D GESE EPTI results reconstructed by B0-informed GRAPPA and subspace reconstruction for a 9-shot 2D EPTI 
acquisition. The images at four selected TEs (out of 120 TEs) are shown, where images at the early and late TEs show severe artifacts from the 
GRAPPA reconstruction, but the subspace method provided clean images. The signal drops of GRAPPA at the edge echoes are also shown in the 
signal curve. In contrast, subspace reconstruction obtained accurate signal evolution without signal drop or large fluctuation

F I G U R E  5   The results of B0 update evaluation. On the top, high-resolution B0 map and tissue phase were calculated from the fully sampled 
dataset with 216 PE and 40 echoes, which takes 120 seconds for 10 slices. In second row, reconstructed images and phase from a low-resolution 
calibration with 49 PE × 6 echoes are shown. Using low-resolution data, acquisition time can be reduced to only 10 seconds, but causes image 
artifacts in the reconstructed image. The bottom row shows the estimated high-resolution phase and image from the B0 update algorithm, where the 
artifacts due to inaccurate phase are reduced
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EPTI-shots, before and after correction. Without the correction, 
high standard deviations in the B0 variation can be observed 
in the anterior portion of the brain, causing noticeable recon-
struction errors in this area, particularly at long TEs where the 
phase accrual from such variation is more pronounced. With 
the proposed correction, the standard deviations are markedly 
reduced and this resulted in less image errors with smaller 
RMSEs. The effects of B0-variation correction on the PSF are 
shown in Supporting Information Figure S1 at the same TE of 
70 ms. In the 2D acquisition case (Figure S1A), a B0 variation 
with a standard deviation of 1.5 Hz causes local smoothing  
with a side lobe level of 4.1%, while after correction, the  
side lobe is reduced to only 2.1%. Supporting Information 
Figure S1B shows the PSF analysis for 3D EPTI where the 
smoothing effect of B0 variation is spread along both z and y 
direction. In this case, the largest side lobe is only 0.8%, even 
without any correction, causing negligible smoothing. To fur-
ther validate the performance of the proposed method, pro-
spective undersampling 2D experiment was also performed as 
shown in Supporting Information Figure S2.

Figure 7 shows the results of the retrospective undersam-
pling experiment for 3D GE-EPTI at 72× acceleration. Five 
different encoding patterns were compared: CAIPI-based 
sampling, temporal-variant CAIPI sampling, block-wise ran-
dom sampling, VDS temporal-variant CAIPI, and VDS ran-
dom sampling. The ky-kz views of these patterns in Figure 7 
shows the summation of all the k-t samples along the time 
dimension. The first three encodings were reconstructed using 
the proposed subspace approach without LLR constraint. 
Here, the temporal-variant CAIPI shows the best performance 
with the lowest RMSE (6.94%) when compared against 
CAIPI-based sampling (11.4%) and block-wise random sam-
pling (8.56%). The last two encoding patterns which utilize 

VDS were reconstructed with additional LLR constraint. 
Here, the reconstruction from VDS temporal-variant CAIPI 
shows a lower error (5.89%) when compared against VDS ran-
dom sampling (6.97%). Based on these results, the temporal- 
variant CAIPI sampling achieved better performance than 
conventional CAIPI-based sampling and random sampling, 
and when combing with VDS and LLR, the temporal-variant 
CAIPI still shows better results than random sampling.

To further investigate the optimal sampling design based 
on the temporal-variant CAIPI scheme, reconstructions from 
data with different ky and kz shift steps between the odd and 
the even echo-sections were analyzed. Figure 8A shows the 
reconstruction RMSEs at different shift steps for an acquisi-
tion block size of 12 × 6 (ky × kz). Here, the encoding pattern 
with 0-0 (ky-kz) shift corresponds to conventional spatiotem-
poral CAIPI-sampling, which has the largest error. The sam-
pling patterns in ky-kz view are shown in Figure 8B,C for two 
representative shifting patterns: 4-1 shift (Pattern 1) and 12-2 
shift (equivalent to 0-2 shift, Pattern 2). The “total pattern” in 
ky-kz (summation of the two echo-sections along t) of Pattern 
2 contains more complementary sampling than Pattern 1, and 
achieved much lower reconstruction RMSE, indicating that a 
more complementary sampling can improve reconstruction.

The evaluation of quantitative T∗

2
 and tissue phase maps 

obtained from the retrospective undersampling experiment is 
presented in Figure 9, at two undersampling factors of 72× 
and 32×, both with VDS temporal-variant sampling. The 
scan time of the fully sampled data was 25 minutes at 1.1 mm  
isotropic resolution, which is reduced to 21 s and 48 s through 
72× and 32× accelerations, respectively (with an additional 
calibration scan of ~18 s). The quality of the tissue phase 
obtained from the 72× accelerated EPTI is comparable to the 
full-sampled case with a small increase in the noise level, 

F I G U R E  6   Results of B0 variation 
correction in the simulation test. (A) 
Realistic B0 maps obtained from an in 
vivo scan across the 9 shots. (B) The 
reconstructed images and error maps (×5) 
with and without variation correction at four 
different TEs. (C) The standard deviation of 
B0 variation across 9 shots before and after 
correction. After variation correction, the 
standard deviation and reconstruction errors 
are all reduced
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while the T∗

2
 map shows higher error at higher noise level. 

With the 32× accelerated EPTI, the T∗

2
 map has higher SNR 

and reduced error (mean percentage error of 32× and 72× T∗

2
 

maps = 7.66% and 10.5%), while the acquisition time is still 
less than 1 minute.

The prospective undersampling results are shown in  
Figure 10, where 3D GE-EPTI with VDS temporal-variant 

sampling was used to acquire whole-brain T
∗

2
-weighted  

images with 57 echoes at 1 mm isotropic resolution in 52 seconds.  
High-quality multi-echo T∗

2
-weighted images, along with quan-

titative T∗

2
 and tissue phase maps are presented in three orthog-

onal views. The results of quantitative ROI analysis on NIST 
phantom are shown in Supporting Information Figure S3 to 
further validate the accuracy of the 3D GE-EPTI.

F I G U R E  7   Comparison of different encoding patterns in the retrospective undersampling experiment using 3D GE-EPTI dataset at 72× 
acceleration. The ky-kz view of the five patterns that sums all the k-t sampling over the t dimension, reconstructed images, and 5× error maps are 
shown in the figure. CAIPI-based, temporal-variant CAIPI, block-wise random sampling are reconstructed by subspace approach without LLR 
constraint, and VDS temporal-variant CAIPI and VDS random sampling are reconstructed with LLR constraint. The temporal-variant CAIPI shows 
the lowest reconstruction errors in the non-VDS sampling, and its combination with VDS sampling and LLR further reduce the RMSE

F I G U R E  8   (A) The image RMSEs of the temporal-variant CAIPI sampling with all different shifts between odd and even echo-sections are 
calculated. The block size is 12 × 6 (ky × kz), so the shift range of ky is 0-12 (0 and 12 are the same), and the shift range of kz is 0-6 (0 and 6 are 
the same). Two different patterns are selected to illustrate the factor that affects the performance at different shifts. The sampling pattern of odd 
echo-section, even echo-section and the total pattern are shown in Figure 8B,C for Pattern 1 (4-1 shift) and Pattern 2 (12-0). Pattern 2 shows more 
complementary sampling in the ky-kz block than Pattern 1, and achieved lower RMSE of the reconstructed image
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5  |   DISCUSSION AND 
CONCLUSION

A subspace reconstruction framework for EPTI was suc-
cessfully developed and demonstrated to provide improved 
reconstruction accuracy over conventional B0-informed 
GRAPPA. Such reconstruction uses prior low-rank informa-
tion of the signal model to reduce the number of unknowns 
and improve the image SNR. In addition to taking advan-
tage of low-rank modeling, approaches for B0 estimation 

and shot-to-shot B0-variation correction were developed and 
demonstrated to further improve reconstruction and enable 
the use of fast low-resolution calibration scan. Moreover, the 
EPTI concept was extended successfully to 3D sampling and 
new 3D spatiotemporal CAIPI encoding schemes were de-
veloped to improve acceleration capability.

Through volumetric encoding and improved noise aver-
aging, 3D EPTI can achieve higher SNR than their 2D EPTI 
counterpart, lending itself well for the application in rapid 
high-resolution multi-contrast and quantitative mapping. The 

F I G U R E  9   The quantitative T∗

2
 and tissue phase maps at 72× and 32× retrospective undersampling with VDS temporal-variant CAIPI. The 

scan time of fully sampled scan was 25 minutes at 1.1 mm isotropic resolution, which can be reduced to 21 seconds and 48 seconds by 72× and 
32× folds acceleration, respectively. At R = 72, the tissue phase is comparable to reference, but T∗

2
 map shows artifacts and noise. Using R = 32, 

the error of T∗

2
 map is reduced with higher SNR, and the acquisition time is still less than 1 minute

F I G U R E  1 0   The results of prospective undersampling experiment using 3D GE-EPTI with VDS temporal-variant sampling. Whole-brain 
T
∗

2
-weighted images with 57 echoes at 1 mm isotropic resolution was acquired in only 52 seconds. T∗

2
-weighted images, quantitative T∗

2
 maps and 

tissue phase are presented in three orthogonal views
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additional partition encoding dimension in 3D EPTI not only 
provides more flexibility for undersampling, but also adds 
more complexity for the design of the spatiotemporal sampling 
pattern. In this work, various 3D spatiotemporal sampling 
patterns were compared using the subspace reconstruction. 
Among all of these strategies, the temporal-variant CAIPI pat-
tern achieves the best performance (Figure 7), and its com-
bination with VDS and LLR constraint was demonstrated to 
further improve reconstruction accuracy at high accelerations.

The analysis of the encoding patterns in Figure 8 shows 
that a more complementary sampling between different 
echo-sections can improve the reconstruction accuracy. The 
improvement reflects the benefits of creating more spatial 
and temporal correlation across the sampled k-t signals. 
Specifically, a more complementary sampling in ky-kz space 
will create more spatial correlation and allow for better sig-
nal recovery using coil sensitivity information and parallel 
imaging. Therefore, undersampling factor in ky-kz is chosen 
to achieve high temporal correlation while keeping within the 
capability of parallel imaging reconstruction. The proposed 
temporal-variant CAIPI encoding achieved the best perfor-
mance by creating such spatiotemporal correlation in the 
sampled data, and allows high undersampling of up to 72×. 
The improved performance of the temporal-variant CAIPI 
over random sampling can be attributed to better utilization 
of coil sensitivity information by taking parallel imaging/
coil-encoding consideration into the sampling design.

The high acceleration and the high acquisition efficiency 
of EPTI with continuous readout enables ultra-fast multi- 
contrast and quantitative mapping at high isotropic resolution 
in human brain, as demonstrated by both retrospective (Figure 9)  
and prospective (Figure 10) undersampling experiments. 
Interestingly, better reconstruction performance with lower 
noise was achieved in the prospective undersampling case 
(Figure 10) when compared to the retrospective case (Figure 9),  
both at 32× acceleration, even though the retrospective  
undersampling experiment was performed at a slightly larger 
voxel size (1.1 mm vs. 1 mm isotropic) and was not affected 
by varying eddy currents and concomitant gradients due to 
varying phase- and partition-encoding gradient blips as in the 
prospective. This is likely to be because of the increased phys-
iological noise and the inevitable motion during the lengthy 
acquisition of the fully sampled dataset (~25 minutes) used in 
the retrospective undersampling case. In an even higher ac-
celeration case of 72×, the prospective sampling experiment 
was able to achieve good reconstruction of the magnitude 
and phase images. However, the magnitude images under 
72× acceleration were relatively noisy at 3T. Application of 
3D EPTI at higher field strength, such as at 7T, should help 
boost the SNR and enable higher performance at such a high 
acceleration rate. One limitation of the proposed method is 
that the reconstruction time can be relatively long, currently 
at ~1 minute per slice for 1 mm resolution brain imaging 

when perform in MATLAB using a Linux workstation (Intel 
Xeon, 2.00 GHz 20 Cores). Further optimization using par-
allel computation as well as implementation in C++ should 
be helpful to reduce the reconstruction time. The proposed 
method also did not model the effects of eddy currents, con-
comitant gradients and unsuppressed lipid signals. Including 
these effects into the signal model could potentially further 
improve the accuracy and robustness of the method. In addi-
tion, limited number of subjects were included in this study. 
To further evaluate the EPTI technique and the k-t trajectory 
optimization in the future, rigorous multi-subject experi-
ments and repeatability tests will be performed.

The proposed EPTI acquisition/reconstruction method 
can achieve high acquisition efficiency to facilitate accurate 
and rapid quantitative parameter mapping. The use of the 
continuous EPTI readout improves noise averaging, and the 
use of temporal-variant CAIPI and subspace reconstruction 
improves the conditioning of the reconstruction. The pro-
posed sampling and reconstruction approaches should also 
be useful for the recently developed inversion-prep 3D EPTI 
scheme for rapid quantitative mapping of T1 T2 and T∗

2
,47 and 

for the propeller-based EPTI (PEPTIDE) approach that can 
achieve motion-robust fast quantitative imaging.48 Further 
improvement in acquisition efficiency should be feasible 
through further optimization, for example through the use of 
Cramer-Rao bound in sequence design49 and incorporation of 
the low-rank tensor modeling.50
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the Supporting Information section.

FIGURE S1 (A) PSF analysis of 2D EPTI acquisition before 
and after B0 variation correction. Before correction, B0 varia-
tion with standard deviation of 1.5 Hz causes local smoothing 
with side lobe = 4.1%, and after correction, the side lobe is re-
duced to 2.1%. (B) PSF analysis for 3D EPTI acquisition with 
the same B0 variation level (standard deviation = 1.5 Hz).  
In 3D acquisition, the largest side lobe is only 0.8%,  
because the effect of B0 variation spreads along both z and y 
direction
FIGURE S2 Results of the prospective undersampling 2D 
GESE PETI acquisition with subspace reconstruction. As 
shown in this figure, the proposed method reconstructed 
high-quality images at difference slices and echo times 
from the undersampled EPTI data. Acquisition param-
eters for the 2D prospective undersampling acquisition:  

FOV = 240 × 240 mm2, in-plane resolution = 1.1 × 1.1 mm2, 
slice thickness = 3 mm, number of shots = 9, Rseg = 24, number 
of echoes (GE/SE) = 48/96, ESP = 0.93 ms, echo time range 
of GE / SE = 6.7-50.4 ms/68.4-156.7 ms, TR = 3.8 s. A low- 
resolution calibration dataset was also acquired with 29 PE 
lines and 23 echo times
FIGURE S3 Comparison between the multi-echo GRE se-
quence and the proposed 3D GE-EPTI for T∗

2
 quantification 

using the NIST phantom. The calculated T∗

2
 maps are shown 

in (A), and a ROI analysis was performed on the tubes with 
a T∗

2
 within the range of interest for brain imaging at 0-200 

ms (indicated by the blue indices in A) as shown in (B). The 
estimated T∗

2
 values from the EPTI sequence are very simi-

lar to that of the multi-echo GRE sequence while requiring 
10× shorter scan time (acquisition time for EPTI is 70 s, 
multi-echo GRE is 13 minutes). This demonstrates the abil-
ity of the proposed method for rapid quantitative measure-
ments. The acquisition parameters for the 3D GE-EPTI 
were: VDS temporal-variant CAIPI sampling at an acceler-
ation factor of 32 (block size = 8 × 4), FOV = 210 × 210 × 
184 mm3, resolution = 1 × 1 × 1 mm3, ESP = 0.93 ms, 
number of echoes = 48, TE range = 1.6 ms-45.3 ms, num-
ber of shots = 1170, flip angle = 20°, TR = 60 ms. The 
acquisition parameters for multi-echo GRE were: FOV = 
224 × 224 × 176 mm3, resolution = 1 × 1 × 1 mm3, flip 
angle = 20°, TEs of 8 acquired echoes = 5 ms, 10 ms,  
15 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, TR = 80 ms, 
acceleration factor = 2 × 2 (phase × partition encoding). 
All data were acquired using 32 channel head coil at 3T
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