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Abstract 
Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted 
drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural 
exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limi-
tations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being 
developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, 
neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of 
natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or 
post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic 
molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineer-
ing approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, 
extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes 
using parental cell-based engineering and their application in cancer treatment and regenerative medicine.
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Key Points 

Designer exosomes could erase the limitations of natural 
exosomes, including low targeting capability, low half-
life in circulation, and low concentration of functional 
molecules.

A designer exosome benefits simultaneously from its 
own functional molecules and the newly loaded mol-
ecules.

Anti-cancer designer exosomes could be engineered for 
targeted delivery of chemotherapeutic drugs and short 
interfering RNAs to tumor tissue and requires further 
development of highly specific targeting peptides.

Regenerative designer exosomes from engineered mes-
enchymal stem cells (MSCs) could be used for healing 
of wounds, and neural and cardiac tissue healing and 
regeneration.

1  Introduction

Exosomes comprise a small fraction of extracellular vesi-
cles (EVs), which are produced by all types of cells and 
secreted into the extracellular environment [1]. Since EVs 
consist of different heterogeneous populations of vesicles, 
isolation of a pure population of exosomes requires several 
purification and characterization steps [2]. The three main 
populations of EVs have been categorized as exosomes, 
microvesicles, and apoptotic bodies. These populations of 
vesicles are different in their origin and size. Exosomes 
originate from multivesicular bodies (MVBs), which are 
derived from the budding of the plasma membrane of 
cells, and apoptotic bodies are formed from cell fragmen-
tation through apoptosis. For the most detailed information 
on EVs and exosome populations, readers are referred to a 
recently published review by Willms et al. [3].

Among EVs, exosomes have been widely studied 
due to their potential application in medicine. Thus far, 
exosomes have been used in many studies for tissue 
regeneration, delivery of drugs and genes, and diagno-
sis of diseases. Naturally, in addition to the well-known 
cell-to-cell communication, new studies have shown other 
roles for exosomes, including spreading of various infec-
tious agents, such as the human immunodeficiency virus 
(HIV) [4, 5], Epstein–Barr virus (EBV) [6], and prions [7]. 
Exosomes derived from different cells have specific fea-
tures, composition, and effects on their target cells [8, 9]. 
In addition, exosomes naturally exhibit the characteristics 

of their parental cells [10, 11]. These two main features of 
exosomes could have many biomedical applications. For 
instance, researchers use mesenchymal stem cell (MSC)-
derived exosomes in regenerative medicine for tissue 
regeneration and wound healing [12, 13]. On the other 
hand, exosomes are a new source and platform for the dis-
covery of biomarkers in biofluids for the diagnosis and 
screening of cancer and other disorders [14, 15].

Structurally, the surfaces of exosomes are rich in trans-
membrane proteins, receptors, and other functional mol-
ecules. In the lumen, there is a vast range of different pro-
teins, lipids, RNAs, DNAs, and metabolites, which vary 
widely between exosomes derived from different sources 
[16–18]. Readers are referred to our most recent published 
review article, in which the molecular composition of 
exosomes is discussed in depth [19].

Although, extensive research in the recent 2 decades 
has enriched our knowledge of the biology, chemistry, and 
physiology of exosomes, a Food and Drug Administration 
(FDA)-approved exosomal-based therapeutic or diagnostic 
platform is yet to be established. This is mainly due to the 
fact that exosomes, as natural vesicles, lack some features 
for therapeutic development. For instance, for cancer treat-
ment using exosomes, targeting of therapeutic exosomes 
specifically to cancer cells is essential. In addition, in 
many applications, researchers need to load a completely 
new drug, a protein, or RNA into exosomes to impart a 
therapeutic effect. Besides the challenges of large-scale 
manufacturing of exosomes, these limitations of natu-
ral exosomes have challenged the translational develop-
ment of exosomes. Fortunately, various biotechnological 
approaches have led to the emergence of the new field 
of exosome engineering. Exosome engineering aims to 
achieve the following goals: (1) targeting the exosomes to a 
particular type of tissue or cell; (2) loading the exogenous 
molecules, drugs, proteins, or nucleic acids into exosomes 
or onto their surface; and (3) enrichment of an endogenous 
molecule into the lumen of exosomes or on their surface 
(Fig. 1). Most recently, advanced studies have combined 
several exosome engineering approaches in order to design 
highly specialized exosomes called designer exosomes.

These engineered exosomes offer several novel features 
for special therapeutic applications. Herein, we aimed to 
classify exosome engineering approaches: parental cell-
based and direct exosome engineering. However, differ-
ent methods have been used in each class, and this could 
help researchers in various fields of biomedical sciences 
to recognize possible approaches for creating or improving 
therapeutic features of exosomes. In this review, we begin 
with natural exosomes and their potential and limitations 
in medicine. In the next sections, we focus on the necessity 
of exosome engineering, different engineering approaches, 
and applications of designer exosomes.
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2 � Natural Exosomes Versus Designer 
Exosomes

In the last 2 decades, synthetic nanoparticles such as 
liposomes (synthetic lipid bilayer used as a carrier for drugs 
and genes), aptamers (short single-stranded RNAs or DNAs 
that strongly bind to specific ligands), dendrimers (highly 
branched polymers used as carriers of drugs and genes), 
and many other biomolecules have provided useful tools 
for selective delivery of drugs and genes to target cells and 
tissues [1]. Despite this progress, multiple challenges still 
remain in using these nanoparticles including, bioavail-
ability (systemic circulation access of administered carrier-
loaded therapeutics), cost, biocompatibility, undesirable 
effects such as cytotoxic effects on some cells [1, 20], and 
short half-life in vivo, resulting in quick elimination from the 
systemic circulation [21, 22].

Since their introduction in the early 1980s by Pan and 
Johnstone, exosomes have been considered carriers that 
transport cell waste to the extracellular environment [23]. 
However, through vast studies on EVs, their various cru-
cial functions have been discovered and experimentally 
approved for many physiological and pathophysiological 
conditions. These critical roles of exosomes consist of 
extensive cell-to-cell communications [24], cancer pro-
gression and metastasis [25, 26], embryogenesis [27], 
organ development [28], wound healing and tissue regen-
eration [29], cell differentiation [30], immunomodulation 
[31], antigen presentation [32], and pathogenesis [33–35]. 
These functions have led to intensive research on their bio-
medical applications, including tissue regeneration [36], 
cancer treatment and diagnosis [37], drug delivery [38], 
gene therapy [39], and vaccine development [40, 41].

Exosomes are natural vesicles with 50–150 nm size and 
a bilayer membrane, and their luminal contents consist of 
surface ligands and receptors [20, 22]. Exosomes can be 
detected and isolated from cell culture supernatants and 
all body fluids [1, 21]. Compared to synthetic nanovesi-
cles such as liposomes, exosomes have higher stability 
and bioavailability [42], have a natural origin [43, 44], 
longer in vivo circulation half-life [45], a role as endog-
enous functional biomolecules, lack of toxicity, low to no 
immunogenicity, biocompatibility (because of their natural 
origin) [46], and ability to pass biological barriers such as 
the blood–brain barrier (BBB) [47, 48], penetrating mas-
sive tissues with their surface ligands and receptors [49]. 
As a result, exosomes have the potential to be a suitable 
platform for delivering drugs, genes, and functional bio-
molecules to target tissues or cells for different applica-
tions [21].

However, the application of exosomes in their natural 
form and composition as therapeutic agents is challeng-
ing. Generally, a natural exosome lacks the specific cell- 
or tissue-targeting feature. The therapeutic application 
of exosomes as a delivery system necessitates the design 
of controlled and targeted exosomes. Furthermore, many 
clinical applications involve the loading of certain addi-
tional therapeutic molecules alongside exosomes’ own 
content, which demands different loading techniques to 
be developed. In this regard, targeted designer exosomes 
or designer exosomes loaded with tested molecules could 
potentially address these limitations. In addition to the 
functional contents, ligands, and receptors of natural 
exosomes, designer exosomes also benefit from other 
engineered features [50, 51]. In the following sections, 
different approaches implemented for the development of 
designer exosomes are discussed.

3 � Exosome Engineering Approaches

The functional molecule can be either loaded into the 
lumen or displayed on the surface of exosomes for a thera-
peutic purpose (Fig. 1a). The two major strategies, includ-
ing parental cell-based and direct exosome engineering, 
are routinely employed for loading and displaying func-
tional molecules, and mainly differ in the level of engi-
neering applied for their development. In the parental cell-
based approach, the starting material is the cells that are 
the source of the exosomes, and engineering occurs before 
exosome isolation from cells. In contrast, in the second 
approach, exosomes are the direct starting material for 
engineering, and the engineering procedure occurs after 
exosome isolation. The next two subsections separately 
discuss different methods employed in the two main exo-
some engineering approaches (Fig. 1b).

3.1 � Parental Cell‑Based Exosome Engineering

The parental cell-based approach of exosome engineer-
ing, which was first used for discovering the biology 
of exosomes and not for the purpose of manipulation, 
consists of genetically engineering cells to produce spe-
cifically fabricated exosomes (Fig. 1a). Here, the basics 
of this approach are discussed via previously published 
examples, to demonstrate how a functional molecule can 
be directed to either exosome lumen (loaded) or surface 
(displayed) using genetic engineering of the parental 
cells.
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3.1.1 � Exosomal Surface Display Using Parental Cell‑Based 
Approach

Using the parental cell-based approach of exosome engi-
neering, the most common method for directing a protein 
to the surface of exosomes uses a exosomal signal peptide. 
For example, lysosome-associated membrane protein 2b 
(Lamp2b) is an exosomal surface protein with an exosomal 
signal peptide. Fusion of a protein of interest to Lamp2b 
is very common for displaying the protein on the surface 
of exosomes as a targeting moiety, ligand, or receptor. A 
Lamp2b-based fusion protein can be used to display rabies 
viral glycoprotein (RVG), a neuron-specific targeting pep-
tide, on the surface. Expression of Lamp2b-RVG fusion pro-
teins in dendritic cells (DCs) displays RVG on the surface 
of DC-derived exosomes (Fig. 2a). When these exosomes 
are systemically administered, surface displayed RVG leads 
to the accumulation of these exosomes in the neurons and 
brain of mice [43]. Removal of the signal peptide from 
Lamp2b-RVG significantly reduces surface display of RVG 
on the engineered exosomes. Altogether, the signal peptide 
of Lamp2b can be used to display any fusion protein on 
the surface of exosomes. In addition, introduction of a gly-
cosylation motif into Lamp2b-RVG fusion proteins could 
further enhance exosome delivery to the neurons and glial 
cells by protecting the surface-displayed fusion protein from 

enzymatic degradation. Therefore, this method allows simul-
taneous glyco-engineering and display of a protein on the 
surface of exosomes [52, 53].

Other commonly used molecules for exosomal surface 
display of fusion proteins include tetraspanins (CD63, 
CD9, CD81) [54], glycosylphosphatidylinositol (GPI) [55], 
platelet-derived growth factor receptors (PDGFRs) [56], and 
lactadherin (C1C2 domain) [57]. In a very similar method 
to Lamp2b fusion proteins, the NH2-terminal of CD63 can 
be fused to a protein of interest for the same purpose [58].

Other non-cellular and exosomal proteins such as vesicu-
lar stomatitis virus glycoprotein (VSVG) have also been used 
for surface display of proteins on exosomes. VSVG is a key 
protein involved in virus envelope formation during micro-
domain budding from the surface of the plasma membrane. 
Since a similar domain to VSVG participates in the forma-
tion of endosomes and exosomes in the cell, researchers used 
VSVG to express proteins on the exosomal surface. VSVG 
contains ectoplasmic, transmembrane, and cytoplasmic 
domains [59]. Replacement of the ecto- and cytoplasmic 
domains of VSVG with another protein (e.g., green and red 
fluorescent proteins [GFPs and RFPs] or luciferase), without 
any alteration in the signal peptide and the transmembrane 
domain, results in proper exosomal surface display of the 
protein. Improved protein surface display and improved exo-
some uptake to the target cells are two advantages of using 

Fig. 1   Exosome engineering approaches. a Different therapeutic mol-
ecules can be either loaded into lumen or displayed on the exosome 
surface for clinical purposes. b Two main approaches of exosome 
engineering, parental cell-based and post-isolation engineering, and 
their different methods. EXPLORs Exosomes for Protein Loading via 

Optically Reversible protein-protein interactions, EXOtic Exosomal 
Transfer Into Cells, 3WJ 3-way junction, Lamp2 lysosome-associated 
membrane protein 2, lncRNA long non-coding RNA, TAR​ trans-acti-
vating response element, TAT​ trans-activator of transcription
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VSVG fusion proteins for exosomal surface display [60]. 
The stated methods allow proper display of a protein on the 
surface of exosomes, while some parental cell-based exo-
some engineering techniques have been developed recently 
for loading proteins and RNAs into the lumen of exosomes. 
These methods are discussed in the next subsection.

3.1.2 � Loading Proteins into the Lumen of Exosomes Using 
Parental Cell‑Based Engineering

The loading of therapeutic molecules is a common require-
ment for the production of therapeutic exosomes. The 
methods of parental cell-based engineering for loading 
molecules into the lumen of exosomes were developed 
very recently. These methods recruit the molecule sorting 
modules (MSMs) for sorting of proteins and RNAs into 
the lumen. These modules are able to bind to the protein 
or RNA of interest and direct them to exosomes. However, 
different MSMs or other modules have been used in differ-
ent methods.

Two new methods for loading  of proteins into 
the exosomes mimic the natural protein sorting system of 
cells based on ubiquitination. In the first method, an engi-
neered ubiquitin tag (the last two glycine residues in the 
C-terminal are removed) has been developed. Removal of 
the two glycine residues results in enhanced ubiquitinated 
protein half-life. Fusion of this ub-tag to the proteins of 
interest, such as Ag85B and ESAT6 (Mycobacterium tuber-
culosis proteins) or enhanced green fluorescent protein 
(EGFP) and nHer2 (tumor antigens), leads to the loading of 
the proteins into the lumen of exosomes in human embry-
onic kidney (HEK293) cells. A recent study showed that 
the ubiquitin tag acts as a sorting sequence, resulting in effi-
cient loading of proteins into exosomes [61]. In the second 
method, a short tag (WW tag) with the ability to bind spe-
cifically to the L-domain motif of Ndfip1 (which activates 
HECT domain-containing E3 ubiquitin-protein ligases) is 
used. The WW tag method is another system that uses ubiq-
uitination for the loading of proteins into exosomes. Fusion 
of Cre recombinase (as a protein of interest) to the WW tag 
and simultaneous expression with Ndfip1 leads to recogni-
tion of the WW tag by Ndfip1 and activation of E3 ubiq-
uitin ligases and ubiquitination of Cre. Subsequently, the 
ubiquitinated Cre-WW are loaded into the exosomes. Ndfip1 
protein induces the molecular switch for ubiquitination and 
helps with the exosomal packaging of the Cre-WW fusion 
protein (Fig. 2b). The validation results of the mentioned 
method showed that when engineered exosomes containing 
the Cre-WW fusion protein are taken up by the target cells, 
Cre-WW is capable of DNA recombination [62].

Another method was recently used for the loading of spe-
cific proteins into the exosomes by a non-functional mutant 
of the HIV-I Nef protein. This engineered mutant of Nef 

(Nefmut) lacks the enzymatic activity and most functions of 
the intact Nef protein. The Nef protein is associated with 
lipid-raft microdomains of the plasma membrane [63] and 
exosomes. Similar to Lamp2b, CD63, and VSVG fusion 
proteins, Nefmut is developed for sorting of proteins to the 
exosomes [64]. Nefmut-GFP fusion protein was successfully 
loaded into exosomes for monitoring transfection and load-
ing efficiency [65]. Moreover, fusing Nefmut to antigens of 
several pathogens, including Ebola virus VP24, VP40, and 
NP, influenza virus NP, Crimean-Congo hemorrhagic fever 
NP, West Nile virus NS3, and hepatitis C virus NS3, resulted 
in the expression of stable fusion proteins and their efficient 
loading into exosomes [66].

A recent attempt to load proteins into the lumen of 
exosomes was reported by Yim et al. [67]. They employed 
optically reversible protein–protein interaction (PPI) for the 
development of EXPLORs (exosomes for protein loading via 
optically reversible PPIs) using photoreceptor cryptochrome 
2 (CRY2) and CIBN PPI modules. This method depends 
on intracellular delivery of proteins by reversible PPIs and 
their co-localization into exosomes by irradiation with a blue 
light. In the first step, a reporter protein was fused to CRY2 
and CIBN protein was fused to the exosomal membrane CD9 
protein (a representative marker of exosomes) to obtain two 
fusion proteins (CIBN-EGFP-CD9 and mCherry-CRY2). 
Blue light induced reversible PPI between CIBN and CRY2 
indicates the reporter fusion protein (mCherry-CRY2) direc-
tion to the inner surface of exosomes through interaction 
with CIBN in the CIBN-EGFP-CD9 complex (Fig. 2c). The 
results of the study showed that protein-loaded EXPLORs 
increased intracellular levels of reporter proteins in the 
recipient cells [67].

3.1.3 � Loading of RNAs into Exosomes Using Parental 
Cell‑Based Engineering

In addition to the parental cell-based exosome engineering 
methods and devices developed for loading of proteins into 
exosomes, similar methods have been developed for loading 
of RNAs. Recently, a novel parental cell-based strategy was 
established for loading mRNAs, called the EXOtic (Exosomal 
Transfer Into Cells) device. In the EXOtic device, in addi-
tion to the RNA packaging system (CD63-L7Ae, an archaeal 
ribosomal protein, which can bind to the C/Dbox in the 3′ 
untranslated region [UTR] of any RNA structure), two other 
devices known as cytosolic delivery helper (Cx43 S368A, a 
mutated connexin 43) and targeting module (RVG-Lamp2b) 
also contribute, which together provide a new method for 
loading therapeutic mRNAs into exosomes. Using this device, 
the mRNA of a catalase enzyme carrying a C/Dbox sequence 
on its 3′ UTR was loaded into exosomes, which are simultane-
ously targeted to brain tissue by the Lamp2b-RVG targeting 
module. Briefly, as we discussed earlier, since CD63 is an 
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exosomal surface protein, the binding of CD63-L7Ae to the 
C/Dbox of catalase mRNA (through the L7Ae protein) directs 
the whole complex (CD63-L7Ae-mRNA) to exosomes. This 
system loads catalase mRNA into exosomes. The validation 
of this method showed that Lamp2b-RVG on the surface of 
these exosomes targets them to brain tissue and subsequently 
reduces neuroinflammation and neurotoxicity in the mouse 
model of Parkinson’s disease [68]. This is one of the most 
complex reports on parental cell-based exosome engineering 
that displays a neuron-targeting protein (RVG) on exosomes 
and loads a therapeutic mRNA into their lumen simultane-
ously (Fig. 3a).

Sutaria et al. [69] designed a system for loading miR-
199a into exosomes. They fused a modified miR-199a 
composed of pre-miR-199a, to a trans-activating response 
element (TAR) sequence (trans-activation response RNA 
loop) and separately fused a trans-activator of transcription 
(TAT) peptide (transcription activator peptide of HIV-1) to 

Lamp2a (Lamp2a-TAT). When expressed in HEK293 cells, 
miR-199a-TAR binds to Lamp2a-TAT, and the interaction 
on the luminal C-terminal of Lamp2a leads to the effective 
loading of miR-199a into the lumen of exosomes (Fig. 3b). 
This TAT-TAR protein–RNA interaction strategy can be an 
efficient tool for loading any therapeutic microRNAs (miR-
NAs) into exosomes and microvesicles [69].

In this context, using of RNA binding modules seems 
to be an efficient method for loading RNA into exosomes. 
Similar to TAT and L7Ae, HuR is an RNA binding protein 
that binds strongly to miR-155. In this regard, HuR protein 
was used as an RNA sorting module for exosome engineer-
ing. In one study, HuR was fused to the C-terminal of CD9 
in order to be localized in the exosomal lumen. Binding to 
miR-155 and simultaneous localization of the HuR module 
inside the exosomes results in the loading of miR-155 into 
the exosomes. HuR can also bind to adenylate uridylate-rich 
elements of engineered RNAs [70].

Fig. 2   Parental cell-based exosome engineering for loading proteins 
into the lumen of exosomes or displaying them on their surface. a 
Surface display of a POI using different sorting modules. The fusion 
protein composed of the POI and the sorting module is directed to the 
surface of exosomes by an exosomal signal peptide. b Use of WW 
tag and Ndfip1 for loading Cre enzyme into the exosomes. Ndfip1 
recognizes the WW tag and activates the E3 ubiquitin ligases, lead-
ing to the ubiquitination of Cre and its subsequent loading into the 
exosomes. c The EXPLOR method for loading mCherry reporter pro-
tein into the exosomes. Blue light-assisted PPI between CRY2 and 

CIBN results in the formation of a complex between two modules. 
Sorting of the whole complex into the exosomes is assisted by the 
CD9 sorting module. After elimination of the blue light, the two parts 
of the complex separate and mCherry-CRY2 is released to the lumen 
of exosomes. CRY2 photoreceptor cryptochrome 2, EGFP enhanced 
green fluorescent protein, EXPLOR exosomes for protein loading via 
optically reversible protein-protein interactions, Lamp2 lysosome-
associated membrane protein 2, mCh mCherry, POI protein of inter-
est, PPI protein–protein interaction, VSVG vesicular stomatitis virus 
glycoprotein
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Besides the specific loading of molecules into exosomes 
by means of MSMs, one approach for nonspecific enrichment 
of exosomes with a molecule is based on the transfection of 
parental cells with a gene of interest without any other mod-
ules for packaging and sorting. Expression of this gene in 
the cells results in a general enrichment of the molecules in 
the exosomes. For instance, when cells are transfected with 
miRNA mimics, after expression of these miRNAs, they are 
significantly enriched in both MSCs and their derived EVs [9].

3.2 � Direct or Post‑Isolation Exosome Engineering 
Approach

Small nucleic acid molecules (e.g., miRNAs and short interfer-
ing RNAs [siRNAs]) and therapeutic molecules such as anti-
cancer drugs can be encapsulated in exosomes by direct exo-
some engineering. This common type of exosome engineering 
is technically less complex compared with the parental cell-
based methods, and has been widely employed for the appli-
cation of exosomes as drug delivery or gene delivery vehicles 
in the last 2 decades. In this approach, common manipulation 
methods of electroporation [20, 71], extrusion, sonication, 
incubation, freeze-thaw, bio-conjugation, click chemistry, 
and cloaking [55, 61] can be used for direct engineering of 
exosomes after isolation from cells. Given that these methods 
do not provide a continuous source of engineered exosomes, in 
contrast to the parental cell-based engineering methods, con-
cise protocols for frequent engineering procedures are war-
ranted for clinical applications. Several informative review 
articles have been published that describe direct exosome 
engineering; thus, we refer the readers to these reviews for 
more information [72–74]. However, a brief review of these 
methods is presented here in the next sections and in Table 1.

4 � Clinical Applications of Designer 
Exosomes

In the previous section, we described how researchers can 
engineer exosomes, and the basics of the methods and under-
lying mechanisms were discussed. In this section, we discuss 
the latest research on designer exosomes for specific clinical 
purposes. Indeed, cancer treatment and regenerative medi-
cine seem to be the most important fields in which designer 
exosomes are being used.

4.1 � Targeted Designer Exosomes

Tetraspanins on the surface of exosomes indicate both 
the origin of exosomes and their desired cells. These pro-
teins cause a general slight attraction between exosomes 
and specific cells [85]. However, this general attraction of 
exosomes is not enough for targeted delivery of molecules 

to specific cells, and it requires the existence of targeting 
peptides or proteins on the surface of exosomes. In recent 
years, a substantial number of studies have focused on using 
exosomes for gene and drug delivery, while only a few of 
them exploited targeted designer exosomes. In the previous 
sections, we briefly discussed the basics of exosome target-
ing approaches. Here, recent studies aimed at developing 
targeted designer exosomes will be discussed.

In an example of an immunotherapeutic application of 
designer exosomes, transfection of murine melanoma cells 
by the CIITA gene led to the overexpression of MHC-II 
on their surfaces, hence, producing exosomes enriched 
in MHC-II. Next, the engineered exosomes were targeted 
toward T cells and increased the type 1 T helper cell (TH1) 
response against cancer cells. Therefore, the enriched MHC-
II molecule in the engineered exosomes acted as a targeting 
peptide and a therapeutic agent [86]. Alternatively, an anti-
body light chain can be attached to the exosomal surface to 
direct exosomes toward T cells [87].

Due to the distinct ability of exosomes to cross the BBB 
and deliver drugs to the brain, treatment of neurodegenera-
tive disorders and related malignancies remains one of the 
main goals for targeted designer exosomes. Using targeting 
modules on the surface of exosomes specific for neurons and 
brain tissue can efficiently target the engineered exosomes 
toward brain to deliver therapeutic molecules. In one study, 
overexpression of folate receptor α (FRα) on the surface 
of exosomes permitted them to specifically bind to the 
brain parenchyma [88]. Another study used RVG surface-
displayed designer exosomes for the delivery of siRNAs to 
knockdown β-secretase 1 (BACE1), an essential factor of 
Alzheimer’s disease, which suppressed BACE1 by ~ 40% 
[43]. Other designer exosomes developed against neuro-
degenerative diseases will be discussed in the regenerative 
designer exosomes section.

Exosome targeting can also be accomplished by surface 
chemical modification in a direct engineering approach. In 
a study by Nag and Awasthi [89], a method of direct engi-
neering called “cloaking” was applied, which is a membrane 
anchoring platform and consists of three components: a 
DMPE phospholipid membrane anchor, a polyethylene 
glycol (PEG) spacer, and a streptavidin molecule. Briefly, 
DMPE-PEG-streptavidin inserts into the exosomal mem-
brane via hydrophobic interaction and provides an anchor 
for the connection of biotinylated ligand proteins [89]. A 
recent study used both the cloaking platform and paren-
tal cell-based surface display methods to develop targeted 
designer exosomes. These exosomes were engineered to 
target the injured myocardium via chemical engineering or 
surface display of an ischemic homing peptide. Comparative 
analysis revealed the same results of in vivo biodistribu-
tion to injured myocardium for both methods [90], verifying 
the potential of the two different approaches for targeted 
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designer exosome development. Although chemical-based 
engineering methods such as cloaking are more straightfor-
ward than the parental cell-based methods, they need to be 
carried out for every isolated exosome. Overall, the cloak-
ing technology has been recognized as a versatile exosome 
surface engineering method for development of targeted 
designer exosomes [78]. Targeting moieties are one of the 
most important parts of targeted therapy, and Table 2 pro-
vides the targeting moieties used for targeted designer exo-
some development.

4.2 � Anti‑cancer Designer Exosomes

As described in the beginning of the previous section, 
in some cases, exosomes have intrinsic homing abil-
ity toward certain cells. For instance, exosomes derived 
from Raw264.7 (macrophage; Abelson murine leukemia 
virus-transformed) and U937 (of the myeloid lineage) cells 
show targeting ability toward cancerous endothelial cells 
[112]. Jang et al. hypothesized that (at least for the exo-
some-mimetic nanovesicles) the presence of lymphocyte 

function-associated antigen 1 (LFA-1) inherited from 
the donor cell line facilitated binding of the exosomes to 
endothelial cell adhesion molecules (CAMs), and in turn 
directed them to the growing tumors with widespread neo-
vascularization [112]. However, significant adverse side 
effects for healthy proliferative cells, especially in the case 
of anti-cancer chemotherapeutic agents, have encouraged 
scientists to design targeted vehicles [101, 105]. In this 
section, we focus on targeted designer exosomes specifi-
cally designed for cancer therapy.

The GE11 peptide has a strong affinity for epidermal 
growth factor receptor (EGFR). A recent study developed 
a GE11-based targeted designer exosome for breast cancer 
treatment. They used a GE11 targeting peptide, hemag-
glutinin, and myc-tag, fused to the PDGFR, in order to be 
expressed on the exosome surface [56]. EGFR upregula-
tion in several types of solid cancer represents great poten-
tial for cancer treatment through targeting this receptor 
[113]. GE11 binds to EGFR without any receptor activa-
tion; thus, it makes a potential candidate for drug deliv-
ery to tumor tissue [56]. In this study, EGFR targeting 

Fig. 3   Parental cell-based exosome engineering for loading RNAs 
into the lumen of exosomes. a The different modules of the EXOtic 
device for loading catalase mRNA into the lumen of exosomes 
using the CD63-L7Ae sorting module. Connexin is a packaging 
helper module, and Lamp2b-RVG is a targeting module. b Loading 
of miR-199a into exosomes using TAT–TAR interaction. Interaction 

of Lamp2a-TAT as the sorting module with the TAR sequence fused 
to miR-199a results in the loading of miR-199a into the exosomes. 
EXOtic EXOsomal Transfer Into Cells, Lamp2 lysosome-associated 
membrane protein 2, RVG rabies viral glycoprotein, TAR​ trans-acti-
vating response element, TAT​ trans-activator of transcription
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by systematically injected targeted designer exosomes 
in a Rag2−/− mice model of breast cancer significantly 
decreased the tumor size via accumulation in tumor tissue. 
In this regard, the main step prior to the development of 
targeted designer exosomes is finding suitable and spe-
cific targeting peptides. Table 1 summarizes the targeting 
peptides previously used for designing targeted designer 
exosomes or for detecting exosome-producing cancer cells 
[114].

RGE is a specific targeting peptide for NRP-1 on gli-
oma cells. Following the click chemistry-assisted surface 
display of RGE peptide, targeted designer exosomes were 
loaded with curcumin and superparamagnetic iron oxide 
nanoparticles (SPIONs) (RGE-Exo-SPION/Cur). Binding 
of RGE peptide to the exosome’s surface was carried out 
by a cycloaddition reaction of sulfonyl azide. Briefly, the 
targeted designer exosomes were generated in two steps: 
conjugation of the alkyne group with the protein (the phos-
phatidylethanolamine) on the exosomal membrane with an 
EDC-NHS condensation reaction and conjugation of RGE 
with the azido group to the alkyne group by triazole link-
ages. Parental cell-based assessment showed that systemic 
administration of these targeted designer exosomes can 
potentially cross the BBB in a mouse glioma model and 
accumulate in the tumor tissue. These targeted exosomes 
can also be used for targeted imaging and diagnosis [111].

4.3 � Regenerative Designer Exosomes

Various previously published studies corroborate the 
regenerative effects of exosomes isolated from progenitor 
and stem cells. MSC-derived exosomes are well studied, 
and their regenerative potentials have been experimentally 
approved in regenerative medicine for the treatment of vari-
ous diseases. However, the contents of exosomes as the key 
factor of their regenerative effects are not yet fully identified. 
RNAs and proteins are the main effectors of the regenerative 
potential of the exosomes, while miRNAs and mRNAs are 
the most critical bioactive elements in these exosomes. The 
content of each exosome depends on the cell type and its 
physiological state. Recent studies have demonstrated that 
the exosomes secreted by differentiated cells such as induced 
pluripotent stem cell-derived cardiomyocytes (iCMs) con-
tain a distinct set of miRNAs, which can modify the post-
transcriptional and translational profile and phenotype of 
the recipient cells more than exosomes secreted by undif-
ferentiated cells. Eventually, exosomes derived from these 
cells have a substantial effect on the promotion of infarcted 
heart recovery by providing cardiac protective factors such 
as clusterin, miR-21, miR-126 [115], and miR-210, resulting 
in reduced infarct size, hypertrophy, apoptosis, and stimu-
lation of angiogenesis [116]. The exosomes isolated from 
MSCs of different tissues have been extensively used for 

regeneration of tissues and wound healing. This approach 
is a safe and non-immunogenic cell-free alternative to cell-
based therapies [117]. However, the lack of targeted ther-
apy and the complexity of exosomal contents are still the 
main challenges for tissue repairing by exosomes (Fig. 4). 
Wang et al. [119] developed an efficient method eliminating 
the risk of the accumulation of exosomes in non-specific 
organs. Similar to the previously described methods involv-
ing targeted designer exosomes, they reconstructed exosomal 
Lamp2b protein to be fused to ligands or homing peptides 
to target a specific organ. Fusing ischemic myocardium-tar-
geting peptide (IMTP) to Lamp2b (IMPT-Lamp2b) in the 
treatment of acute myocardial infarction (AMI) resulted in 
accumulation of engineered exosomes in the myocardium. 
In this study, by using IMTP, and in another study, by attach-
ing glycosylation sequences to a cardiac-targeting peptide 
(CTP-Lamp2b [118]), an increase was recorded in the reten-
tion of engineered exosomes in the myocardium of mice 
in a mouse myocardial infarction (MI) model ex vivo and 
in vitro. Furthermore, high specificity and efficiency of tar-
geting myocardium using the engineered exosomes resulted 
in the reduction of inflammation and apoptosis, induced 
angiogenesis, decreased infarct size, and refined cardiac 
function [109, 119].

A real challenge for targeting different tissue injuries is 
the development of tissue-specific targeting moieties. For 
instance, cardiomyocyte-specific cTnI, is involved in the 
regulation of cardiac muscle contraction and exists in higher 
concentrations in the microenvironment of the infarct area. 
In this regard, cTnI is a potential ligand for targeted delivery 
of functional regenerative molecules to the MI site. When a 
targeting peptide that specifically targets cTnI is fused with 
a regenerative protein, this protein is delivered to the MI 
site. For targeting exosomes to the MI site, a cTnI-targeting 
small peptide “STSMLKA” was fused to the N-terminal of 
Lamp2b and expressed in MSCs. P1–8 BM-MSC was used 
as the source of designer exosomes. In addition, hsa-miR-
590-3p, which downregulates the expression of cell prolifer-
ation inhibitor genes, was loaded into the lumen of exosomes 
after isolation. Treatment of MI models of rats showed that 
after systemic administration, designer exosomes are local-
ized to the MI site through the concentration gradient of 
cTnI. As a result, these designer exosomes enhanced cardio-
myocyte proliferation in the peri-infarct area and improved 
cardiac function [4].

For cerebral ischemia treatment, the main obstacle is 
crossing the BBB. Mesenchymal stromal cell-derived 
exosomes fused to a cyclo (Arg-Gly-Asp-D-Tyr-Lys) pep-
tide [c(RGDyK)] showed high affinity for integrin αvβ3 in 
reactive cerebral vascular endothelial cells. The c(RGDyK)-
conjugated exosomes (cRGD-Exo) loaded with various 
drugs, such as curcumin, suppressed the inflammation and 
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cellular apoptosis in the lesion region in the mouse model 
of transient middle cerebral artery occlusion (MCAO) [93].

In another study, using cRGD peptide, the RGD-dis-
playing exosomes loaded with miR-210 were systemically 
administered to localize in the injury site of the ischemic 
brain. Following intravenous administration, the miR-210 
level significantly increased at the site of lesion in a mouse 
model of transient MCAO. Intravenous administration of 
these designer exosomes once per day for 14 days resulted 
in upregulation of integrin β3, vascular endothelial growth 
factor (VEGF), and CD34 and enhanced the survival rate 
of animals (5). RGD surface functionalized regenerative 
exosomes also can be used for angiogenesis therapy (3).

In a study using designer exosomes for renal regeneration, 
MSCs were transfected with multiple miRNA mimics (miR-
10a-5p, miR-127-3p, miR-29a-3p, let-7a, miR-30a-5p, and 
miR-486-5p) and their significant enrichment in both MSCs 
and their EVs confirmed. These miRNAs were selected 
based on their involvement in tissue regeneration and cell 
proliferation pathways, and were enriched in MSC-derived 
EVs to promote renal regeneration. Results demonstrated 
that EVs loaded with these miRNAs maintain their pro-
regenerative effects, and verified the potential application 
of a low dose of the engineered EVs (82.5 × 106) for the 
promotion of renal regeneration [9].

Polyethylenimine (PEI) is a polymer capable of forming 
non-covalent complexes with DNA, making it a suitable car-
rier for DNA and RNA delivery. In order to promote bone 
regeneration, EVs derived from human periodontal ligament 
stem cells were engineered with PEI polymer. The PEI-
EVs may act through enhancement and promotion of EVs’ 
content delivery to the target cells. The in vivo analysis of 
PEI-EVs in rat models of calvarial defect showed signifi-
cant expression of osteogenic markers, increased VEGF and 
VEGF receptor 2 (VEGFR2), increased vascularization, and 
consequently enhanced bone regeneration [120].

Finally, using previously described parental cell-based 
and direct methods, therapeutic molecules including drugs, 
mRNAs, miRNAs, siRNAs, peptides, growth factors, anti-
scarring factors (transforming growth factor [TGF]β1 inhibi-
tors such as decorin and TGFβ3 [121, 122]), and wound 
healing factors (SDF-1, which has a chemotactic function 
for bone marrow MSCs [BMSCs] and endothelial progeni-
tor cells [EPCs] in vascularization and healing [123]) can be 
efficiently loaded (as fully described in Sect. 3.1) into the 
regenerative engineered exosomes. This kind of regenera-
tive exosome loaded with effective wound healing, regenera-
tive, and anti-scarring factors can be targeted to the wound 
and scar tissues for regenerative purposes, using targeting 
peptides such as cardiac homing peptide (CHP) [109] and 
SDF-1 (with CXCR4 receptor on BMSCs). The recently 
reported targeting peptide, CAR (CARSKNKDC), showed 
a potential capacity for homing and penetration into injured Ta
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and diseased tissues, and can be expressed on the surface 
of regenerative exosomes for targeted regeneration [124].

5 � Companies Developing Engineered 
Exosome‑Based Therapeutics

Like other areas of basic science, exosomes have been 
favored by many biotechnology companies because of their 
predicted lucrative future, which has encouraged companies 
to invest in exosomes research and development. Conse-
quently, various companies have been funded to promote 
the commercialization of a particular exosomal product. One 
of these companies is Codiak Bioscience, founded in 2015, 
which is arguably the largest developer of exosome-based 
therapeutics. This company seeks to produce engineered 
exosomes for the development of advanced targeted drug 
delivery platforms for neuronal cells. In addition, developing 
the large-scale production systems of exosomes is one of the 
main goals of this company (http://www.codia​kbio.com/). 
Evox Therapeutics is pursuing a completely biotechnological 
approach to produce new platforms for engineered exosomes 
with novel features in the loading of drugs and targeting 

them to specific cancers and tissues such as the brain and 
the central nervous system (https​://www.evoxt​herap​eutic​
s.com/). Exopharm works on the commercialization of exo-
some-based products for regenerative medicine, currently 
including a platform for downstream analysis and two prod-
ucts. The downstream technology developed by Exopharm is 
called LEAP technology, which is based on chromatography 
for the separation of ultrapure exosomes for pharmaceutical 
use (https​://exoph​arm.com/). With a long history in stem cell 
production, Aruna Bio Company has commercialized the 
first neuronal stem cell or neuronal precursor from human 
pluripotent stem cells. Recently, the company decided to 
commercialize pharmaceutical exosomes for drug delivery 
to the brain and neurons. This company is also seeking to 
provide a solution for the large-scale production of exosomes 
(https​://aruna​bio.com/). In 2018, at the Gordon Scientific 
Conference, Capricor Therapeutics reported successful 
development of an exosome-based product called Cap-2003 
from cardiosphere-derived EVs that can be used for immu-
nomodulation in immune-related diseases (http://capri​cor.
com/). Many other companies are also active in the develop-
ment of exosome therapeutics, including Exogenus (www.

Fig. 4   Application of regenerative designer exosomes for cardiovas-
cular and neurodegenerative disorders and malignancies. a Targeted 
designer exosomes loaded with healing molecules reach the injury 
site of MI by injury-targeting specific peptides after intravenous 
injection. b Use of neuron- and brain-targeting moieties on exosomes 
allows the exosomes to cross the BBB and reach the injury site or 

tumor tissue in the brain and deliver healing molecules or anti-cancer 
drugs and c regenerative designer exosomes containing wound heal-
ing factors and anti-scarring and anti-inflammatory factors targeting 
the scar tissue for treatment of wounds and dermal diseases. BBB 
blood–brain barrier, CHP cardiac homing peptide, MI myocardial 
infarction

http://www.codiakbio.com/
https://www.evoxtherapeutics.com/
https://www.evoxtherapeutics.com/
https://exopharm.com/
https://arunabio.com/
http://capricor.com/
http://capricor.com/
http://www.Exogenus-t.com
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Exoge​nus-t.com), Versatope Therapeutics (www.versa​tope.
com), and VivaZome Therapeutics (www.vivaz​ome.com).

6 � Future Perspectives and Conclusions

Exosomes are fascinating biological materials. Promis-
ing recently published research and developments indicate 
that most of the current cell therapies could be replaced by 
their exosomes. The exosomes produced by MSCs, which 
were widely noticed after the publication of an article by 
Lai et al. [125], encouraged thousands of other studies on 
exosomes in the field of regenerative medicine. Interestingly, 
these studies showed that exosomes could exhibit MSCs’ 
potentials. Therefore, exosomes have been introduced as an 
advantageous alternative for whole MSCs in cell therapies 
and regeneration medicine.

Exosome engineering and the production of designer 
exosomes are entering a new phase. The previous phase 
of exosome engineering was based on the curiosity of the 
researchers about the engineering of exosomes. In recent 
years, development of biological  therapeutics has been 
steadily pursued, and some companies have been founded 
to manufacture the engineered exosome therapeutics.

As discussed in various sections of this review arti-
cle, some of the undesirable features of natural exosomes 
seem to prevent their extension to clinical applications. In 
this regard, the problems associated with the production 
and manufacture of exosomes on a large scale and their 
purification and heterogeneity need to be addressed. It is 
expected that with the development of large-scale produc-
tion methods for exosomes as well as engineered cell lines 
for the production of improved engineered exosomes, the 
establishment of therapeutic and diagnostic platforms 
associated with EVs may be possible in the near future. 
Designer exosomes have been shown to have a high poten-
tial, while methods of exosome engineering for improving 
the effectiveness of natural exosomes expand rapidly. For 
example, chemotherapeutic drugs [126, 127] commonly 
used for cancer treatment are associated with significant 
adverse effects due to undifferentiated cytotoxicity for 
tumor and healthy cells. In this regard, specifically tar-
geted designer exosomes displaying specific targeting moi-
eties on their surface and loaded with anti-cancer drugs 
in their lumen are a versatile platform that meet several 
challenges together [80].

Finally, another highly promising application of 
designer exosomes is in vaccine development. Studies on 
vaccine development showed that host cells infected with 
parasites, viruses, or bacterial pathogens secrete exosomes 
filled with several antigens of those pathogens [128]. 
Experiments in vaccine development showed that cock-
tail and multi-epitopic vaccines (MEVs) could overcome 

antigenic escape of pathogens from the immune system 
[129, 130]. Hopefully, using exosome engineering meth-
ods, exosomes could be recruited to present multiple anti-
gens as designer vaccine exosomes.
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